research communications
κ2O,O′)[1-(pyridin-2-yl-κN)-2-(pyridin-2-ylmethylidene-κN)hydrazine-κN2]manganase(II)
of aquachlorido(nitrato-aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cCentre de Recherche e Gif, Institut de Chimie des Substances Naturelles, CNRS-UPR2301, 1 Avenue la Terasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr
The search for novel manganese(II) compounds having interesting magnetic properties, using 1-(pyridin-2-yl)-2-(pyridin-2-ylmethylidene)hydrazine (HL) as a tridendate ligand, led to the preparation of the title mononuclear material, [MnCl(NO3)(C11H10N4)(H2O)], and the determination of its structure by XRD. The comprises a discrete molecule in which the cation MnII is heptacoordinated. The environment around the cation is an almost perfect pentagonal bipyramid. The base is defined by the two N atoms of the pyridine rings, the N atom of the imino function of the ligand and the two O atoms of the chelating bidentate nitrate ligand. The apical positions are occupied by a Cl atom and a water molecule. In the crystal, there are numerous hydrogen bonds of the types Ow—H⋯ONO2 and C—H⋯ONO2, which generate layers parallel to the bc plane in which the ligands in the axial positions point into the interlayer space. These axial ligands give rise to hydrogen bonds of the types Ow—H⋯ONO2, Ow—H⋯Cl, N—H⋯Cl and C—H⋯Cl, leading to a three-dimensional framework. The chain bridging the two pyridine rings is disordered over two sets of sites in a 0.53 (2):0.47 (2) ratio.
Keywords: crystal structure; manganese; Schiff base.
CCDC reference: 1826459
1. Chemical context
Although very much studied, the coordination chemistry of manganese remains very interesting as this metal can have several degrees of oxidation and its complexes can display different coordination numbers and geometries that are not always easily predicted (Chiswell et al., 1987; Baldeau et al., 2004; Mikuriya et al., 1997). Although the coordination numbers four and six are the most common in the coordination chemistry of manganese, the coordination numbers five, seven and eight are also observed (Louloudi et al., 1999). As a result of the multiple degrees of oxidation of this metal, interest in the coordination chemistry of manganese complexes is considerable. The involvement of manganese in various important biological processes such as oxidation of water by photosynthetic enzymes (Whittaker & Whittaker, 1997), hydrogen peroxide by catalase (Meier et al., 1996), superoxide dismutase (SOD) (Schwartz et al., 2000), ribonucleotide reductase and lipoxygenase (Baffert et al., 2003) increases the interest of scientists in this metal. These examples from nature inspire chemists to search for bio-mimetic catalysts of these metalloenzymes that are highly selective and cause little damage to the environment (Krishnan & Vancheesan, 1999). Manganese complexes are also used as catalysts in many processes such as epoxidation of alkene (Castaman et al., 2009), oxidation (Wegermann et al., 2014) and hydrogenation of (Bruneau-Voisine et al., 2017). The involvement of the metal center in these processes depends as much on its degree of oxidation as on its in the complex. The synthetic procedures adopted are essential for yielding complexes with specific properties. In this context, for the synthesis of the heptacoordinated MnII title complex, we use a one-pot synthesis method, which is an efficient approach to prepare a large variety of coordination compounds (Oyaizu et al., 2000). Manganese dichloride tetrahydrate is mixed with the synthesized organic ligand (HL), which provides three soft nitrogen-binding sites in the presence of nitrate anions that can act with hard oxygen-binding sites to yield a mononuclear heptacoordinated manganese(II) complex.
2. Structural commentary
The structure of the title complex is shown in Fig. 1. The comprises a discrete molecule in which the cation MnII is heptacoordinated. The of the MnII center is best described as a distorted pentagonal bipyramid with an MnN3O3Cl chromophore. The basal plane is occupied by two nitrogen atoms from the pyridine rings, one nitrogen atom from the imino function and two oxygen atoms from the chelating bidentate nitrate group. The metal-bound ligand nitrogen atoms exhibit angles of 69.85 (7)° (N1—Mn1—N2) and 69.62 (7)° (N2—Mn1—N4) which are slightly different from the ideal angle for a regular pentagon (72°). The sum of the equatorial angles around MnII is 359.72°. The angle formed by the atoms in axial positions around MnII [Cl1—Mn1—O1W = 179.07 (4)°] is very close to the ideal value of 180°. The Mn—O/N bond lengths (Table 1) are longer than those observed in the heptadentate manganese complex [Mn(L)(NO3)2] [L is 2,6-bis(1-butyl-1H-benzo[d]imidazol-2-yl)pyridine; Kose & McKee et al., 2014]. The apical bond Mn1—Cl1 [2.4999 (6) Å] is the longest and is comparable to those found for the complex [Mn(L)(Cl)2]·MeOH [Mn1—Cl1 = 2.4849 (7), Mn1—Cl2 = 2.5465 (7) Å] {L is 2,6-bis[(2-hydroxyphenylimino)methyl]pyridine; Kose et al., 2015}. The second axial bond is the shortest distance in the structure [Mn1—O1W = 2.2239 (14) Å]. The two pyridine rings are connected by a disordered chain C—CH=N—NH—C in which the bond lengths are slightly different from those observed in similar complexes; this may be related to the observed disorder. Two intramolecular hydrogen bonds, C1—H1⋯O2 and C11—H11⋯O3, are also observed in the structure (Table 2, Fig. 1).
|
3. Supramolecular features
In the crystal, the complex molecules are linked by hydrogen bonds, giving rise to a three-dimensional network (Fig. 2, Table 2). The structure is built up from pentagonal bipyramids around the MnII atom, which are assembled in layers parallel to the bc plane. These layers are interconnected by hydrogen bonds. The coordinating axial water molecule points into the interlayer space and act as a hydrogen-bond donor towards oxygen atom O2-NO2 and chlorine atom Cl1 (Fig. 2) via the hydrogen bonds O1W—H1WB⋯O2ii and O1W—H1WA⋯Cl1i, [symmetry codes: (i) x + 1, y, z; (ii) −x + 2, −y + 1, −z + 2]. The axial Cl1 atom points also in the interlayer space and acts as a hydrogen-bond acceptor toward N3—H3N⋯Cl1iii and C6—H6⋯Cl1iii [symmetry code: (iii) −x + 1, −y + 1, −z + 1]. The combined hydrogen bonds link the layers into a three-dimensional framework. Within a layer, the molecules are interconnected by hydrogen bonds of the type C—H⋯ONO2 [C8—H8⋯O4iv—NO2; symmetry code: (iv) x, y, z − 1].
4. Database survey
The ligand 1-(2-pyridyl)-2-(pyridin-2-ylmethylidene)hydrazine has been widely used in coordination chemistry. The current release of the CSD (Version 5.39, last update Nov 2017; Groom et al., 2016) affords 22 hits. Seven examples of complexes with the above ligand with f-block metal ions appear in the literature (Baraniak et al., 1976; Ndiaye-Gueye, Dieng, Thiam, Sow et al., 2017; Ndiaye-Gueye, Dieng, Thiam, Lo et al., 2017; Ndiaye-Gueye, Dieng, Lo et al., 2017; Gueye et al., 2017). The other entries are for complexes with p- and d-block metal ions. Structures are available for CaII (Vantomme et al., 2014), CuII (Mesa et al., 1988, 1989; Rojo et al., 1988; Ainscough et al., 1996; Chowdhury et al., 2009; Mukherjee et al., 2010; Chang et al., 2011), CoII (Gerloch et al., 1966), NiII (Chiumia et al., 1999) and ZnII (Dumitru et al., 2005; Vantomme et al., 2014). In all cases, the ligand behaves as a tridentate ligand acting through the soft nitrogen donor atoms from the two pyridine rings and the imino function. The hard protonated nitrogen atom remains uncoordinated in all complexes.
5. Synthesis and crystallization
A mixture of 2-hydrazinopyridine (1 mmol) and 2-pyridinecarbaldehyde (1 mmol) in ethanol (10 mL) was stirred under reflux for 30 min. A mixture of ammonium nitrate (3 mmol) and MnCl2·4H2O (1 mmol) in ethanol (10 mL) was added to the solution. The mixture was stirred for 30 min and the resulting yellow solution was filtered and the filtrate was kept at 298 K. A yellow powder appeared after one day and was collected by filtration, yield 65%. Analysis calculated for [C11H12ClMnN5O4] C, 32.41; H, 3.26; N, 22.67. Found: C, 32.37; H, 3.19; N, 22.60%. μeff(μB): 5.98 ΛM (S cm2 mol−1): 14. IR (cm−1): 3233, 1609, 1560, 1521, 1465, 1422, 1289, 1148, 776, 673.
6. Refinement
Crystal data, data collection and structure . All H atoms (=CH, NH and OH2 groups) were optimized geometrically (C—H = 0.93, N—H = 0.86 and O—H = 0.87–0.91 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The chain bridging the two pyridine rings is disordered. This disorder may be explained by the fact that the sequence of atoms C(Py)—CH=N—NH—C(py) overlaps with the sequence C(py)—NH—N=CH—C(py), meaning two orientations of the ligand. In such a case, for the it was assumed that the C atom of the CH group from one chain and the NH atoms from the second chain occupy the same position. The same relates inversely. The occupancy factor refined to 0.53 (2):0.47 (2).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1826459
https://doi.org/10.1107/S2056989018003493/eb2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003493/eb2005Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).[MnCl(NO3)(C11H10N4)(H2O)] | Z = 2 |
Mr = 368.65 | F(000) = 374 |
Triclinic, P1 | Dx = 1.658 Mg m−3 |
a = 6.9698 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6055 (2) Å | Cell parameters from 9920 reflections |
c = 10.8476 (2) Å | θ = 2.4–28.6° |
α = 98.784 (2)° | µ = 1.10 mm−1 |
β = 97.636 (2)° | T = 293 K |
γ = 108.308 (2)° | Prismatic, yellow |
V = 738.21 (2) Å3 | 0.09 × 0.08 × 0.06 mm |
Bruker KappaCCD diffractometer | 2905 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Detector resolution: 9 pixels mm-1 | θmax = 29.1°, θmin = 3.6° |
CCD scans | h = −9→9 |
22026 measured reflections | k = −14→14 |
3571 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.1976P] where P = (Fo2 + 2Fc2)/3 |
3571 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.71914 (4) | 0.39182 (3) | 0.74637 (2) | 0.04153 (11) | |
Cl1 | 0.33417 (8) | 0.30415 (5) | 0.69679 (5) | 0.05511 (14) | |
O1W | 1.0615 (2) | 0.46771 (14) | 0.79278 (13) | 0.0541 (3) | |
H1WA | 1.140892 | 0.416765 | 0.774402 | 0.081* | |
H1WB | 1.118139 | 0.516748 | 0.869134 | 0.081* | |
O2 | 0.7483 (2) | 0.38248 (13) | 0.96166 (13) | 0.0529 (3) | |
O3 | 0.7175 (3) | 0.19991 (15) | 0.83256 (13) | 0.0631 (4) | |
O4 | 0.7546 (3) | 0.20477 (18) | 1.03568 (15) | 0.0728 (5) | |
N1 | 0.7321 (3) | 0.61349 (16) | 0.81806 (18) | 0.0528 (4) | |
N2 | 0.7448 (2) | 0.50621 (19) | 0.58471 (17) | 0.0519 (4) | |
N3 | 0.7437 (8) | 0.4569 (8) | 0.4755 (5) | 0.0484 (13) | 0.53 (2) |
H3N | 0.742706 | 0.499635 | 0.414304 | 0.058* | 0.53 (2) |
N4 | 0.7511 (3) | 0.25742 (19) | 0.56463 (15) | 0.0550 (4) | |
N5 | 0.7400 (3) | 0.25956 (16) | 0.94508 (15) | 0.0474 (4) | |
C1 | 0.7239 (4) | 0.6682 (2) | 0.9358 (2) | 0.0651 (6) | |
H1 | 0.706417 | 0.613021 | 0.995278 | 0.078* | |
C2 | 0.7400 (4) | 0.8019 (2) | 0.9744 (3) | 0.0810 (8) | |
H2 | 0.735126 | 0.835887 | 1.057767 | 0.097* | |
C3 | 0.7630 (5) | 0.8828 (3) | 0.8875 (4) | 0.0962 (11) | |
H3 | 0.773464 | 0.973219 | 0.910758 | 0.115* | |
C4 | 0.7707 (4) | 0.8300 (3) | 0.7648 (4) | 0.0840 (9) | |
H4 | 0.787019 | 0.884113 | 0.704332 | 0.101* | |
C5 | 0.7536 (3) | 0.6938 (2) | 0.7329 (3) | 0.0593 (6) | |
C6 | 0.757 (2) | 0.6350 (13) | 0.6090 (13) | 0.072 (6) | 0.53 (2) |
H6 | 0.766705 | 0.684993 | 0.545312 | 0.087* | 0.53 (2) |
C7 | 0.7444 (3) | 0.3077 (3) | 0.45798 (19) | 0.0605 (6) | |
C8 | 0.7378 (4) | 0.2313 (4) | 0.3399 (2) | 0.0898 (10) | |
H8 | 0.732275 | 0.267981 | 0.267437 | 0.108* | |
C9 | 0.7394 (5) | 0.1032 (4) | 0.3320 (3) | 0.1050 (13) | |
H9 | 0.732556 | 0.050255 | 0.253735 | 0.126* | |
C10 | 0.7511 (5) | 0.0521 (3) | 0.4395 (3) | 0.0934 (10) | |
H10 | 0.754750 | −0.035280 | 0.435722 | 0.112* | |
C11 | 0.7575 (4) | 0.1323 (3) | 0.5545 (2) | 0.0744 (7) | |
H11 | 0.766778 | 0.097228 | 0.627718 | 0.089* | |
C6A | 0.7462 (14) | 0.4203 (12) | 0.4658 (9) | 0.051 (2)* | 0.47 (2) |
H6A | 0.748686 | 0.456233 | 0.392738 | 0.061* | 0.47 (2) |
N3A | 0.755 (2) | 0.6312 (11) | 0.6045 (10) | 0.057 (4)* | 0.47 (2) |
H3NA | 0.761514 | 0.675558 | 0.544192 | 0.069* | 0.47 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.05255 (18) | 0.03866 (16) | 0.03561 (16) | 0.02057 (12) | 0.00415 (12) | 0.00731 (11) |
Cl1 | 0.0516 (3) | 0.0560 (3) | 0.0593 (3) | 0.0232 (2) | 0.0087 (2) | 0.0079 (2) |
O1W | 0.0570 (8) | 0.0574 (8) | 0.0463 (7) | 0.0285 (7) | −0.0016 (6) | −0.0033 (6) |
O2 | 0.0720 (9) | 0.0401 (7) | 0.0464 (7) | 0.0235 (6) | 0.0058 (7) | 0.0038 (6) |
O3 | 0.0995 (12) | 0.0490 (8) | 0.0421 (8) | 0.0330 (8) | 0.0078 (8) | 0.0023 (6) |
O4 | 0.1101 (13) | 0.0758 (10) | 0.0518 (9) | 0.0480 (10) | 0.0203 (9) | 0.0308 (8) |
N1 | 0.0537 (9) | 0.0395 (8) | 0.0670 (11) | 0.0204 (7) | 0.0041 (8) | 0.0132 (8) |
N2 | 0.0423 (8) | 0.0652 (11) | 0.0491 (10) | 0.0171 (8) | 0.0027 (7) | 0.0224 (8) |
N3 | 0.069 (3) | 0.046 (3) | 0.034 (2) | 0.026 (2) | 0.0046 (15) | 0.014 (2) |
N4 | 0.0540 (9) | 0.0652 (11) | 0.0392 (9) | 0.0180 (8) | 0.0063 (7) | −0.0017 (7) |
N5 | 0.0609 (10) | 0.0437 (8) | 0.0407 (8) | 0.0230 (7) | 0.0073 (7) | 0.0091 (7) |
C1 | 0.0751 (15) | 0.0483 (11) | 0.0736 (15) | 0.0301 (11) | 0.0082 (12) | 0.0037 (10) |
C2 | 0.0791 (16) | 0.0505 (13) | 0.111 (2) | 0.0316 (12) | 0.0110 (15) | −0.0054 (14) |
C3 | 0.0790 (18) | 0.0406 (12) | 0.170 (3) | 0.0292 (12) | 0.019 (2) | 0.0101 (17) |
C4 | 0.0739 (16) | 0.0532 (13) | 0.139 (3) | 0.0303 (12) | 0.0211 (17) | 0.0425 (17) |
C5 | 0.0462 (11) | 0.0481 (11) | 0.0895 (18) | 0.0194 (9) | 0.0080 (11) | 0.0286 (11) |
C6 | 0.067 (5) | 0.071 (6) | 0.095 (9) | 0.028 (3) | 0.003 (3) | 0.067 (7) |
C7 | 0.0391 (10) | 0.0915 (18) | 0.0366 (10) | 0.0094 (10) | 0.0041 (8) | 0.0010 (10) |
C8 | 0.0651 (15) | 0.134 (3) | 0.0410 (13) | 0.0061 (17) | 0.0118 (11) | −0.0108 (15) |
C9 | 0.0724 (18) | 0.132 (3) | 0.0646 (19) | −0.0014 (18) | 0.0206 (14) | −0.0446 (19) |
C10 | 0.091 (2) | 0.0782 (18) | 0.091 (2) | 0.0175 (15) | 0.0285 (17) | −0.0271 (16) |
C11 | 0.0906 (18) | 0.0643 (14) | 0.0637 (15) | 0.0286 (13) | 0.0194 (13) | −0.0085 (11) |
Mn1—O1W | 2.2239 (14) | C1—C2 | 1.380 (3) |
Mn1—N2 | 2.2750 (16) | C1—H1 | 0.9300 |
Mn1—N4 | 2.3292 (16) | C2—C3 | 1.361 (5) |
Mn1—N1 | 2.3300 (16) | C2—H2 | 0.9300 |
Mn1—O2 | 2.3372 (14) | C3—C4 | 1.378 (5) |
Mn1—O3 | 2.3635 (15) | C3—H3 | 0.9300 |
Mn1—Cl1 | 2.4999 (6) | C4—C5 | 1.396 (3) |
O1W—H1WA | 0.9067 | C4—H4 | 0.9300 |
O1W—H1WB | 0.8745 | C5—C6 | 1.398 (15) |
O2—N5 | 1.270 (2) | C5—N3A | 1.450 (11) |
O3—N5 | 1.251 (2) | C6—H6 | 0.9300 |
O4—N5 | 1.224 (2) | C7—C6A | 1.180 (11) |
N1—C1 | 1.337 (3) | C7—C8 | 1.394 (3) |
N1—C5 | 1.341 (3) | C8—C9 | 1.352 (5) |
N2—N3 | 1.217 (7) | C8—H8 | 0.9300 |
N2—N3A | 1.288 (11) | C9—C10 | 1.362 (5) |
N2—C6 | 1.325 (13) | C9—H9 | 0.9300 |
N2—C6A | 1.465 (10) | C10—C11 | 1.386 (3) |
N3—C7 | 1.566 (9) | C10—H10 | 0.9300 |
N3—H3N | 0.8600 | C11—H11 | 0.9300 |
N4—C11 | 1.330 (3) | C6A—H6A | 0.9300 |
N4—C7 | 1.347 (3) | N3A—H3NA | 0.8600 |
O1W—Mn1—N2 | 87.38 (6) | N1—C1—C2 | 123.8 (3) |
O1W—Mn1—N4 | 85.96 (6) | N1—C1—H1 | 118.1 |
N2—Mn1—N4 | 69.62 (7) | C2—C1—H1 | 118.1 |
O1W—Mn1—N1 | 87.94 (5) | C3—C2—C1 | 118.4 (3) |
N2—Mn1—N1 | 69.85 (7) | C3—C2—H2 | 120.8 |
N4—Mn1—N1 | 139.23 (7) | C1—C2—H2 | 120.8 |
O1W—Mn1—O2 | 83.70 (5) | C2—C3—C4 | 119.6 (2) |
N2—Mn1—O2 | 152.55 (6) | C2—C3—H3 | 120.2 |
N4—Mn1—O2 | 135.11 (6) | C4—C3—H3 | 120.2 |
N1—Mn1—O2 | 83.90 (6) | C3—C4—C5 | 118.7 (3) |
O1W—Mn1—O3 | 89.13 (6) | C3—C4—H4 | 120.6 |
N2—Mn1—O3 | 151.72 (6) | C5—C4—H4 | 120.6 |
N4—Mn1—O3 | 82.14 (6) | N1—C5—C4 | 122.1 (3) |
N1—Mn1—O3 | 138.06 (6) | N1—C5—C6 | 117.1 (4) |
O2—Mn1—O3 | 54.21 (5) | C4—C5—C6 | 120.8 (5) |
O1W—Mn1—Cl1 | 179.07 (4) | N1—C5—N3A | 116.5 (5) |
N2—Mn1—Cl1 | 93.54 (4) | C4—C5—N3A | 121.4 (5) |
N4—Mn1—Cl1 | 94.25 (5) | N2—C6—C5 | 118.3 (7) |
N1—Mn1—Cl1 | 92.48 (4) | N2—C6—H6 | 120.9 |
O2—Mn1—Cl1 | 95.52 (4) | C5—C6—H6 | 120.9 |
O3—Mn1—Cl1 | 90.00 (5) | C6A—C7—N4 | 118.6 (5) |
Mn1—O1W—H1WA | 124.5 | C6A—C7—C8 | 119.5 (5) |
Mn1—O1W—H1WB | 116.1 | N4—C7—C8 | 122.0 (3) |
H1WA—O1W—H1WB | 105.9 | N4—C7—N3 | 115.6 (2) |
N5—O2—Mn1 | 95.09 (10) | C8—C7—N3 | 122.4 (3) |
N5—O3—Mn1 | 94.39 (10) | C9—C8—C7 | 119.1 (3) |
C1—N1—C5 | 117.34 (19) | C9—C8—H8 | 120.4 |
C1—N1—Mn1 | 126.26 (14) | C7—C8—H8 | 120.4 |
C5—N1—Mn1 | 116.38 (16) | C8—C9—C10 | 119.5 (3) |
N3—N2—C6 | 116.9 (6) | C8—C9—H9 | 120.2 |
N3A—N2—C6A | 128.2 (6) | C10—C9—H9 | 120.2 |
N3—N2—Mn1 | 124.8 (4) | C9—C10—C11 | 119.0 (3) |
N3A—N2—Mn1 | 120.1 (5) | C9—C10—H10 | 120.5 |
C6—N2—Mn1 | 118.4 (6) | C11—C10—H10 | 120.5 |
C6A—N2—Mn1 | 111.7 (5) | N4—C11—C10 | 122.7 (3) |
N2—N3—C7 | 113.2 (4) | N4—C11—H11 | 118.6 |
N2—N3—H3N | 123.4 | C10—C11—H11 | 118.6 |
C7—N3—H3N | 123.4 | C7—C6A—N2 | 123.3 (8) |
C11—N4—C7 | 117.6 (2) | C7—C6A—H6A | 118.4 |
C11—N4—Mn1 | 126.03 (15) | N2—C6A—H6A | 118.4 |
C7—N4—Mn1 | 116.15 (16) | N2—N3A—C5 | 117.1 (8) |
O4—N5—O3 | 122.94 (16) | N2—N3A—H3NA | 121.5 |
O4—N5—O2 | 120.77 (16) | C5—N3A—H3NA | 121.5 |
O3—N5—O2 | 116.29 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···Cl1i | 0.91 | 2.23 | 3.1225 (15) | 170 |
O1W—H1WB···O2ii | 0.87 | 1.92 | 2.7969 (19) | 177 |
O1W—H1WB···N5ii | 0.87 | 2.68 | 3.506 (2) | 157 |
N3—H3N···Cl1iii | 0.86 | 2.71 | 3.501 (7) | 153 |
C1—H1···O2 | 0.93 | 2.53 | 3.140 (3) | 124 |
C6—H6···Cl1iii | 0.93 | 2.66 | 3.489 (11) | 149 |
C8—H8···O4iv | 0.93 | 2.54 | 3.290 (3) | 138 |
C10—H10···Cl1v | 0.93 | 2.83 | 3.669 (3) | 152 |
C11—H11···O3 | 0.93 | 2.44 | 3.062 (3) | 125 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) x, y, z−1; (v) −x+1, −y, −z+1. |
Funding information
The authors are grateful to the Sonatel Foundation for financial support.
References
Ainscough, E. W., Brodie, A. M., Ingham, S. L. & waters, J. M. (1996). Inorg. Chim. Acta, 249, 47–55. CSD CrossRef CAS Web of Science Google Scholar
Baffert, C., Collomb, M.-N., Deronzier, A., Kjaergaard-Knudsen, S., Latour, J.-M., Lund, K. H., McKenzie, C. J., Mortensen, M., Nielsen, L. P. & Thorup, N. (2003). Dalton Trans. pp. 1765–1772. Web of Science CSD CrossRef Google Scholar
Baldeau, S. M., Slinn, C. H., Krebs, B. & Rompel, A. (2004). Inorg. Chim. Acta, 357, 3295–3303. Web of Science CSD CrossRef CAS Google Scholar
Baraniak, E., Bruce, R. S. L., Freeman, H. C., Hair, N. J. & James, J. (1976). Inorg. Chem. 15, 2226–2230. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruneau-Voisine, A., Wang, D., Roisnel, T., Darcel, C. & Sortais, J.-B. (2017). Catal. Commun. 92, 1–4. CAS Google Scholar
Castaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89–97. Web of Science CrossRef CAS Google Scholar
Chang, M., Kobayashi, A., Chang, H.-C., Nakajima, K. & Kato, M. (2011). Chem. Lett. 40, 1335–1337. Web of Science CSD CrossRef CAS Google Scholar
Chiswell, B., McKenzie, E. D. & Lindoy, L. F. (1987). Comprehensive Coordination Chemistry, Vol. 4, ch. 41, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 1–122. New York: Pergamon. Google Scholar
Chiumia, G. C., Craig, D. C., Phillips, D. J., Rae, A. D. & Kaifi, F. M. Z. (1999). Inorg. Chim. Acta, 285, 297–300. Web of Science CSD CrossRef CAS Google Scholar
Chowdhury, S., Mal, P., Basu, C., Stoeckli–Evans, H. & Mukherjee, S. (2009). Polyhedron, 28, 3863–3871. Web of Science CSD CrossRef CAS Google Scholar
Dumitru, F., Petit, E., van der Lee, A. & Barboiu, M. (2005). Eur. J. Inorg. Chem. 00. 4255–4262. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gerloch, M. (1966). J. Chem. Soc. A, pp. 1317–1325. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gueye, N. D. M., Moussa, D., Thiam, E. I., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Acta Cryst. E73, 1121–1124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kose, M., Goring, P., Lucas, P. & Mckee, V. (2015). Inorg. Chim. Acta, 435, 232–238. Web of Science CSD CrossRef CAS Google Scholar
Kose, M. & McKee, V. (2014). Polyhedron, 75, 30–39. Web of Science CSD CrossRef CAS Google Scholar
Krishnan, R. & Vancheesan, S. (1999). J. Mol. Catal. A Chem. 142, 377–382. Web of Science CrossRef CAS Google Scholar
Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun. 2, 479–483. Web of Science CSD CrossRef CAS Google Scholar
Meier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348–360. CrossRef CAS PubMed Web of Science Google Scholar
Mesa, J. L., Arriortua, M. I., Lezama, L., Pizarro, J. L., Rojo, T. & Beltran, D. (1988). Polyhedron, 7, 1383–1388. CSD CrossRef CAS Web of Science Google Scholar
Mesa, J. L., Rojo, T., Arriortua, M. L., Villeneuve, G., Folgado, J. V., Beltrán-Porter, A. & Beltrán-Porter, D. (1989). J. Chem. Soc. Dalton Trans. pp. 53–56. CSD CrossRef Web of Science Google Scholar
Mikuriya, M., Hatano, Y. & Asato, E. (1997). Bull. Chem. Soc. Jpn, 70, 2495–2507. CSD CrossRef CAS Web of Science Google Scholar
Mukherjee, S., Chowdhury, S., Chattopadhyay, A. P. & Stoeckli-Evans, H. (2010). Polyhedron, 29, 1182–1188. Web of Science CSD CrossRef CAS Google Scholar
Ndiaye-Gueye, M., Dieng, M., Lo, D., Thiam, I. E., Barry, A. H., Gaye, M., Sall, A. S. & Retailleau, P. (2017). Eur. J. Chem. 8, 137–143. Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Lo, D., Barry, A. H., Gaye, M. & Retailleau, P. (2017). S. Afr. J. Chem. 70, 8–15. Google Scholar
Ndiaye-Gueye, M., Dieng, M., Thiam, I. E., Sow, M. M., Gueye-Sylla, R., Barry, A. H., Gaye, M. & Retailleau, P. (2017). Rev. Roum. Chim. 62, 35–41. Google Scholar
Oyaizu, K., Nakagawa, T. & Tsuchida, E. (2000). Inorg. Chim. Acta, 305, 184–188. Web of Science CSD CrossRef CAS Google Scholar
Rojo, T., Mesa, J. L., Arriortua, M. I., Savariault, J. M., Galy, J., Villeneuve, G. & Beltran, D. (1988). Inorg. Chem. 27, 3904–3911. CSD CrossRef CAS Web of Science Google Scholar
Schwartz, A. L., Yikilmaz, E., Vance, C. K., Vathyam, S., Koder, R. L. & Miller, A.-F. (2000). J. Inorg. Biochem. 80, 247–256. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vantomme, G., Hafezi, N. & Lehn, J.-M. (2014). Chem. Sci. 5, 1475–1483. Web of Science CSD CrossRef CAS Google Scholar
Vantomme, G., Jiang, S. & Lehn, J.-M. (2014). J. Am. Chem. Soc. 136, 9509–9518. Web of Science CSD CrossRef CAS Google Scholar
Wegermann, C. A., Ribeiro, R. R., Ucoski, G. M., Nakagaki, S., Nunes, F. S. & Drechsel, S. M. (2014). Appl. Catal. Gen. 471, 56–62. Web of Science CrossRef CAS Google Scholar
Whittaker, M. M. & Whittaker, J. W. (1997). Biochemistry, 36, 8923–8931. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.