research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (20S)-21-[4-(2-hy­dr­oxy­propan-2-yl)-1H-1,2,3-triazol-4-yl]-20-(4-methyl­pent­yl)-5-pregnen-3β-ol with an unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Orgánica, Instituto de Investigación Sanitaria Galicia Sur, Facultade de Química, Universidade de Vigo, E-36310, Vigo, Spain, and bDepartamento de Química Inorgánica, Instituto de Investigación Sanitaria Galicia Sur, Facultade de Química, Universidade de Vigo, E-36310, Vigo, Spain
*Correspondence e-mail: hsantalla@uvigo.es

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 7 February 2018; accepted 26 February 2018; online 6 March 2018)

In the title cholesterol analogue, [systematic name: (3S,8S,9S,10R,13S,14S,17R)-17-{(S)-1-[4-(2-hy­droxy­propan-2-yl)-1H-1,2,3-triazol-1-yl]-6-methyl­heptan-2-yl}-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra­deca­hydro-1H-cyclo­penta­[a]phenanthren-3-ol] C32H53N3O2, a new chain, including an inter­mediate triazole and a tertiary hydroxyl group in the terminal position, has been added at position 20 inducing a change in its stereochemistry. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming layers lying parallel to (-201) and enclosing R44(36) ring motifs. The isopropyl group is disordered about two positions with a refined occupancy ratio of 0.763 (5):0.237 (5). A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek (2015). Acta Cryst. C71, 9–18). The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

1. Chemical context

The nuclear receptors (NRs) are a large family of ligand-regulated transcriptional factors and include the receptors for steroid hormones, thyroid hormones, lipophilic vitamins and cholesterol metabolites (Mangelsdorf & Evans, 1995[Mangelsdorf, D. J. & Evans, R. M. (1995). Cell, 83, 841-850.]; Burris et al., 2013[Burris, T. P., Solt, L. A., Wang, Y., Crumbley, C., Banerjee, S., Griffett, K., Lundasen, T., Hughes, T. & Kojetin, D. J. (2013). Pharmacol. Rev. 65, 710-778.]). Approximately half of NRs are classified as orphan NRs because they do not have well-characterized ligands (Hummasti & Tontonoz, 2008[Hummasti, S. & Tontonoz, P. (2008). Mol. Endocrinol. 22, 1743-1753.]). Orphan NRs are an active area of research partly due to their potential for clinical agent development for various diseases (Mohan & Heyman, 2003[Mohan, R. & Heyman, R. A. (2003). Curr. Top. Med. Chem. 3, 1637-1647.]). Recent studies have demonstrated that retinoic acid receptor-related orphan receptors (RORs) have been implicated in several physiological and pathological processes.

[Scheme 1]

Using the methodology developed in our research group for the synthesis of gemini-type vitamin D analogues (Fall et al., 2011[Fall, Y., Gómez, G., Pérez, M., Gándara, Z., Pérez, X., Pazos, G. & Kurz, G. (2011). PCT Int. Appl. WO2011121152A120111006.]; Pazos et al., 2016[Pazos, G., Pérez, M., Gándara, Z., Gómez, G. & Fall, Y. (2016). RSC Adv. 6, 61073-61076.]; Santalla et al., 2017[Santalla, H., Martínez, A., Garrido, F., Gómez, G. & Fall, Y. (2017). Org. Chem. Front. 4, 1999-2001.]) (modified with a double side chain), we can access new cholesterol analogues that can be of great inter­est in inter­actions with RORs. In this study, we present the structure of a new analogue of cholesterol (2), with eight stereocentres and a double side chain based on the aliphatic chain of cholesterol on the one hand and on the incorporation of a triazole ring on the other, since many aza­steroids have proven to be biologically active. For example, some of them act as 5α-reductase inhibitors, anti­fungal agents and γ-amino­butyric acid (GABA) receptor modulators (Tian et al., 1995[Tian, G., Mook, R., Moss, M. L. & Frye, S. V. (1995). Biochemistry, 34, 13453-13459.]; Burbiel & Bracher, 2003[Burbiel, J. & Bracher, F. (2003). Steroids, 68, 587-594.]; Covey et al., 2000[Covey, D. F., Han, M., Kumar, A. S., de la Cruz, M. A. M., Meadows, E. S., Hu, Y., Tonnies, A., Nathan, D., Coleman, M., Benz, A., Evers, A. S., Zorumski, C. F. & Mennerick, S. (2000). J. Med. Chem. 43, 3201-3204.]).

2. Structural commentary

In the title cholesterol gemini-type analogue 2, illustrated in Fig. 1[link], the four aliphatic rings are structurally identical to those in the cholesterol hormone, i-cholesteryl methyl ether (Bernal et al., 1940[Bernal, J. D., Crowfoot, D. & Fankuchen, I. (1940). Philos. Trans. Roy. Soc. A: Math. Phys. Engineering Sci. 239, 135-182.]; Wang et al., 2014[Wang, J.-R., Zhou, C., Yu, X. & Mei, X. (2014). Chem. Commun. 50, 855-858.]). In the title compound, atom C20 has a different stereochemistry than in the cholesterol mol­ecule, as a result of stereospecific reactions of the synthetic pathway. Furthermore, a new chain, including an inter­mediate triazole and a tertiary hydroxyl group in the terminal position, has been added at atom C21. Although some steroid analogues with a triazole ring have been synthesized (Seck et al., 2015[Seck, I., Fall, A., Lago, C., Sène, M., Gaye, M., Seck, M., Gómez, G. & Fall, Y. (2015). Synthesis, 47, 2826-2830.]), there are no references to any crystallographic analyses of gemini cholesterols with a triazole group at position C21 (Cambridge Structural Database, version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The terminal OH group (C2′/C3′/O3′) is inclined to the triazole ring (N1′–N3′/C1′/C2′) mean plane by 7.2 (2) °.

[Figure 1]
Figure 1
The mol­ecular structure of compound 2, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. In this and other figures the minor disorder component atoms (C24B–C27B) of the aliphatic chain at C20 have been omitted for clarity.

3. Supra­molecular features

The mol­ecular association in the title compound 2, is based on hydrogen bonding involving the hydroxyl and triazole groups (Table 1[link]). These inter­molecular links are present in the form of two chains. The first, a C(18) chain (Fig. 2[link]), is formed by the O3—H3⋯O3'i hydrogen bond with O3—H3 acting as the donor and atom O3′ acting as the acceptor. The second is a C(5) chain, in which the triazole group participates, and is formed by hydrogen bond O3′—H3′⋯N3'ii (Fig. 3[link]); the alcohol group O3′—H3′ acts as the donor towards the acceptor atom N3′. The combination of these inter­actions results in the formation of layers lying parallel to the ([\overline{2}]01) plane, as shown in Fig. 4[link], and encloses R44(36) ring motifs, details of which are illustrated in Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O3′i 0.84 2.00 2.811 (3) 162
O3′—H3′⋯N3′ii 0.84 1.97 2.810 (2) 175
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view of the O—H⋯O hydrogen bonded C(18) chain propagating along the [102] direction (blue dashed lines; see Table 1[link]).
[Figure 3]
Figure 3
A view of the O—H⋯N hydrogen bonded C(5) chain propagating along the [010] direction (blue dashed lines; see Table 1[link]).
[Figure 4]
Figure 4
A view approximately normal to the ([\overline{2}]01) plane of the crystal packing of compound 2. Hydrogen bonds (see Table 1[link]) are shown as dashed lines, and only H atoms H3 and H3′ have been included.
[Figure 5]
Figure 5
A partial view of the crystal packing of compound 2, showing details of the O—H⋯O and O—H⋯N hydrogen bonds forming an R44(36) ring motif (blue dashed lines; see Table 1[link]).

4. Synthesis and crystallization

Compound 2: details of the synthesis are illustrated in Fig. 6[link]. To a solution of triazole 1 (12 mg, 0.022 mmol;) in tBuOH (2 ml) and water (1 ml) was added p-TsOH (5 mg) and the mixture was heated to 353 K for 3 h. The reaction mixture was diluted with water and then extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were dried with Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography (50% EtOAc/hexa­ne) to afford the title diol (11 mg, 99%). Compound 2 was recrystallized as colourless prisms by slow evaporation of a solvent mixture of di­chloro­methane/diethyl ether (1:1) at room temperature [yield 99%; m.p. 778 K; Rf: 0.10 (30% EtOAc/hexa­ne)].

[Figure 6]
Figure 6
The synthesis of the title compound 2.

Spectroscopic data for 2: MS–ESI [m/z (%)]: 534.40 (10) [M+ + Na], 512.42 (100) [M+ + H], 494.41 (31) [M+ − OMe]. 1H NMR (CDCl3, δ): 7.36 (1H, s, H-1′), 5.35 (1H, s, H-6), 4.32 (1H, m, H-21), 4.23 (1H, m, H-21), 3.52 (1H, m, H-3), 2.26 (3H, m), 1.94 (5H, m), 1.83 (5H, m), 1.48 (7H, m), 1.27 (4H, m), 1.23 (6H, d, J = 9.2 Hz, CH3-4′/5′), 1.06 (3H, m), 1.00 (3H, s, CH3-18), 0.84 (6H, d, J = 6.6 Hz, CH3-26/27), 0.73 (6H, s, CH3-19) ppm. 13C NMR (CDCl3, δ): 140.74 (C-5), 128.78 (C-2′), 121.51 (CH-6), 112.41 (C-1′), 77.20 (C-3′), 71.73 (CH-3), 56.38 (CH-14), 52.30 (CH2-21), 50.25 (CH), 49.99 (CH), 42.73 (C-13), 42.23 (CH2), 41.66 (CH), 39.20 (CH2), 39.16 (CH2), 37.23 (CH2), 36.48 (C-10), 31.93 (CH), 31.80 (CH2), 31.61 (CH2), 30.50 (CH3-4′/5′), 30.47 (CH3-4′/5′), 29.30 (CH2), 27.85 (CH2), 27.82 (CH), 24.26 (CH2), 22.69 (CH3-26/27), 22.52 (CH3-26/27), 22.38 (CH2), 21.07 (CH2), 19.37 (CH3-18), 12.08 (CH3-19) p.p.m.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O—H and C-bound hydrogen atoms were positioned geometrically (O–H = 0.84 Å, C—H = 0.95–1.00 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(O-hydroxyl, C-meth­yl) and 1.2Ueq(C) for other H atoms. The isopropyl group is disordered about two positions with a refined occupancy ratio of 0.763 (5):0.237 (5) for atoms C24–C27/C24B–C27B.

Table 2
Experimental details

Crystal data
Chemical formula C32H53N3O
Mr 511.77
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 20.1130 (15), 10.3898 (7), 15.5934 (12)
β (°) 97.452 (2)
V3) 3231.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 85013, 8040, 7629
Rint 0.029
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.02
No. of reflections 8040
No. of parameters 363
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.31
Absolute structure Flack x determined using 3430 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]): volume ca 269 Å3 for 96 electrons count per unit cell. There is possibly one mol­ecule of diethyl ether per mol­ecule of the title compound 2. The formula mass and unit-cell characteristics were not taken into account during refinement.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(20S)-21-[4-(2-Hydroxypropan-2-yl)-1H-1,2,3-triazol-4-yl]-20-(4-methylpentyl)-5-pregnen-3β-ol top
Crystal data top
C32H53N3OF(000) = 1128
Mr = 511.77Dx = 1.052 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 20.1130 (15) ÅCell parameters from 9096 reflections
b = 10.3898 (7) Åθ = 2.5–28.4°
c = 15.5934 (12) ŵ = 0.07 mm1
β = 97.452 (2)°T = 100 K
V = 3231.0 (4) Å3Prism, colourless
Z = 40.35 × 0.30 × 0.24 mm
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
7629 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.4°, θmin = 2.5°
Tmin = 0.688, Tmax = 0.746h = 2626
85013 measured reflectionsk = 1313
8040 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0729P)2 + 1.6246P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.008
8040 reflectionsΔρmax = 0.46 e Å3
363 parametersΔρmin = 0.31 e Å3
5 restraintsAbsolute structure: Flack x determined using 3430 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.35759 (11)0.2665 (4)0.82807 (13)0.0775 (9)
H30.3298080.2920080.8601940.116*
O3'0.21535 (8)0.17225 (15)0.03536 (11)0.0324 (3)
H3'0.2468270.2242550.0316550.049*
N1'0.07599 (8)0.09363 (17)0.07066 (10)0.0246 (3)
N2'0.11583 (9)0.19700 (17)0.06509 (12)0.0296 (4)
N3'0.17644 (9)0.15741 (18)0.03258 (12)0.0291 (4)
C10.21530 (12)0.1479 (3)0.66464 (13)0.0399 (5)
H1A0.1688140.1216750.6706640.048*
H1B0.2385210.0721980.6439800.048*
C1'0.11028 (11)0.0135 (2)0.04215 (12)0.0257 (4)
H1'0.0935540.0987750.0396220.031*
C20.25074 (14)0.1869 (4)0.75364 (15)0.0538 (8)
H2A0.2268780.2602480.7762830.065*
H2B0.2500490.1140060.7944240.065*
C2'0.17475 (10)0.02869 (19)0.01766 (12)0.0254 (4)
C30.32250 (13)0.2246 (3)0.74675 (15)0.0472 (7)
H3A0.3461920.1471790.7276380.057*
C3'0.23710 (11)0.0443 (2)0.01857 (14)0.0305 (4)
C40.32511 (12)0.3296 (3)0.67895 (15)0.0388 (5)
H4A0.3077410.4106990.7009390.047*
H4B0.3724520.3443040.6704500.047*
C4'0.28702 (14)0.0460 (3)0.0473 (2)0.0491 (7)
H4'A0.3287510.0871030.0215750.074*
H4'B0.2963990.0425030.0639090.074*
H4'C0.2679700.0943620.0985750.074*
C50.28505 (10)0.2978 (2)0.59230 (13)0.0290 (4)
C5'0.26936 (15)0.0171 (3)0.1032 (2)0.0484 (7)
H5'A0.2367190.0192640.1447120.073*
H5'B0.2835720.1049940.0918940.073*
H5'C0.3084300.0338000.1271950.073*
C60.31207 (10)0.3053 (2)0.51844 (14)0.0313 (4)
H60.3581260.3278920.5222580.038*
C70.27513 (10)0.2807 (2)0.43003 (13)0.0300 (4)
H7A0.2895900.1968620.4086020.036*
H7B0.2869770.3483790.3899650.036*
C80.19900 (9)0.27924 (19)0.42977 (12)0.0231 (4)
H80.1827690.3693340.4358700.028*
C90.18246 (9)0.1983 (2)0.50722 (11)0.0223 (3)
H90.2047850.1131120.5024060.027*
C100.21297 (10)0.2561 (2)0.59538 (13)0.0275 (4)
C110.10698 (10)0.1703 (2)0.50292 (12)0.0293 (4)
H11A0.1000510.1076180.5487480.035*
H11B0.0835220.2508100.5149140.035*
C120.07549 (9)0.1166 (2)0.41518 (12)0.0257 (4)
H12A0.0266640.1052560.4156490.031*
H12B0.0950910.0311540.4057760.031*
C130.08749 (9)0.20702 (19)0.34066 (11)0.0222 (3)
C140.16431 (9)0.2218 (2)0.34556 (11)0.0237 (4)
H140.1823930.1324770.3427250.028*
C150.17510 (11)0.2859 (2)0.26021 (13)0.0320 (4)
H15A0.2192800.2623940.2432830.038*
H15B0.1723120.3808010.2645970.038*
C160.11729 (10)0.2325 (2)0.19454 (13)0.0300 (4)
H16A0.1353610.1779390.1509460.036*
H16B0.0914990.3040310.1642800.036*
C170.07153 (8)0.1516 (2)0.24737 (11)0.0212 (3)
H170.0882970.0608680.2487890.025*
C180.05172 (11)0.3366 (2)0.34758 (15)0.0333 (5)
H18A0.0567780.3892640.2966760.050*
H18B0.0715970.3817380.3998940.050*
H18C0.0039820.3215120.3505770.050*
C190.17159 (14)0.3708 (3)0.62128 (19)0.0494 (7)
H19A0.1645810.4322690.5732710.074*
H19B0.1957190.4132390.6722140.074*
H19C0.1280870.3401220.6348750.074*
C200.00253 (9)0.1494 (2)0.20600 (11)0.0231 (3)
H200.0194030.2399950.2052110.028*
C210.00603 (9)0.1048 (2)0.11160 (12)0.0265 (4)
H21A0.0180560.1672410.0788500.032*
H21B0.0164860.0203200.1096840.032*
C220.04890 (9)0.0678 (2)0.25508 (12)0.0255 (4)
H22A0.0488270.1050220.3135260.031*
H22B0.0951510.0749330.2247720.031*
C230.03115 (10)0.0746 (2)0.26492 (14)0.0304 (4)
H23A0.0166460.0847710.2886710.036*
H23B0.0387740.1180110.2079820.036*
C240.0767 (2)0.1347 (4)0.3276 (2)0.0389 (7)0.763 (5)
H24A0.0667120.0929880.3849180.047*0.763 (5)
H24B0.1241620.1165550.3054810.047*0.763 (5)
C250.06732 (19)0.2815 (4)0.3385 (3)0.0428 (8)0.763 (5)
H250.0930480.3061830.3867590.051*0.763 (5)
C260.0043 (3)0.3176 (4)0.3687 (5)0.0768 (17)0.763 (5)
H26A0.0236900.2559040.4124920.115*0.763 (5)
H26B0.0300300.3162820.3194860.115*0.763 (5)
H26C0.0058190.4042060.3938060.115*0.763 (5)
C270.0969 (3)0.3579 (8)0.2627 (4)0.0667 (14)0.763 (5)
H27A0.0696110.3474750.2154600.100*0.763 (5)
H27B0.1426410.3278170.2437050.100*0.763 (5)
H27C0.0980690.4490280.2787400.100*0.763 (5)
C24B0.0510 (7)0.1677 (11)0.3327 (8)0.0389 (7)0.237 (5)
H24B0.0281690.1384640.3894530.047*0.237 (5)
H24A0.0997150.1565640.3343080.047*0.237 (5)
C25B0.0384 (7)0.3100 (11)0.3271 (8)0.0428 (8)0.237 (5)
H250.0088940.3174810.3140940.051*0.237 (5)
C26B0.0377 (6)0.3632 (17)0.4122 (10)0.073 (5)0.237 (5)
H26A0.0793160.3401740.4348350.109*0.237 (5)
H26B0.0006830.3285780.4503870.109*0.237 (5)
H26C0.0339230.4570770.4093370.109*0.237 (5)
C27B0.0815 (13)0.359 (3)0.2463 (14)0.0667 (14)0.237 (5)
H27A0.0983690.2859280.2101370.100*0.237 (5)
H27B0.1193780.4081620.2629930.100*0.237 (5)
H27C0.0545040.4147750.2136020.100*0.237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0457 (11)0.155 (3)0.0296 (9)0.0415 (15)0.0044 (8)0.0143 (13)
O3'0.0347 (8)0.0252 (7)0.0361 (8)0.0052 (6)0.0007 (6)0.0033 (6)
N1'0.0255 (8)0.0276 (8)0.0197 (7)0.0004 (7)0.0010 (6)0.0009 (6)
N2'0.0305 (9)0.0242 (8)0.0308 (8)0.0007 (7)0.0081 (7)0.0003 (7)
N3'0.0286 (8)0.0239 (8)0.0315 (8)0.0002 (7)0.0087 (7)0.0007 (7)
C10.0368 (11)0.0615 (15)0.0200 (9)0.0227 (11)0.0010 (8)0.0035 (10)
C1'0.0320 (10)0.0240 (9)0.0206 (8)0.0007 (7)0.0009 (7)0.0010 (7)
C20.0421 (13)0.097 (2)0.0215 (10)0.0329 (14)0.0009 (9)0.0020 (12)
C2'0.0296 (10)0.0249 (9)0.0205 (8)0.0011 (7)0.0017 (7)0.0010 (7)
C30.0368 (12)0.079 (2)0.0243 (10)0.0214 (13)0.0031 (9)0.0042 (11)
C3'0.0305 (10)0.0242 (10)0.0351 (10)0.0036 (8)0.0025 (8)0.0032 (8)
C40.0298 (10)0.0524 (14)0.0333 (11)0.0169 (10)0.0006 (8)0.0112 (10)
C4'0.0425 (14)0.0390 (13)0.0687 (18)0.0098 (11)0.0181 (13)0.0177 (13)
C50.0233 (9)0.0337 (11)0.0293 (9)0.0103 (8)0.0010 (7)0.0031 (8)
C5'0.0464 (14)0.0374 (13)0.0533 (15)0.0052 (10)0.0250 (12)0.0007 (11)
C60.0219 (9)0.0403 (12)0.0314 (10)0.0115 (8)0.0020 (7)0.0001 (8)
C70.0220 (9)0.0415 (11)0.0267 (9)0.0094 (8)0.0042 (7)0.0023 (8)
C80.0203 (8)0.0254 (9)0.0237 (8)0.0046 (7)0.0032 (6)0.0016 (7)
C90.0196 (8)0.0296 (9)0.0179 (7)0.0062 (7)0.0032 (6)0.0027 (7)
C100.0235 (9)0.0367 (11)0.0223 (8)0.0075 (8)0.0032 (7)0.0060 (8)
C110.0211 (8)0.0483 (13)0.0190 (8)0.0097 (8)0.0048 (6)0.0028 (8)
C120.0198 (8)0.0396 (11)0.0178 (8)0.0082 (7)0.0029 (6)0.0010 (7)
C130.0190 (8)0.0292 (9)0.0184 (7)0.0006 (7)0.0026 (6)0.0003 (7)
C140.0195 (8)0.0331 (10)0.0190 (8)0.0041 (7)0.0041 (6)0.0017 (7)
C150.0278 (9)0.0457 (12)0.0229 (9)0.0083 (9)0.0040 (7)0.0066 (8)
C160.0257 (9)0.0430 (12)0.0215 (8)0.0027 (8)0.0042 (7)0.0063 (8)
C170.0181 (8)0.0287 (9)0.0171 (7)0.0013 (7)0.0032 (6)0.0018 (7)
C180.0301 (10)0.0339 (11)0.0349 (10)0.0067 (9)0.0007 (8)0.0065 (9)
C190.0378 (13)0.0621 (17)0.0473 (14)0.0038 (12)0.0023 (11)0.0304 (13)
C200.0196 (8)0.0314 (9)0.0179 (7)0.0026 (7)0.0008 (6)0.0004 (7)
C210.0218 (8)0.0377 (10)0.0196 (8)0.0001 (8)0.0015 (6)0.0010 (8)
C220.0169 (8)0.0391 (11)0.0205 (8)0.0018 (7)0.0026 (6)0.0010 (7)
C230.0230 (9)0.0369 (11)0.0312 (10)0.0016 (8)0.0031 (7)0.0063 (8)
C240.037 (2)0.0354 (18)0.0487 (16)0.0075 (13)0.0199 (15)0.0068 (13)
C250.0342 (19)0.0376 (17)0.0599 (19)0.0024 (14)0.0192 (15)0.0051 (14)
C260.057 (3)0.043 (2)0.129 (5)0.0094 (19)0.006 (3)0.025 (3)
C270.080 (4)0.072 (2)0.053 (3)0.037 (3)0.029 (2)0.010 (2)
C24B0.037 (2)0.0354 (18)0.0487 (16)0.0075 (13)0.0199 (15)0.0068 (13)
C25B0.0342 (19)0.0376 (17)0.0599 (19)0.0024 (14)0.0192 (15)0.0051 (14)
C26B0.027 (5)0.086 (11)0.103 (12)0.012 (6)0.003 (6)0.044 (10)
C27B0.080 (4)0.072 (2)0.053 (3)0.037 (3)0.029 (2)0.010 (2)
Geometric parameters (Å, º) top
O3—C31.437 (3)C13—C171.559 (2)
O3—H30.8400C14—C151.529 (3)
O3'—C3'1.434 (3)C14—H141.0000
O3'—H3'0.8400C15—C161.549 (3)
N1'—N2'1.336 (2)C15—H15A0.9900
N1'—C1'1.354 (3)C15—H15B0.9900
N1'—C211.472 (2)C16—C171.559 (3)
N2'—N3'1.324 (2)C16—H16A0.9900
N3'—C2'1.359 (3)C16—H16B0.9900
C1—C21.530 (3)C17—C201.545 (2)
C1—C101.555 (3)C17—H171.0000
C1—H1A0.9900C18—H18A0.9800
C1—H1B0.9900C18—H18B0.9800
C1'—C2'1.375 (3)C18—H18C0.9800
C1'—H1'0.9500C19—H19A0.9800
C2—C31.513 (3)C19—H19B0.9800
C2—H2A0.9900C19—H19C0.9800
C2—H2B0.9900C20—C211.536 (3)
C2'—C3'1.511 (3)C20—C221.536 (3)
C3—C41.525 (4)C20—H201.0000
C3—H3A1.0000C21—H21A0.9900
C3'—C4'1.526 (4)C21—H21B0.9900
C3'—C5'1.532 (3)C22—C231.525 (3)
C4—C51.517 (3)C22—H22A0.9900
C4—H4A0.9900C22—H22B0.9900
C4—H4B0.9900C23—C24B1.524 (11)
C4'—H4'A0.9800C23—C241.554 (4)
C4'—H4'B0.9800C23—H23A0.9901
C4'—H4'C0.9800C23—H23B0.9899
C5—C61.338 (3)C24—C251.544 (5)
C5—C101.520 (3)C24—H24A0.9900
C5'—H5'A0.9800C24—H24B0.9900
C5'—H5'B0.9800C25—C271.484 (7)
C5'—H5'C0.9800C25—C261.504 (6)
C6—C71.501 (3)C25—H251.0000
C6—H60.9500C26—H26A0.9800
C7—C81.531 (3)C26—H26B0.9800
C7—H7A0.9900C26—H26C0.9800
C7—H7B0.9900C27—H27A0.9800
C8—C141.526 (3)C27—H27B0.9800
C8—C91.543 (3)C27—H27C0.9800
C8—H81.0000C24B—C25B1.504 (15)
C9—C111.539 (3)C24B—H24B0.9900
C9—C101.552 (2)C24B—H24A0.9900
C9—H91.0000C25B—C26B1.436 (19)
C10—C191.538 (3)C25B—C27B1.52 (2)
C11—C121.536 (3)C25B—H251.0000
C11—H11A0.9900C26B—H26A0.9800
C11—H11B0.9900C26B—H26B0.9800
C12—C131.537 (3)C26B—H26C0.9800
C12—H12A0.9900C27B—H27A0.9800
C12—H12B0.9900C27B—H27B0.9800
C13—C181.537 (3)C27B—H27C0.9800
C13—C141.545 (2)
C3—O3—H3109.5C15—C14—H14105.8
C3'—O3'—H3'109.5C13—C14—H14105.8
N2'—N1'—C1'111.34 (16)C14—C15—C16103.90 (16)
N2'—N1'—C21119.75 (17)C14—C15—H15A111.0
C1'—N1'—C21128.66 (18)C16—C15—H15A111.0
N3'—N2'—N1'106.85 (16)C14—C15—H15B111.0
N2'—N3'—C2'109.22 (17)C16—C15—H15B111.0
C2—C1—C10114.0 (2)H15A—C15—H15B109.0
C2—C1—H1A108.7C15—C16—C17106.74 (15)
C10—C1—H1A108.7C15—C16—H16A110.4
C2—C1—H1B108.7C17—C16—H16A110.4
C10—C1—H1B108.7C15—C16—H16B110.4
H1A—C1—H1B107.6C17—C16—H16B110.4
N1'—C1'—C2'104.51 (18)H16A—C16—H16B108.6
N1'—C1'—H1'127.7C20—C17—C16112.98 (15)
C2'—C1'—H1'127.7C20—C17—C13117.75 (14)
C3—C2—C1109.9 (2)C16—C17—C13103.26 (15)
C3—C2—H2A109.7C20—C17—H17107.4
C1—C2—H2A109.7C16—C17—H17107.4
C3—C2—H2B109.7C13—C17—H17107.4
C1—C2—H2B109.7C13—C18—H18A109.5
H2A—C2—H2B108.2C13—C18—H18B109.5
N3'—C2'—C1'108.07 (18)H18A—C18—H18B109.5
N3'—C2'—C3'121.33 (19)C13—C18—H18C109.5
C1'—C2'—C3'130.60 (19)H18A—C18—H18C109.5
O3—C3—C2112.3 (2)H18B—C18—H18C109.5
O3—C3—C4109.8 (2)C10—C19—H19A109.5
C2—C3—C4110.7 (2)C10—C19—H19B109.5
O3—C3—H3A108.0H19A—C19—H19B109.5
C2—C3—H3A108.0C10—C19—H19C109.5
C4—C3—H3A108.0H19A—C19—H19C109.5
O3'—C3'—C2'105.98 (17)H19B—C19—H19C109.5
O3'—C3'—C4'110.79 (19)C21—C20—C22110.83 (17)
C2'—C3'—C4'109.92 (19)C21—C20—C17109.05 (14)
O3'—C3'—C5'109.48 (19)C22—C20—C17114.50 (15)
C2'—C3'—C5'110.59 (19)C21—C20—H20107.4
C4'—C3'—C5'110.0 (2)C22—C20—H20107.4
C5—C4—C3113.54 (19)C17—C20—H20107.4
C5—C4—H4A108.9N1'—C21—C20111.20 (15)
C3—C4—H4A108.9N1'—C21—H21A109.4
C5—C4—H4B108.9C20—C21—H21A109.4
C3—C4—H4B108.9N1'—C21—H21B109.4
H4A—C4—H4B107.7C20—C21—H21B109.4
C3'—C4'—H4'A109.5H21A—C21—H21B108.0
C3'—C4'—H4'B109.5C23—C22—C20115.88 (16)
H4'A—C4'—H4'B109.5C23—C22—H22A108.3
C3'—C4'—H4'C109.5C20—C22—H22A108.3
H4'A—C4'—H4'C109.5C23—C22—H22B108.3
H4'B—C4'—H4'C109.5C20—C22—H22B108.3
C6—C5—C4121.72 (18)H22A—C22—H22B107.4
C6—C5—C10122.64 (18)C24B—C23—C22127.3 (5)
C4—C5—C10115.64 (18)C22—C23—C24107.7 (2)
C3'—C5'—H5'A109.5C24B—C23—H23A90.1
C3'—C5'—H5'B109.5C22—C23—H23A110.2
H5'A—C5'—H5'B109.5C24—C23—H23A110.2
C3'—C5'—H5'C109.5C24B—C23—H23B108.0
H5'A—C5'—H5'C109.5C22—C23—H23B110.2
H5'B—C5'—H5'C109.5C24—C23—H23B110.2
C5—C6—C7124.95 (18)H23A—C23—H23B108.5
C5—C6—H6117.5C25—C24—C23113.1 (3)
C7—C6—H6117.5C25—C24—H24A109.0
C6—C7—C8112.33 (17)C23—C24—H24A109.0
C6—C7—H7A109.1C25—C24—H24B109.0
C8—C7—H7A109.1C23—C24—H24B109.0
C6—C7—H7B109.1H24A—C24—H24B107.8
C8—C7—H7B109.1C27—C25—C26112.6 (5)
H7A—C7—H7B107.9C27—C25—C24114.2 (5)
C14—C8—C7110.59 (16)C26—C25—C24112.3 (3)
C14—C8—C9109.85 (15)C27—C25—H25105.6
C7—C8—C9108.69 (16)C26—C25—H25105.6
C14—C8—H8109.2C24—C25—H25105.6
C7—C8—H8109.2C25—C26—H26A109.5
C9—C8—H8109.2C25—C26—H26B109.5
C11—C9—C8112.38 (15)H26A—C26—H26B109.5
C11—C9—C10112.73 (15)C25—C26—H26C109.5
C8—C9—C10112.47 (15)H26A—C26—H26C109.5
C11—C9—H9106.2H26B—C26—H26C109.5
C8—C9—H9106.2C25—C27—H27A109.5
C10—C9—H9106.2C25—C27—H27B109.5
C5—C10—C19109.78 (19)H27A—C27—H27B109.5
C5—C10—C9110.59 (15)C25—C27—H27C109.5
C19—C10—C9111.55 (18)H27A—C27—H27C109.5
C5—C10—C1106.57 (17)H27B—C27—H27C109.5
C19—C10—C1110.3 (2)C25B—C24B—C23121.4 (9)
C9—C10—C1107.97 (17)C25B—C24B—H24B107.0
C12—C11—C9113.46 (15)C23—C24B—H24B107.0
C12—C11—H11A108.9C25B—C24B—H24A107.0
C9—C11—H11A108.9C23—C24B—H24A107.0
C12—C11—H11B108.9H24B—C24B—H24A106.7
C9—C11—H11B108.9C26B—C25B—C24B107.8 (12)
H11A—C11—H11B107.7C26B—C25B—C27B124.9 (14)
C11—C12—C13111.36 (16)C24B—C25B—C27B107.2 (17)
C11—C12—H12A109.4C26B—C25B—H25105.1
C13—C12—H12A109.4C24B—C25B—H25105.1
C11—C12—H12B109.4C27B—C25B—H25105.1
C13—C12—H12B109.4C25B—C26B—H26A109.5
H12A—C12—H12B108.0C25B—C26B—H26B109.5
C18—C13—C12111.19 (16)H26A—C26B—H26B109.5
C18—C13—C14112.56 (17)C25B—C26B—H26C109.5
C12—C13—C14106.11 (14)H26A—C26B—H26C109.5
C18—C13—C17110.35 (16)H26B—C26B—H26C109.5
C12—C13—C17116.48 (16)C25B—C27B—H27A109.5
C14—C13—C1799.58 (14)C25B—C27B—H27B109.5
C8—C14—C15118.56 (17)H27A—C27B—H27B109.5
C8—C14—C13115.10 (15)C25B—C27B—H27C109.5
C15—C14—C13104.73 (15)H27A—C27B—H27C109.5
C8—C14—H14105.8H27B—C27B—H27C109.5
C1'—N1'—N2'—N3'0.2 (2)C8—C9—C11—C1250.0 (2)
C21—N1'—N2'—N3'174.88 (16)C10—C9—C11—C12178.37 (18)
N1'—N2'—N3'—C2'0.0 (2)C9—C11—C12—C1355.9 (2)
N2'—N1'—C1'—C2'0.2 (2)C11—C12—C13—C1864.8 (2)
C21—N1'—C1'—C2'174.35 (17)C11—C12—C13—C1457.9 (2)
C10—C1—C2—C359.8 (4)C11—C12—C13—C17167.62 (16)
N2'—N3'—C2'—C1'0.1 (2)C7—C8—C14—C1558.9 (2)
N2'—N3'—C2'—C3'179.24 (18)C9—C8—C14—C15178.86 (17)
N1'—C1'—C2'—N3'0.2 (2)C7—C8—C14—C13176.05 (17)
N1'—C1'—C2'—C3'179.2 (2)C9—C8—C14—C1356.1 (2)
C1—C2—C3—O3177.9 (3)C18—C13—C14—C861.5 (2)
C1—C2—C3—C454.9 (4)C12—C13—C14—C860.4 (2)
N3'—C2'—C3'—O3'173.26 (18)C17—C13—C14—C8178.33 (16)
C1'—C2'—C3'—O3'7.8 (3)C18—C13—C14—C1570.5 (2)
N3'—C2'—C3'—C4'67.0 (3)C12—C13—C14—C15167.64 (17)
C1'—C2'—C3'—C4'111.9 (3)C17—C13—C14—C1546.35 (19)
N3'—C2'—C3'—C5'54.7 (3)C8—C14—C15—C16162.71 (18)
C1'—C2'—C3'—C5'126.4 (3)C13—C14—C15—C1632.7 (2)
O3—C3—C4—C5175.9 (2)C14—C15—C16—C175.9 (2)
C2—C3—C4—C551.3 (3)C15—C16—C17—C20150.76 (18)
C3—C4—C5—C6128.2 (3)C15—C16—C17—C1322.5 (2)
C3—C4—C5—C1051.2 (3)C18—C13—C17—C2048.0 (2)
C4—C5—C6—C7177.4 (2)C12—C13—C17—C2080.0 (2)
C10—C5—C6—C73.2 (4)C14—C13—C17—C20166.57 (17)
C5—C6—C7—C814.6 (3)C18—C13—C17—C1677.23 (19)
C6—C7—C8—C14165.92 (18)C12—C13—C17—C16154.78 (16)
C6—C7—C8—C945.3 (2)C14—C13—C17—C1641.30 (18)
C14—C8—C9—C1148.2 (2)C16—C17—C20—C2153.8 (2)
C7—C8—C9—C11169.37 (17)C13—C17—C20—C21174.09 (17)
C14—C8—C9—C10176.74 (16)C16—C17—C20—C22178.58 (17)
C7—C8—C9—C1062.1 (2)C13—C17—C20—C2261.1 (2)
C6—C5—C10—C19111.7 (3)N2'—N1'—C21—C2059.8 (2)
C4—C5—C10—C1968.8 (3)C1'—N1'—C21—C20113.9 (2)
C6—C5—C10—C911.8 (3)C22—C20—C21—N1'49.7 (2)
C4—C5—C10—C9167.7 (2)C17—C20—C21—N1'176.60 (17)
C6—C5—C10—C1128.9 (2)C21—C20—C22—C2363.9 (2)
C4—C5—C10—C150.6 (3)C17—C20—C22—C2360.0 (2)
C11—C9—C10—C5172.73 (18)C20—C22—C23—C24B157.7 (7)
C8—C9—C10—C544.4 (2)C20—C22—C23—C24171.5 (2)
C11—C9—C10—C1950.3 (3)C22—C23—C24—C25176.0 (3)
C8—C9—C10—C1978.0 (2)C23—C24—C25—C2773.4 (4)
C11—C9—C10—C171.0 (2)C23—C24—C25—C2656.4 (5)
C8—C9—C10—C1160.65 (18)C22—C23—C24B—C25B171.1 (8)
C2—C1—C10—C555.4 (3)C23—C24B—C25B—C26B158.2 (11)
C2—C1—C10—C1963.7 (3)C23—C24B—C25B—C27B65.1 (15)
C2—C1—C10—C9174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3i0.842.002.811 (3)162
O3—H3···N3ii0.841.972.810 (2)175
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y1/2, z.
 

Acknowledgements

The work of the MS and X-ray divisions of the research support service of the University of Vigo (CACTI) is gratefully acknowledged.

References

First citationBernal, J. D., Crowfoot, D. & Fankuchen, I. (1940). Philos. Trans. Roy. Soc. A: Math. Phys. Engineering Sci. 239, 135–182.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurbiel, J. & Bracher, F. (2003). Steroids, 68, 587–594.  Web of Science CrossRef CAS Google Scholar
First citationBurris, T. P., Solt, L. A., Wang, Y., Crumbley, C., Banerjee, S., Griffett, K., Lundasen, T., Hughes, T. & Kojetin, D. J. (2013). Pharmacol. Rev. 65, 710–778.  Web of Science CrossRef Google Scholar
First citationCovey, D. F., Han, M., Kumar, A. S., de la Cruz, M. A. M., Meadows, E. S., Hu, Y., Tonnies, A., Nathan, D., Coleman, M., Benz, A., Evers, A. S., Zorumski, C. F. & Mennerick, S. (2000). J. Med. Chem. 43, 3201–3204.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFall, Y., Gómez, G., Pérez, M., Gándara, Z., Pérez, X., Pazos, G. & Kurz, G. (2011). PCT Int. Appl. WO2011121152A120111006.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHummasti, S. & Tontonoz, P. (2008). Mol. Endocrinol. 22, 1743–1753.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMangelsdorf, D. J. & Evans, R. M. (1995). Cell, 83, 841–850.  CrossRef CAS Web of Science Google Scholar
First citationMohan, R. & Heyman, R. A. (2003). Curr. Top. Med. Chem. 3, 1637–1647.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPazos, G., Pérez, M., Gándara, Z., Gómez, G. & Fall, Y. (2016). RSC Adv. 6, 61073–61076.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantalla, H., Martínez, A., Garrido, F., Gómez, G. & Fall, Y. (2017). Org. Chem. Front. 4, 1999–2001.  Web of Science CrossRef CAS Google Scholar
First citationSeck, I., Fall, A., Lago, C., Sène, M., Gaye, M., Seck, M., Gómez, G. & Fall, Y. (2015). Synthesis, 47, 2826–2830.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, G., Mook, R., Moss, M. L. & Frye, S. V. (1995). Biochemistry, 34, 13453–13459.  CrossRef CAS Web of Science Google Scholar
First citationWang, J.-R., Zhou, C., Yu, X. & Mei, X. (2014). Chem. Commun. 50, 855–858.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds