research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyl­diazen-1-yl)benzoate

CROSSMARK_Color_square_no_text.svg

aOtto Maass Chemistry Building, Office 430, Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, Canada, H3A 0B8, bDepartment of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7, and cFaculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit Blvd., Montreal, Quebec, Canada, H3C 3J7
*Correspondence e-mail: chris.barrett@mcgill.ca

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 6 February 2018; accepted 26 February 2018; online 6 March 2018)

In the title compound, C17H15N3O3, the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azo­benzene segment, which adopts a configuration close to planar. In the crystal, mol­ecules are oriented pairwise by (2-oxopyrrolidin-3-yl)­oxy moieties at an angle of 76.257 (3)°, linked by hydrogen bonds and π-stacking inter­actions, forming zigzag supra­molecular chains parallel to [010] further linked via additional C—H⋯π inter­actions.

1. Chemical context

Cyclic derivatives of γ-amino­butyric acid, GABA, are still constituting a very promising avenue for developing new drug-mol­ecules for improving neuronal, vascular and general cognitive functions (Malykh et al., 2010[Malykh, A. G. & Sadaie, M. R. (2010). Drugs, 70, 287-312.]). In this context, the goal of the present study was to obtain crystals and to characterize the mol­ecular structure of a new representative of the cyclic-GABA family (racetams), 2-oxopyrrolidin-3-yl 4-(2-phenyl­diazen-1-yl)benzoate.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) comprises the expected 4-phenyl­azobenzoyl and (2-oxopyrrolidin-3-yl)­oxy segments linked by the carb­oxy­ester bond —C1(=O2)—O1. The phenyl­azobenzoyl segment comprises two aromatic rings, one of which is linked at its para-position to the carbonyl C8 atom, and exhibits the more stable trans configuration to the azo group formed by N1—N2 atoms with a distance of 1.251 (5) Å. No residual peaks are observed around the N=N double bond as for pure azo­benzene where such peaks are observed due to a dynamic pedal-like motion orientational disorder (Harada et al., 2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.]). The angle between the two phenyl rings is 4.29 (13)° and is consistent with a slight deviation of the system from the ideal planarity. Geometry parameters of the 3-oxy-substituted 2-pyrrolidone segment are close to known data (Clark et al., 2006[Clark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587-2593.]), with a typical deviation from planarity for the non-aromatic system as shown by the torsion angles C15—C14—C17—C16 of 22.2 (4)° and C17—C14—C15—N3 of −16.3 (4)°. The Cremer & Pople puckering parameters of the five-membered ring are Q = 0.222 (4) Å and φ = 279.4 (11)° conforming to an envelope on C17 (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]; Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

The packing of the title mol­ecules in the crystal (Fig. 2[link]) is mainly determined by the presence of (2-oxopyrrolidin-3-yl)­oxy moieties inter­acting with each other pairwise, by forming hydrogen bonds between secondary amine and carbonyl groups (Table 1[link]), similarly to other 3-oxy-substituted 2-pyrrolidone derivatives (Clark et al., 2006[Clark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587-2593.]). This inter­action together with a ππ inter­action between the two different phenyl rings from the azo­benzene moieties of adjacent mol­ecules [distance between centroids of 3.934 (2) Å] define a chain of corrugated mol­ecules running along the b-axis direction (Fig. 2[link]). The inter­actions between these chains proceed through C—H⋯π contacts involving the C8–C13 ring and the terminal atom C11 (Table 1[link])

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centrod of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.88 1.99 2.868 (4) 175
C11—H11⋯Cg3ii 0.95 2.76 3.596 (5) 147
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Database survey

A search in the Cambridge Structural Database (Version 5.39 with one update, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 101 entries for unsubstituted azo­benzene, including the dynamic disorder study of Harada & Ogawa (2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.]); five entries for O-para-phenyl­azobenzoyl monoesters (Fitjer et al., 1984[Fitjer, L., Wehle, D., Noltemeyer, M., Egert, E. & Sheldrick, G. M. (1984). Chem. Ber. 117, 203-221.]; Fujino et al., 2007[Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J. & Nakatsuji, S. (2007). Polyhedron, 26, 1989-1992.]; Nakatsuji et al., 2007[Nakatsuji, S., Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J., Gurman, V. S. & Vorobiev, A. K. (2007). J. Org. Chem. 72, 2021-2029.], Park et al., 2015[Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153-162.]); and only two entries for 3-oxy-substituted 2-pyrrolidone (Clark et al., 2006[Clark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587-2593.]).

5. Purification and crystallization

Before recrystallization, 3-oxy(4-phenyl­azobenzo­yl)-2-pyrrolidone was purified by the technique of flash chromatography on silica on Combi Flash Rf 150 (Teledine ISCO, Lincoln, Nebraska, USA) equipped with a SiliaSep (40 g, FLH-R10030B-ISO40) flash-cartridge provided by SiliCycle Inc. (Quebec, QC, Canada), using as eluent the 0–100% gradient of hexa­ne–ethyl acetate, respectively. The purity and structure of the eluate components were confirmed by the LC–MS method on an Agilent Technologies 1260 Infinity LC–MS spectrometer (Santa Clara, CA, US) in ESI positive and negative modes, equipped with an Agilent Poroshell 120 EC–C18 2.7 µm column, using as eluent the 0–100% gradient of solvent mixtures A and B [where A: water–aceto­nitrile (95%–5%) and acetic acid (0.1%); B: aceto­nitrile (100%) and acetic acid (0.1%)] at the following conditions: a capillary voltage of ESI source of 3000 V; a vaporizer temperature of 433 K, a nebulization pressure of 60 psig, a dry gas temperature of 573 K, and a gas flow of 5 L min−1.

The crystals of the purified product were obtained by the vapor-diffusion method. A solution of 0.05 g of 3-oxy(4-phenyl­azobenzo­yl)-2-pyrrolidone in 1 mL of chloro­form, in a small open container, was placed in a sealed larger container filled with hexane, above the level of the solvent, to give orange needle-shaped crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to C and N were positioned geometrically with C—H = 0.95–1.00 Å and N—H = 0.88 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C or N).

Table 2
Experimental details

Crystal data
Chemical formula C17H15N3O3
Mr 309.32
Crystal system, space group Monoclinic, C2
Temperature (K) 150
a, b, c (Å) 10.2069 (3), 6.3761 (2), 23.2265 (7)
β (°) 101.454 (1)
V3) 1481.48 (8)
Z 4
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 0.51
Crystal size (mm) 0.38 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.433, 0.581
No. of measured, independent and observed [I > 2σ(I)] reflections 21356, 3382, 3014
Rint 0.046
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.201, 1.10
No. of reflections 3382
No. of parameters 210
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.26
Absolute structure Refined as an inversion twin.
Computer programs: SAINT and APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SAINT (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

2-Oxopyrrolidin-3-yl 4-(2-phenyldiazen-1-yl)benzoate top
Crystal data top
C17H15N3O3F(000) = 648
Mr = 309.32Dx = 1.387 Mg m3
Monoclinic, C2Ga Kα radiation, λ = 1.34139 Å
a = 10.2069 (3) ÅCell parameters from 9959 reflections
b = 6.3761 (2) Åθ = 3.4–60.6°
c = 23.2265 (7) ŵ = 0.51 mm1
β = 101.454 (1)°T = 150 K
V = 1481.48 (8) Å3Needle, orange
Z = 40.38 × 0.09 × 0.06 mm
Data collection top
Bruker Venture Metaljet
diffractometer
3382 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source3014 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.046
Detector resolution: 10.24 pixels mm-1θmax = 60.7°, θmin = 3.4°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.433, Tmax = 0.581l = 3030
21356 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.1386P)2 + 0.8495P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.201(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.43 e Å3
3382 reflectionsΔρmin = 0.26 e Å3
210 parametersExtinction correction: (SHELXL2018; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0052 (14)
Primary atom site location: dualAbsolute structure: Refined as an inversion twin.
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6922 (3)0.2037 (6)0.83351 (15)0.0367 (7)
O10.5843 (2)0.9207 (5)0.64242 (11)0.0330 (6)
C10.4923 (4)0.8542 (6)0.67255 (17)0.0329 (8)
C20.5463 (4)0.6943 (6)0.71746 (16)0.0309 (7)
O20.3783 (3)0.9167 (6)0.66315 (14)0.0473 (8)
N20.6075 (3)0.0794 (5)0.84632 (15)0.0367 (7)
C30.6825 (4)0.6531 (6)0.73359 (17)0.0337 (8)
H30.7446460.7332460.7172690.040*
N30.6575 (3)1.2842 (6)0.54545 (15)0.0359 (7)
H3A0.7086941.3248520.5212200.043*
O30.6895 (3)0.9284 (5)0.53780 (13)0.0447 (7)
C40.7272 (4)0.4953 (6)0.77341 (17)0.0345 (8)
H40.8203790.4709690.7856560.041*
C50.6365 (4)0.3719 (6)0.79569 (16)0.0327 (8)
C60.4994 (4)0.4147 (7)0.78038 (16)0.0351 (8)
H60.4375350.3331760.7964870.042*
C70.4545 (4)0.5760 (7)0.74172 (17)0.0344 (8)
H70.3616820.6068990.7315810.041*
C80.6650 (4)0.0912 (7)0.88292 (16)0.0344 (8)
C90.8026 (4)0.1300 (6)0.89767 (18)0.0373 (9)
H90.8638000.0404980.8836350.045*
C100.8484 (4)0.2998 (7)0.93287 (18)0.0411 (9)
H100.9414900.3286900.9424560.049*
C110.7596 (4)0.4287 (7)0.95435 (19)0.0429 (9)
H110.7922110.5439110.9789950.051*
C120.6235 (5)0.3897 (7)0.93991 (19)0.0421 (9)
H120.5629230.4776280.9548880.051*
C130.5753 (4)0.2218 (7)0.90350 (19)0.0398 (9)
H130.4818690.1966310.8927950.048*
C140.5379 (4)1.0742 (6)0.59755 (16)0.0316 (8)
H140.4475551.0344140.5748410.038*
C150.6388 (4)1.0822 (6)0.55688 (16)0.0324 (7)
C160.5864 (4)1.4325 (7)0.57621 (16)0.0364 (8)
H16A0.5113181.4992530.5487910.044*
H16B0.6473221.5430440.5959200.044*
C170.5353 (4)1.2951 (6)0.62119 (17)0.0380 (9)
H17A0.5941661.3072990.6604170.046*
H17B0.4433191.3357740.6242820.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0382 (16)0.0309 (16)0.0394 (17)0.0030 (14)0.0036 (13)0.0042 (14)
O10.0343 (12)0.0310 (13)0.0353 (12)0.0018 (11)0.0110 (10)0.0067 (11)
C10.0342 (17)0.0311 (18)0.0353 (17)0.0006 (14)0.0112 (14)0.0014 (14)
C20.0353 (17)0.0255 (16)0.0326 (17)0.0003 (15)0.0082 (14)0.0005 (14)
O20.0379 (14)0.0525 (18)0.0542 (17)0.0101 (14)0.0154 (12)0.0194 (16)
N20.0376 (16)0.0315 (16)0.0401 (16)0.0028 (14)0.0054 (13)0.0052 (14)
C30.0338 (18)0.032 (2)0.0356 (18)0.0040 (14)0.0078 (14)0.0005 (15)
N30.0408 (17)0.0307 (16)0.0383 (16)0.0016 (13)0.0124 (13)0.0019 (13)
O30.0593 (17)0.0332 (14)0.0482 (15)0.0062 (14)0.0266 (13)0.0002 (13)
C40.0340 (17)0.0296 (17)0.0392 (19)0.0018 (15)0.0056 (14)0.0019 (15)
C50.0364 (17)0.0278 (19)0.0338 (17)0.0016 (14)0.0064 (14)0.0002 (14)
C60.0341 (17)0.0358 (19)0.0364 (17)0.0029 (16)0.0094 (13)0.0030 (17)
C70.0335 (17)0.0322 (19)0.0391 (18)0.0003 (15)0.0109 (14)0.0025 (16)
C80.0401 (18)0.0289 (18)0.0331 (17)0.0007 (16)0.0045 (14)0.0017 (15)
C90.0396 (19)0.034 (2)0.0379 (18)0.0004 (16)0.0071 (15)0.0014 (15)
C100.044 (2)0.035 (2)0.042 (2)0.0030 (17)0.0034 (17)0.0014 (17)
C110.052 (2)0.0306 (19)0.043 (2)0.0007 (18)0.0033 (17)0.0040 (17)
C120.048 (2)0.035 (2)0.043 (2)0.0058 (18)0.0077 (17)0.0048 (17)
C130.041 (2)0.0339 (19)0.044 (2)0.0036 (16)0.0051 (16)0.0024 (17)
C140.0337 (16)0.0301 (17)0.0319 (16)0.0031 (14)0.0087 (13)0.0032 (14)
C150.0356 (17)0.0312 (17)0.0308 (16)0.0004 (14)0.0080 (13)0.0004 (14)
C160.0454 (19)0.0282 (18)0.0367 (18)0.0008 (17)0.0108 (15)0.0007 (16)
C170.048 (2)0.0310 (19)0.0374 (19)0.0051 (16)0.0149 (16)0.0018 (16)
Geometric parameters (Å, º) top
N1—N21.251 (5)C7—H70.9500
N1—C51.431 (5)C8—C91.400 (5)
O1—C11.347 (4)C8—C131.391 (6)
O1—C141.440 (4)C9—H90.9500
C1—C21.484 (5)C9—C101.381 (6)
C1—O21.208 (5)C10—H100.9500
C2—C31.391 (5)C10—C111.387 (6)
C2—C71.406 (5)C11—H110.9500
N2—C81.433 (5)C11—C121.386 (7)
C3—H30.9500C12—H120.9500
C3—C41.381 (5)C12—C131.392 (6)
N3—H3A0.8800C13—H130.9500
N3—C151.336 (5)C14—H141.0000
N3—C161.462 (5)C14—C151.530 (5)
O3—C151.232 (5)C14—C171.514 (5)
C4—H40.9500C16—H16A0.9900
C4—C51.391 (5)C16—H16B0.9900
C5—C61.400 (5)C16—C171.532 (5)
C6—H60.9500C17—H17A0.9900
C6—C71.383 (6)C17—H17B0.9900
N2—N1—C5114.3 (3)C9—C10—H10119.7
C1—O1—C14115.3 (3)C9—C10—C11120.6 (4)
O1—C1—C2112.4 (3)C11—C10—H10119.7
O2—C1—O1123.3 (4)C10—C11—H11119.9
O2—C1—C2124.3 (4)C12—C11—C10120.1 (4)
C3—C2—C1122.1 (3)C12—C11—H11119.9
C3—C2—C7120.1 (4)C11—C12—H12120.0
C7—C2—C1117.8 (3)C11—C12—C13120.1 (4)
N1—N2—C8113.6 (3)C13—C12—H12120.0
C2—C3—H3120.1C8—C13—C12119.5 (4)
C4—C3—C2119.8 (4)C8—C13—H13120.3
C4—C3—H3120.1C12—C13—H13120.3
C15—N3—H3A122.5O1—C14—H14110.2
C15—N3—C16115.0 (3)O1—C14—C15107.8 (3)
C16—N3—H3A122.5O1—C14—C17113.4 (3)
C3—C4—H4119.8C15—C14—H14110.2
C3—C4—C5120.4 (4)C17—C14—H14110.2
C5—C4—H4119.8C17—C14—C15104.8 (3)
C4—C5—N1116.1 (3)N3—C15—C14107.2 (3)
C4—C5—C6120.0 (3)O3—C15—N3127.5 (4)
C6—C5—N1123.9 (3)O3—C15—C14125.3 (4)
C5—C6—H6120.1N3—C16—H16A111.1
C7—C6—C5119.7 (4)N3—C16—H16B111.1
C7—C6—H6120.1N3—C16—C17103.4 (3)
C2—C7—H7120.1H16A—C16—H16B109.0
C6—C7—C2119.9 (3)C17—C16—H16A111.1
C6—C7—H7120.1C17—C16—H16B111.1
C9—C8—N2123.5 (3)C14—C17—C16104.6 (3)
C13—C8—N2116.0 (3)C14—C17—H17A110.8
C13—C8—C9120.5 (4)C14—C17—H17B110.8
C8—C9—H9120.4C16—C17—H17A110.8
C10—C9—C8119.2 (4)C16—C17—H17B110.8
C10—C9—H9120.4H17A—C17—H17B108.9
N1—N2—C8—C96.9 (5)C3—C4—C5—C63.6 (6)
N1—N2—C8—C13173.6 (4)N3—C16—C17—C1420.1 (4)
N1—C5—C6—C7177.6 (4)C4—C5—C6—C71.9 (6)
O1—C1—C2—C312.1 (5)C5—N1—N2—C8178.4 (3)
O1—C1—C2—C7164.8 (3)C5—C6—C7—C20.8 (6)
O1—C14—C15—N3137.4 (3)C7—C2—C3—C40.1 (6)
O1—C14—C15—O344.1 (5)C8—C9—C10—C111.2 (6)
O1—C14—C17—C16139.4 (3)C9—C8—C13—C121.2 (6)
C1—O1—C14—C15163.5 (3)C9—C10—C11—C120.9 (6)
C1—O1—C14—C1781.0 (4)C10—C11—C12—C130.4 (6)
C1—C2—C3—C4176.7 (3)C11—C12—C13—C81.5 (6)
C1—C2—C7—C6175.1 (4)C13—C8—C9—C100.1 (6)
C2—C3—C4—C52.6 (6)C14—O1—C1—C2179.2 (3)
O2—C1—C2—C3168.9 (4)C14—O1—C1—O20.2 (6)
O2—C1—C2—C714.2 (6)C15—N3—C16—C1710.8 (4)
N2—N1—C5—C4170.8 (3)C15—C14—C17—C1622.2 (4)
N2—N1—C5—C68.6 (5)C16—N3—C15—O3178.1 (4)
N2—C8—C9—C10179.4 (4)C16—N3—C15—C143.4 (4)
N2—C8—C13—C12179.2 (4)C17—C14—C15—N316.3 (4)
C3—C2—C7—C61.8 (6)C17—C14—C15—O3165.1 (4)
C3—C4—C5—N1175.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centrod of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.881.992.868 (4)175
C11—H11···Cg3ii0.952.763.596 (5)147
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y1/2, z+2.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Fonds de Recherche du Québec – Nature et Technologies.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, R. C., Pfeiffer, S. S. & Boger, D. L. (2006). J. Am. Chem. Soc. 128, 2587–2593.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitjer, L., Wehle, D., Noltemeyer, M., Egert, E. & Sheldrick, G. M. (1984). Chem. Ber. 117, 203–221.  CSD CrossRef CAS Web of Science Google Scholar
First citationFujino, M., Hasegawa, S., Akutsu, H., Yamada, J. & Nakatsuji, S. (2007). Polyhedron, 26, 1989–1992.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalykh, A. G. & Sadaie, M. R. (2010). Drugs, 70, 287–312.  Web of Science CrossRef CAS Google Scholar
First citationNakatsuji, S., Fujino, M., Hasegawa, S., Akutsu, H., Yamada, J., Gurman, V. S. & Vorobiev, A. K. (2007). J. Org. Chem. 72, 2021–2029.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds