research communications
of 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate
aOtto Maass Chemistry Building, Office 430, Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada, H3A 0B8, bDepartment of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7, and cFaculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7
*Correspondence e-mail: chris.barrett@mcgill.ca
In the title compound, C17H15N3O3, the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azobenzene segment, which adopts a configuration close to planar. In the crystal, molecules are oriented pairwise by (2-oxopyrrolidin-3-yl)oxy moieties at an angle of 76.257 (3)°, linked by hydrogen bonds and π-stacking interactions, forming zigzag supramolecular chains parallel to [010] further linked via additional C—H⋯π interactions.
Keywords: crystal structure; azobenzene; 2-pyrrolidone; cyclic γ-aminobutyric acid derivative; GABA; racetam.
CCDC reference: 1826009
1. Chemical context
Cyclic derivatives of γ-aminobutyric acid, GABA, are still constituting a very promising avenue for developing new drug-molecules for improving neuronal, vascular and general cognitive functions (Malykh et al., 2010). In this context, the goal of the present study was to obtain crystals and to characterize the molecular structure of a new representative of the cyclic-GABA family (racetams), 2-oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate.
2. Structural commentary
The molecular structure of the title compound (Fig. 1) comprises the expected 4-phenylazobenzoyl and (2-oxopyrrolidin-3-yl)oxy segments linked by the carboxyester bond —C1(=O2)—O1. The phenylazobenzoyl segment comprises two aromatic rings, one of which is linked at its para-position to the carbonyl C8 atom, and exhibits the more stable trans configuration to the azo group formed by N1—N2 atoms with a distance of 1.251 (5) Å. No residual peaks are observed around the N=N double bond as for pure azobenzene where such peaks are observed due to a dynamic pedal-like motion orientational disorder (Harada et al., 2004). The angle between the two phenyl rings is 4.29 (13)° and is consistent with a slight deviation of the system from the ideal planarity. Geometry parameters of the 3-oxy-substituted 2-pyrrolidone segment are close to known data (Clark et al., 2006), with a typical deviation from planarity for the non-aromatic system as shown by the torsion angles C15—C14—C17—C16 of 22.2 (4)° and C17—C14—C15—N3 of −16.3 (4)°. The Cremer & Pople puckering parameters of the five-membered ring are Q = 0.222 (4) Å and φ = 279.4 (11)° conforming to an envelope on C17 (Boeyens, 1978; Cremer & Pople, 1975).
3. Supramolecular features
The packing of the title molecules in the crystal (Fig. 2) is mainly determined by the presence of (2-oxopyrrolidin-3-yl)oxy moieties interacting with each other pairwise, by forming hydrogen bonds between secondary amine and carbonyl groups (Table 1), similarly to other 3-oxy-substituted 2-pyrrolidone derivatives (Clark et al., 2006). This interaction together with a π–π interaction between the two different phenyl rings from the azobenzene moieties of adjacent molecules [distance between centroids of 3.934 (2) Å] define a chain of corrugated molecules running along the b-axis direction (Fig. 2). The interactions between these chains proceed through C—H⋯π contacts involving the C8–C13 ring and the terminal atom C11 (Table 1)
4. Database survey
A search in the Cambridge Structural Database (Version 5.39 with one update, Groom et al., 2016) returned 101 entries for unsubstituted azobenzene, including the dynamic disorder study of Harada & Ogawa (2004); five entries for O-para-phenylazobenzoyl monoesters (Fitjer et al., 1984; Fujino et al., 2007; Nakatsuji et al., 2007, Park et al., 2015); and only two entries for 3-oxy-substituted 2-pyrrolidone (Clark et al., 2006).
5. Purification and crystallization
Before recrystallization, 3-oxy(4-phenylazobenzoyl)-2-pyrrolidone was purified by the technique of flash A and B [where A: water–acetonitrile (95%–5%) and acetic acid (0.1%); B: acetonitrile (100%) and acetic acid (0.1%)] at the following conditions: a capillary voltage of ESI source of 3000 V; a vaporizer temperature of 433 K, a nebulization pressure of 60 psig, a dry gas temperature of 573 K, and a gas flow of 5 L min−1.
on silica on Combi Flash Rf 150 (Teledine ISCO, Lincoln, Nebraska, USA) equipped with a SiliaSep (40 g, FLH-R10030B-ISO40) flash-cartridge provided by SiliCycle Inc. (Quebec, QC, Canada), using as the 0–100% gradient of hexane–ethyl acetate, respectively. The purity and structure of the components were confirmed by the LC–MS method on an Agilent Technologies 1260 Infinity LC–MS spectrometer (Santa Clara, CA, US) in ESI positive and negative modes, equipped with an Agilent Poroshell 120 EC–C18 2.7 µm column, using as the 0–100% gradient of solvent mixturesThe crystals of the purified product were obtained by the vapor-diffusion method. A solution of 0.05 g of 3-oxy(4-phenylazobenzoyl)-2-pyrrolidone in 1 mL of chloroform, in a small open container, was placed in a sealed larger container filled with hexane, above the level of the solvent, to give orange needle-shaped crystals.
6. Refinement
Crystal data, data collection and structure . H atoms bound to C and N were positioned geometrically with C—H = 0.95–1.00 Å and N—H = 0.88 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C or N).
details are summarized in Table 2Supporting information
CCDC reference: 1826009
https://doi.org/10.1107/S205698901800333X/ff2152sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901800333X/ff2152Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901800333X/ff2152Isup3.cml
Data collection: SAINT (Bruker, 2016); cell
APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C17H15N3O3 | F(000) = 648 |
Mr = 309.32 | Dx = 1.387 Mg m−3 |
Monoclinic, C2 | Ga Kα radiation, λ = 1.34139 Å |
a = 10.2069 (3) Å | Cell parameters from 9959 reflections |
b = 6.3761 (2) Å | θ = 3.4–60.6° |
c = 23.2265 (7) Å | µ = 0.51 mm−1 |
β = 101.454 (1)° | T = 150 K |
V = 1481.48 (8) Å3 | Needle, orange |
Z = 4 | 0.38 × 0.09 × 0.06 mm |
Bruker Venture Metaljet diffractometer | 3382 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 3014 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.046 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 3.4° |
ω and φ scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.433, Tmax = 0.581 | l = −30→30 |
21356 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.070 | w = 1/[σ2(Fo2) + (0.1386P)2 + 0.8495P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.201 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.43 e Å−3 |
3382 reflections | Δρmin = −0.26 e Å−3 |
210 parameters | Extinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0052 (14) |
Primary atom site location: dual | Absolute structure: Refined as an inversion twin. |
Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6922 (3) | 0.2037 (6) | 0.83351 (15) | 0.0367 (7) | |
O1 | 0.5843 (2) | 0.9207 (5) | 0.64242 (11) | 0.0330 (6) | |
C1 | 0.4923 (4) | 0.8542 (6) | 0.67255 (17) | 0.0329 (8) | |
C2 | 0.5463 (4) | 0.6943 (6) | 0.71746 (16) | 0.0309 (7) | |
O2 | 0.3783 (3) | 0.9167 (6) | 0.66315 (14) | 0.0473 (8) | |
N2 | 0.6075 (3) | 0.0794 (5) | 0.84632 (15) | 0.0367 (7) | |
C3 | 0.6825 (4) | 0.6531 (6) | 0.73359 (17) | 0.0337 (8) | |
H3 | 0.744646 | 0.733246 | 0.717269 | 0.040* | |
N3 | 0.6575 (3) | 1.2842 (6) | 0.54545 (15) | 0.0359 (7) | |
H3A | 0.708694 | 1.324852 | 0.521220 | 0.043* | |
O3 | 0.6895 (3) | 0.9284 (5) | 0.53780 (13) | 0.0447 (7) | |
C4 | 0.7272 (4) | 0.4953 (6) | 0.77341 (17) | 0.0345 (8) | |
H4 | 0.820379 | 0.470969 | 0.785656 | 0.041* | |
C5 | 0.6365 (4) | 0.3719 (6) | 0.79569 (16) | 0.0327 (8) | |
C6 | 0.4994 (4) | 0.4147 (7) | 0.78038 (16) | 0.0351 (8) | |
H6 | 0.437535 | 0.333176 | 0.796487 | 0.042* | |
C7 | 0.4545 (4) | 0.5760 (7) | 0.74172 (17) | 0.0344 (8) | |
H7 | 0.361682 | 0.606899 | 0.731581 | 0.041* | |
C8 | 0.6650 (4) | −0.0912 (7) | 0.88292 (16) | 0.0344 (8) | |
C9 | 0.8026 (4) | −0.1300 (6) | 0.89767 (18) | 0.0373 (9) | |
H9 | 0.863800 | −0.040498 | 0.883635 | 0.045* | |
C10 | 0.8484 (4) | −0.2998 (7) | 0.93287 (18) | 0.0411 (9) | |
H10 | 0.941490 | −0.328690 | 0.942456 | 0.049* | |
C11 | 0.7596 (4) | −0.4287 (7) | 0.95435 (19) | 0.0429 (9) | |
H11 | 0.792211 | −0.543911 | 0.978995 | 0.051* | |
C12 | 0.6235 (5) | −0.3897 (7) | 0.93991 (19) | 0.0421 (9) | |
H12 | 0.562923 | −0.477628 | 0.954888 | 0.051* | |
C13 | 0.5753 (4) | −0.2218 (7) | 0.90350 (19) | 0.0398 (9) | |
H13 | 0.481869 | −0.196631 | 0.892795 | 0.048* | |
C14 | 0.5379 (4) | 1.0742 (6) | 0.59755 (16) | 0.0316 (8) | |
H14 | 0.447555 | 1.034414 | 0.574841 | 0.038* | |
C15 | 0.6388 (4) | 1.0822 (6) | 0.55688 (16) | 0.0324 (7) | |
C16 | 0.5864 (4) | 1.4325 (7) | 0.57621 (16) | 0.0364 (8) | |
H16A | 0.511318 | 1.499253 | 0.548791 | 0.044* | |
H16B | 0.647322 | 1.543044 | 0.595920 | 0.044* | |
C17 | 0.5353 (4) | 1.2951 (6) | 0.62119 (17) | 0.0380 (9) | |
H17A | 0.594166 | 1.307299 | 0.660417 | 0.046* | |
H17B | 0.443319 | 1.335774 | 0.624282 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0382 (16) | 0.0309 (16) | 0.0394 (17) | −0.0030 (14) | 0.0036 (13) | 0.0042 (14) |
O1 | 0.0343 (12) | 0.0310 (13) | 0.0353 (12) | 0.0018 (11) | 0.0110 (10) | 0.0067 (11) |
C1 | 0.0342 (17) | 0.0311 (18) | 0.0353 (17) | −0.0006 (14) | 0.0112 (14) | 0.0014 (14) |
C2 | 0.0353 (17) | 0.0255 (16) | 0.0326 (17) | 0.0003 (15) | 0.0082 (14) | −0.0005 (14) |
O2 | 0.0379 (14) | 0.0525 (18) | 0.0542 (17) | 0.0101 (14) | 0.0154 (12) | 0.0194 (16) |
N2 | 0.0376 (16) | 0.0315 (16) | 0.0401 (16) | −0.0028 (14) | 0.0054 (13) | 0.0052 (14) |
C3 | 0.0338 (18) | 0.032 (2) | 0.0356 (18) | −0.0040 (14) | 0.0078 (14) | 0.0005 (15) |
N3 | 0.0408 (17) | 0.0307 (16) | 0.0383 (16) | −0.0016 (13) | 0.0124 (13) | 0.0019 (13) |
O3 | 0.0593 (17) | 0.0332 (14) | 0.0482 (15) | 0.0062 (14) | 0.0266 (13) | 0.0002 (13) |
C4 | 0.0340 (17) | 0.0296 (17) | 0.0392 (19) | −0.0018 (15) | 0.0056 (14) | 0.0019 (15) |
C5 | 0.0364 (17) | 0.0278 (19) | 0.0338 (17) | −0.0016 (14) | 0.0064 (14) | 0.0002 (14) |
C6 | 0.0341 (17) | 0.0358 (19) | 0.0364 (17) | −0.0029 (16) | 0.0094 (13) | 0.0030 (17) |
C7 | 0.0335 (17) | 0.0322 (19) | 0.0391 (18) | −0.0003 (15) | 0.0109 (14) | 0.0025 (16) |
C8 | 0.0401 (18) | 0.0289 (18) | 0.0331 (17) | 0.0007 (16) | 0.0045 (14) | 0.0017 (15) |
C9 | 0.0396 (19) | 0.034 (2) | 0.0379 (18) | −0.0004 (16) | 0.0071 (15) | 0.0014 (15) |
C10 | 0.044 (2) | 0.035 (2) | 0.042 (2) | 0.0030 (17) | 0.0034 (17) | 0.0014 (17) |
C11 | 0.052 (2) | 0.0306 (19) | 0.043 (2) | 0.0007 (18) | 0.0033 (17) | 0.0040 (17) |
C12 | 0.048 (2) | 0.035 (2) | 0.043 (2) | −0.0058 (18) | 0.0077 (17) | 0.0048 (17) |
C13 | 0.041 (2) | 0.0339 (19) | 0.044 (2) | −0.0036 (16) | 0.0051 (16) | 0.0024 (17) |
C14 | 0.0337 (16) | 0.0301 (17) | 0.0319 (16) | 0.0031 (14) | 0.0087 (13) | 0.0032 (14) |
C15 | 0.0356 (17) | 0.0312 (17) | 0.0308 (16) | 0.0004 (14) | 0.0080 (13) | −0.0004 (14) |
C16 | 0.0454 (19) | 0.0282 (18) | 0.0367 (18) | 0.0008 (17) | 0.0108 (15) | 0.0007 (16) |
C17 | 0.048 (2) | 0.0310 (19) | 0.0374 (19) | 0.0051 (16) | 0.0149 (16) | −0.0018 (16) |
N1—N2 | 1.251 (5) | C7—H7 | 0.9500 |
N1—C5 | 1.431 (5) | C8—C9 | 1.400 (5) |
O1—C1 | 1.347 (4) | C8—C13 | 1.391 (6) |
O1—C14 | 1.440 (4) | C9—H9 | 0.9500 |
C1—C2 | 1.484 (5) | C9—C10 | 1.381 (6) |
C1—O2 | 1.208 (5) | C10—H10 | 0.9500 |
C2—C3 | 1.391 (5) | C10—C11 | 1.387 (6) |
C2—C7 | 1.406 (5) | C11—H11 | 0.9500 |
N2—C8 | 1.433 (5) | C11—C12 | 1.386 (7) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.381 (5) | C12—C13 | 1.392 (6) |
N3—H3A | 0.8800 | C13—H13 | 0.9500 |
N3—C15 | 1.336 (5) | C14—H14 | 1.0000 |
N3—C16 | 1.462 (5) | C14—C15 | 1.530 (5) |
O3—C15 | 1.232 (5) | C14—C17 | 1.514 (5) |
C4—H4 | 0.9500 | C16—H16A | 0.9900 |
C4—C5 | 1.391 (5) | C16—H16B | 0.9900 |
C5—C6 | 1.400 (5) | C16—C17 | 1.532 (5) |
C6—H6 | 0.9500 | C17—H17A | 0.9900 |
C6—C7 | 1.383 (6) | C17—H17B | 0.9900 |
N2—N1—C5 | 114.3 (3) | C9—C10—H10 | 119.7 |
C1—O1—C14 | 115.3 (3) | C9—C10—C11 | 120.6 (4) |
O1—C1—C2 | 112.4 (3) | C11—C10—H10 | 119.7 |
O2—C1—O1 | 123.3 (4) | C10—C11—H11 | 119.9 |
O2—C1—C2 | 124.3 (4) | C12—C11—C10 | 120.1 (4) |
C3—C2—C1 | 122.1 (3) | C12—C11—H11 | 119.9 |
C3—C2—C7 | 120.1 (4) | C11—C12—H12 | 120.0 |
C7—C2—C1 | 117.8 (3) | C11—C12—C13 | 120.1 (4) |
N1—N2—C8 | 113.6 (3) | C13—C12—H12 | 120.0 |
C2—C3—H3 | 120.1 | C8—C13—C12 | 119.5 (4) |
C4—C3—C2 | 119.8 (4) | C8—C13—H13 | 120.3 |
C4—C3—H3 | 120.1 | C12—C13—H13 | 120.3 |
C15—N3—H3A | 122.5 | O1—C14—H14 | 110.2 |
C15—N3—C16 | 115.0 (3) | O1—C14—C15 | 107.8 (3) |
C16—N3—H3A | 122.5 | O1—C14—C17 | 113.4 (3) |
C3—C4—H4 | 119.8 | C15—C14—H14 | 110.2 |
C3—C4—C5 | 120.4 (4) | C17—C14—H14 | 110.2 |
C5—C4—H4 | 119.8 | C17—C14—C15 | 104.8 (3) |
C4—C5—N1 | 116.1 (3) | N3—C15—C14 | 107.2 (3) |
C4—C5—C6 | 120.0 (3) | O3—C15—N3 | 127.5 (4) |
C6—C5—N1 | 123.9 (3) | O3—C15—C14 | 125.3 (4) |
C5—C6—H6 | 120.1 | N3—C16—H16A | 111.1 |
C7—C6—C5 | 119.7 (4) | N3—C16—H16B | 111.1 |
C7—C6—H6 | 120.1 | N3—C16—C17 | 103.4 (3) |
C2—C7—H7 | 120.1 | H16A—C16—H16B | 109.0 |
C6—C7—C2 | 119.9 (3) | C17—C16—H16A | 111.1 |
C6—C7—H7 | 120.1 | C17—C16—H16B | 111.1 |
C9—C8—N2 | 123.5 (3) | C14—C17—C16 | 104.6 (3) |
C13—C8—N2 | 116.0 (3) | C14—C17—H17A | 110.8 |
C13—C8—C9 | 120.5 (4) | C14—C17—H17B | 110.8 |
C8—C9—H9 | 120.4 | C16—C17—H17A | 110.8 |
C10—C9—C8 | 119.2 (4) | C16—C17—H17B | 110.8 |
C10—C9—H9 | 120.4 | H17A—C17—H17B | 108.9 |
N1—N2—C8—C9 | −6.9 (5) | C3—C4—C5—C6 | −3.6 (6) |
N1—N2—C8—C13 | 173.6 (4) | N3—C16—C17—C14 | −20.1 (4) |
N1—C5—C6—C7 | −177.6 (4) | C4—C5—C6—C7 | 1.9 (6) |
O1—C1—C2—C3 | 12.1 (5) | C5—N1—N2—C8 | 178.4 (3) |
O1—C1—C2—C7 | −164.8 (3) | C5—C6—C7—C2 | 0.8 (6) |
O1—C14—C15—N3 | −137.4 (3) | C7—C2—C3—C4 | 0.1 (6) |
O1—C14—C15—O3 | 44.1 (5) | C8—C9—C10—C11 | −1.2 (6) |
O1—C14—C17—C16 | 139.4 (3) | C9—C8—C13—C12 | 1.2 (6) |
C1—O1—C14—C15 | −163.5 (3) | C9—C10—C11—C12 | 0.9 (6) |
C1—O1—C14—C17 | 81.0 (4) | C10—C11—C12—C13 | 0.4 (6) |
C1—C2—C3—C4 | −176.7 (3) | C11—C12—C13—C8 | −1.5 (6) |
C1—C2—C7—C6 | 175.1 (4) | C13—C8—C9—C10 | 0.1 (6) |
C2—C3—C4—C5 | 2.6 (6) | C14—O1—C1—C2 | 179.2 (3) |
O2—C1—C2—C3 | −168.9 (4) | C14—O1—C1—O2 | 0.2 (6) |
O2—C1—C2—C7 | 14.2 (6) | C15—N3—C16—C17 | 10.8 (4) |
N2—N1—C5—C4 | −170.8 (3) | C15—C14—C17—C16 | 22.2 (4) |
N2—N1—C5—C6 | 8.6 (5) | C16—N3—C15—O3 | −178.1 (4) |
N2—C8—C9—C10 | −179.4 (4) | C16—N3—C15—C14 | 3.4 (4) |
N2—C8—C13—C12 | −179.2 (4) | C17—C14—C15—N3 | −16.3 (4) |
C3—C2—C7—C6 | −1.8 (6) | C17—C14—C15—O3 | 165.1 (4) |
C3—C4—C5—N1 | 175.9 (3) |
Cg3 is the centrod of the C8–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.88 | 1.99 | 2.868 (4) | 175 |
C11—H11···Cg3ii | 0.95 | 2.76 | 3.596 (5) | 147 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1; (ii) −x+3/2, y−1/2, −z+2. |
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Fonds de Recherche du Québec – Nature et Technologies.
References
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587–2593. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fitjer, L., Wehle, D., Noltemeyer, M., Egert, E. & Sheldrick, G. M. (1984). Chem. Ber. 117, 203–221. CSD CrossRef CAS Web of Science Google Scholar
Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J. & Nakatsuji, S. (2007). Polyhedron, 26, 1989–1992. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malykh, A. G. & Sadaie, M. R. (2010). Drugs, 70, 287–312. Web of Science CrossRef CAS Google Scholar
Nakatsuji, S., Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J., Gurman, V. S. & Vorobiev, A. K. (2007). J. Org. Chem. 72, 2021–2029. Web of Science CSD CrossRef CAS Google Scholar
Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.