research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naloxegol hydrogen oxalate displaying a hydrogen-bonded layer structure

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Institute of Pharmacy, Innrain 52, 6020 Innsbruck, Austria, and bSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by L. Fabian, University of East Anglia, England (Received 20 February 2018; accepted 2 March 2018; online 9 March 2018)

In the salt (5α,6α)-6-[(2,5,8,11,14,17,20-hepta­oxadocosan-22-yl)­oxy]-3,14-dihy­droxy-17-(prop-2-en-1-yl)-4,5-ep­oxy­morphinan-17-ium hydrogen oxalate, C34H54NO11+·C2HO4 the polyether unit of the naloxegol cation adopts the shape of a squashed open letter `O'. In the crystal, the hydrogen oxalate anions are linked into a chain by O—H⋯O hydrogen bonds. Each naloxegol unit is hydrogen bonded to three hydrogen oxalate ions via two O—H⋯O and one N—H⋯O inter­actions. The resulting hydrogen-bonded two-dimensional layer structure is 3,5-connected and has the 3,5 L50 topology.

1. Chemical context

Naloxegol {(5α,6α)-17-allyl-6-[(20-hy­droxy-3,6,9,12,15,18-hexa­oxaicos-1-yl)­oxy]-4,5-ep­oxy­morphinan-3,14-diol} is a pegylated derivative of naloxone which serves as a peripherally acting m-opioid receptor antagonist. This compound was developed for the oral treatment of opioid-induced constipation in adults with chronic non-cancer pain, and is currently marketed under the trade name Movantik by AstraZeneca. Åslund et al. (2012[Åslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.]) have described two forms, denoted as A and B, of naloxegol oxalate. Form B was reported as showing `a sharp endothermic peak at 92.5° C' (365.5 K) in the DSC thermogram with a heat of fusion of ΔfusH = 96.1 J g−1 (71.29 kJ mol−1). Herein we report the crystal structure of naloxegol hydrogen oxalate (I)[link] (C34H54NO11+ C2HO4), which is identical with form B described by Åslund et al. (2012[Åslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.]). The unequivocal identity with form B is evidenced by the match of the X-ray powder diffraction data and the good agreement of the melting data [Tfus(onset) = 363.9 ± 0.3 K, Tfus(peak) = 366.7 ± 0.3 K, ΔfusH = 70.4 ± 0.6 kJ mol−1] with those reported by Åslund et al. (2012[Åslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.]).

[Scheme 1]

2. Structural commentary

The geometry of the morphine scaffold in the title structure (I)[link] is very similar to that of the parent mol­ecule in the naloxone hydro­chloride dihydrate structure (Klein et al., 1987[Klein, C. L., Majeste, R. J. & Stevens, E. D. (1987). J. Am. Chem. Soc. 109, 6675-6681.]), except for the conformation of the cyclo­hexyl ring (C2–C6/C11) (Figs. 1[link] and 2[link]). In (I)[link], the puckering parameters for this ring of q = 85.3 (2)° and θ = 76.6 (3)° indicate a conformation between boat and twist boat (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). The conformation of the 2-propenyl group at N8 is characterised by the torsion angle N8—C43—C44—C45 of 133.6 (4)°, which differs substanti­ally from the corresponding value, −96.2°, in the naloxone hydro­chloride dihydrate. The polyether unit adopts the shape of a squashed open letter O. Using the nomenclature for torsion angles recommended by Markley et al. (1998[Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E. & Wüthrich, K. (1998). Eur. J. Biochem. 256, 1-15.]), the conformation of the fragment (C3, O19–C41) can be described by the sequence tg+t tg[[t]] ttg ggg+ g+gt tgt tgt. All O—C—C—O angles are gauche except for O25—C26—C27—O28. Six consecutive gauche-type torsion angles are associated with a 180° turn within the chain section (C26–O34) (Fig. 1[link], Table 1[link]). The hydrogen oxalate anion displays a twisted conformation with a torsion angle O1O—C2O—C4O—O5O of −143.3 (3)°.

Table 1
Selected torsion angles (°)

C3—O19—C20—C21 −179.4 (3) C29—C30—O31—C32 60.2 (8)
O19—C20—C21—O22 69.0 (4) C30—O31—C32—C33 80.4 (5)
C20—C21—O22—C23 −177.0 (3) O31—C32—C33—O34 −74.8 (4)
C21—O22—C23—C24 −177.9 (4) C32—C33—O34—C35 −178.3 (3)
O22—C23—C24—O25 −69.9 (6) C36—C35—O34—C33 −177.8 (3)
C23—C24—O25—C26 −136.1 (5) O34—C35—C36—O37 −68.8 (4)
C24—O25—C26—C27 −173.2 (5) C35—C36—O37—C38 174.7 (3)
O25—C26—C27—O28 −177.6 (4) C36—O37—C38—C39 −176.6 (3)
C26—C27—O28—C29 −78.4 (5) O37—C38—C39—O40 −70.0 (3)
C27—O28—C29—C30 −81.2 (7) C38—C39—O40—C41 −169.8 (3)
O28—C29—C30—O31 −70.5 (8)    
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary size.
[Figure 2]
Figure 2
Overlay of the morphine scaffolds of (I)[link] and naloxone hydro­chloride dihydrate (Klein et al., 1987[Klein, C. L., Majeste, R. J. & Stevens, E. D. (1987). J. Am. Chem. Soc. 109, 6675-6681.]; coloured orange), obtained by least-squares fitting all ring atoms except for (C2–C6/C11).

3. Supra­molecular features

The naloxegol cation contains one NH group and two OH groups, which can serve as hydrogen-bond donor groups, and the hydrogen oxalate contains another OH group. Neighbouring hydrogen oxalate ions are hydrogen bonded (Table 2[link]) to one another (O6O—H6O⋯O1Oiii), so that a chain structure parallel to the b axis is formed. Each naloxegol unit serves as a bridge between two such hydrogen oxalate chains in that it provides two bonds, O42—H42⋯O3Oii and N8—H8⋯O1Oi, to two different anions belonging to one hydrogen-bonded hydrogen oxalate chain, The third bond, O46—H46⋯O5O, connects to a second anion chain (Fig. 3[link]). Altogether, each naloxegol cation forms three hydrogen bonds to three hydrogen oxalate ions, and each anion is engaged in five one-point hydrogen-bonding inter­actions with two hydrogen oxalate and three naloxegol units. The 3,5-connected layer structure (Fig. 4[link]) resulting from these inter­actions lies in the ab plane. It possesses the 3,5L50 topology and has the point symbol (3.52)(32.53.64.7), wherein the naloxegol and hydrogen oxalate nodes are represented by the string (3.52) and (32.53.64.7), respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O1Oi 0.88 (1) 2.23 (3) 2.911 (3) 134 (3)
O42—H42⋯O3Oii 0.84 (1) 2.12 (2) 2.906 (3) 157 (4)
O46—H46⋯O5O 0.84 (1) 2.09 (3) 2.853 (3) 151 (5)
O6O—H6O⋯O1Oiii 0.85 (1) 1.69 (2) 2.536 (3) 173 (6)
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 3]
Figure 3
Hydrogen-bonded layer structure of (I)[link], viewed along the c axis. H and O atoms directly engaged in hydrogen bonding are drawn as balls. All other H atoms and the polyether group are omitted for clarity.
[Figure 4]
Figure 4
Topological representation in the manner proposed by Hursthouse et al. (2015[Hursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.]) of the hydrogen-bonded layer structure with the 3,5 L50 topology (Nal = naloxegol, Hox = hydrogen oxalate). The net is viewed along the c axis. Note that the naloxegol nodes are placed at the centroid of the mol­ecule rather than the center of its morphine scaffold.

4. Database survey

Crystal structures of a hydro­chloride dihydrate (Karle, 1974[Karle, I. L. (1974). Acta Cryst. B30, 1682-1686.]; Sime et al., 1975[Sime, R. L., Forehand, R. & Sime, R. J. (1975). Acta Cryst. B31, 2326-2330.]; Klein et al., 1987[Klein, C. L., Majeste, R. J. & Stevens, E. D. (1987). J. Am. Chem. Soc. 109, 6675-6681.]; see Fig. 2[link]) and a hydro­chloride anhydrate (Sugimoto et al., 2007[Sugimoto, K., Dinnebier, R. E. & Zakrzewski, M. (2007). J. Pharm. Sci. 96, 3316-3323.]) of the parent mol­ecule naloxone are known.

Heptaglyme (heptaethyleneglycol dimethyl ether) has been used as a multidentate ligand in Ba (FIXKAY; Wei et al., 1987[Wei, Y. Y., Tinant, B., Declercq, J.-P., Van Meerssche, M. & Dale, J. (1987). Acta Cryst. C43, 1279-1281.]), Ca (RUFWUK; Arunasalam et al., 1997[Arunasalam, V.-C., Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., Miller, S. A. S., Mingos, D. M. P. & Otway, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1331-1336.]) and Gd (YOMBUX; Baxter et al., 1995[Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34, 1384-1394.]) complexes. The hepta­glyme conformations in these crystals differ substanti­ally from the chain geometry found in (I)[link]. For example, the hepta­glyme complex with barium thio­cyanate displays a regular sequence tg+t tgt tg+t tgt tg+t tg tg+t with sign alternation (Wei et al., 1987[Wei, Y. Y., Tinant, B., Declercq, J.-P., Van Meerssche, M. & Dale, J. (1987). Acta Cryst. C43, 1279-1281.]).

5. Synthesis and crystallization

Naloxegol was obtained as a viscous transparent yellow oil (purity 95.05%). Approximately 4000 mg (6.14 mmol) of the free base were dissolved in 30 ml of ethyl­acetate and 774 mg (1 meq) of oxalic acid dihydrate (Merck) suspended in 20 ml of ethyl­acetate. The free-base solution was added dropwise to the suspended counter-ion. Stirring at room temperature for 15 minutes transformed the gel-like material into a suspension. The oxalate salt formation was complete after continued stirring for 12 h at ambient temperature. The slurry was then separated from the mother liquor by centrifuge and then dried in vacuo at ambient temperature (yield 3700 mg = 4.99 mmol = 81% of theory). The PXRD pattern of the dried product was found to match that of form B reported in Åslund et al. (2012[Åslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.]).

A sample of form B (50 mg) was dissolved in 0.3 ml of 2-propanol under slight heating. Filtration through a syringe filter (pore size 0.44 microns) yielded a clear solution. The solution was allowed to cool to room temperature. Crystallization in a closed vial yielded single crystals suitable for a crystal structure determination. Typical crystal morphologies of (I)[link] obtained by evaporation from different organic solvents are shown in Fig. S1 of the Supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were identified in difference maps. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip and refined with Uiso set to 1.5Ueq(C) of the parent carbon atom. All other H atoms bound to carbon atoms were positioned geometrically and refined with Uiso set to 1.2Ueq(C) of the parent carbon atom. Hydrogen atoms in OH and NH groups were refined with restrained distances [O—H = 0.84 (1) Å; N—H = 0.88 (1) Å] and their Uiso parameters were refined freely. The absolute structure was established by anomalous-dispersion effects.

Table 3
Experimental details

Crystal data
Chemical formula C34H54NO11+·C2HO4
Mr 741.81
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 10.3581 (1), 13.4039 (1), 26.1689 (2)
V3) 3633.26 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Ruby Gemini Ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.809, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58082, 6563, 6429
Rint 0.056
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.03
No. of reflections 6563
No. of parameters 488
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.43
Absolute structure Flack x determined using 2777 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), TOPOS (Blatov, 2006[Blatov, V. A. (2006). IUCr Compcomm Newsletter, 7, 4-38.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The largest residual peak of 0.73 e Å−3 is located 1.00 Å from C30. An alternative refinement of a disorder model with a split C30 position was attempted, but resulted in a few unreasonably short intra­molecular H⋯H distances for the minor disorder fragment. This feature could not be eliminated even with the aplication of a suitable anti-bumping restraint.

The topology of the hydrogen-bonded structures was determined and classified with the programs ADS and IsoTest of the TOPOS package (Blatov, 2006[Blatov, V. A. (2006). IUCr Compcomm Newsletter, 7, 4-38.]) in the manner described by Baburin & Blatov (2007[Baburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791-802.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and TOPOS (Blatov, 2006); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and TOPOS (Blatov, 2006).

(5α,6α)-6-[(2,5,8,11,14,17,20-Heptaoxadocosan-22-yl)oxy]-3,14-dihydroxy-17-\ (prop-2-en-1-yl)-4,5-epoxymorphinan-17-ium hydrogen oxalate top
Crystal data top
C34H54NO11+·C2HO4Dx = 1.356 Mg m3
Mr = 741.81Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 31215 reflections
a = 10.3581 (1) Åθ = 3.4–67.5°
b = 13.4039 (1) ŵ = 0.88 mm1
c = 26.1689 (2) ÅT = 173 K
V = 3633.26 (5) Å3Plate, colourless
Z = 40.25 × 0.15 × 0.05 mm
F(000) = 1592
Data collection top
Riguaku Oxford Diffraction Xcalibur Ruby Gemini Ultra
diffractometer
6563 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source6429 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.3575 pixels mm-1θmax = 67.5°, θmin = 3.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1616
Tmin = 0.809, Tmax = 1.000l = 3131
58082 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0807P)2 + 1.840P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6563 reflectionsΔρmax = 0.73 e Å3
488 parametersΔρmin = 0.43 e Å3
4 restraintsAbsolute structure: Flack x determined using 2777 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7271 (2)0.23153 (15)0.60003 (8)0.0220 (4)
C20.6886 (3)0.1258 (2)0.60078 (11)0.0196 (6)
H20.75750.08540.61770.024*
C30.5616 (3)0.1131 (2)0.62988 (11)0.0223 (6)
H30.54800.04040.63660.017 (8)*
C40.4487 (3)0.1516 (2)0.59856 (12)0.0238 (6)
H4A0.46320.22290.59040.029*
H4B0.36880.14680.61920.029*
C50.4304 (3)0.0928 (2)0.54844 (11)0.0229 (6)
H5A0.36030.04360.55340.027*
H5B0.40250.13980.52140.027*
C60.5516 (3)0.0375 (2)0.52989 (11)0.0196 (6)
C70.5514 (3)0.0269 (2)0.47054 (11)0.0204 (6)
H70.47090.00940.46070.025*
N80.6650 (2)0.03899 (18)0.45687 (9)0.0225 (5)
H80.656 (4)0.0951 (17)0.4738 (13)0.028 (9)*
C90.7908 (3)0.0108 (2)0.47010 (12)0.0233 (6)
H9A0.80020.07300.45010.028*
H9B0.86350.03400.46120.028*
C100.7950 (3)0.0347 (2)0.52665 (11)0.0218 (6)
H10A0.87350.07430.53410.026*
H10B0.80040.02820.54630.026*
C110.6759 (3)0.0933 (2)0.54401 (11)0.0178 (5)
C120.6642 (3)0.1937 (2)0.51828 (10)0.0180 (5)
C130.6953 (3)0.2674 (2)0.55230 (11)0.0184 (5)
C140.6840 (3)0.3679 (2)0.53902 (11)0.0196 (5)
C150.6339 (3)0.3874 (2)0.49073 (11)0.0218 (6)
H150.62540.45480.48010.026*
C160.5954 (3)0.3121 (2)0.45718 (11)0.0222 (6)
H160.55980.32890.42480.025 (9)*
C170.6093 (3)0.2118 (2)0.47115 (11)0.0187 (5)
C180.5532 (3)0.1265 (2)0.44095 (11)0.0217 (6)
H18A0.60410.11780.40930.026*
H18B0.46370.14380.43090.026*
O190.5624 (2)0.16457 (16)0.67753 (8)0.0282 (5)
C200.6280 (4)0.1130 (3)0.71702 (12)0.0382 (8)
H20A0.71920.10230.70720.046*
H20B0.58750.04690.72250.046*
C210.6215 (4)0.1731 (3)0.76544 (13)0.0401 (8)
H21A0.67970.14340.79130.048*
H21B0.65130.24200.75860.048*
O220.4955 (3)0.1756 (2)0.78457 (9)0.0424 (6)
C230.4912 (5)0.2381 (4)0.82948 (15)0.0527 (11)
H23A0.51720.30680.82010.063*
H23B0.55360.21280.85500.063*
C240.3631 (5)0.2404 (5)0.85200 (16)0.0654 (15)
H24A0.33310.17100.85710.079*
H24B0.36870.27220.88610.079*
O250.2718 (3)0.2915 (3)0.82276 (11)0.0669 (11)
C260.1924 (5)0.3545 (3)0.85016 (16)0.0472 (10)
H26A0.24470.40960.86460.057*
H26B0.15350.31730.87900.057*
C270.0876 (4)0.3971 (4)0.81770 (16)0.0474 (9)
H27A0.12690.43160.78810.057*
H27B0.03370.34200.80440.057*
O280.0081 (3)0.4650 (2)0.84424 (12)0.0524 (7)
C290.0852 (6)0.4273 (6)0.8764 (2)0.0780 (17)
H29A0.10570.47930.90200.094*
H29B0.04690.37030.89510.094*
C300.2056 (6)0.3937 (5)0.8542 (2)0.0805 (18)
H30A0.18310.34630.82670.097*
H30B0.25060.35460.88090.097*
O310.2970 (3)0.4601 (3)0.83377 (12)0.0574 (8)
C320.2612 (4)0.5223 (3)0.79260 (15)0.0418 (8)
H32A0.17290.54780.79870.050*
H32B0.32020.58040.79160.050*
C330.2645 (4)0.4709 (3)0.74176 (15)0.0407 (8)
H33A0.34530.43210.73850.049*
H33B0.26240.52110.71400.049*
C350.1524 (4)0.3577 (3)0.68942 (13)0.0352 (8)
H35A0.14370.40740.66160.042*
H35B0.23300.31950.68380.042*
O340.1574 (2)0.4068 (2)0.73736 (9)0.0376 (6)
C360.0393 (3)0.2888 (3)0.68912 (13)0.0337 (7)
H36A0.04220.24530.71970.040*
H36B0.04270.24580.65840.040*
O370.0775 (2)0.34491 (17)0.68908 (9)0.0305 (5)
C380.1863 (4)0.2810 (3)0.69353 (13)0.0339 (7)
H38A0.19000.23600.66360.041*
H38B0.17730.23930.72460.041*
C390.3081 (4)0.3401 (3)0.69666 (13)0.0348 (8)
H39A0.29950.39220.72330.042*
H39B0.38060.29580.70630.042*
O400.3342 (2)0.3856 (2)0.64859 (9)0.0360 (5)
C410.4599 (4)0.4277 (3)0.64774 (16)0.0426 (9)
H41A0.46770.47730.67510.064*
H41B0.47480.46000.61470.064*
H41C0.52410.37490.65290.064*
O420.5589 (2)0.06069 (15)0.55118 (8)0.0240 (4)
H420.490 (2)0.091 (3)0.5438 (15)0.035 (11)*
C430.6689 (3)0.0737 (2)0.40195 (12)0.0297 (7)
H43A0.68940.01600.37980.036*
H43B0.73940.12300.39810.036*
C440.5460 (4)0.1197 (3)0.38398 (14)0.0366 (8)
H440.50460.16760.40520.044*
C450.4926 (5)0.0967 (3)0.34005 (16)0.0479 (10)
H45A0.53240.04900.31830.058*
H45B0.41410.12770.33000.058*
O460.7208 (2)0.44043 (15)0.57269 (8)0.0261 (5)
H460.702 (5)0.495 (2)0.5584 (16)0.048 (13)*
O1O0.7871 (2)0.77819 (16)0.49246 (11)0.0347 (6)
C2O0.7474 (3)0.6898 (2)0.49807 (13)0.0236 (6)
O3O0.8110 (2)0.61333 (17)0.49334 (13)0.0470 (7)
C4O0.6050 (3)0.6764 (2)0.51321 (12)0.0216 (6)
O5O0.5729 (2)0.61010 (17)0.54246 (9)0.0322 (5)
O6O0.5275 (2)0.73960 (17)0.49151 (10)0.0315 (5)
H6O0.449 (2)0.730 (4)0.498 (2)0.069 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (10)0.0180 (10)0.0216 (9)0.0045 (8)0.0056 (8)0.0002 (8)
C20.0226 (13)0.0147 (13)0.0215 (13)0.0003 (11)0.0028 (11)0.0019 (10)
C30.0278 (15)0.0193 (13)0.0198 (14)0.0014 (12)0.0013 (11)0.0016 (10)
C40.0199 (13)0.0241 (14)0.0273 (14)0.0014 (12)0.0030 (12)0.0002 (12)
C50.0173 (13)0.0243 (14)0.0271 (14)0.0003 (11)0.0003 (11)0.0005 (12)
C60.0189 (13)0.0150 (12)0.0249 (14)0.0013 (11)0.0005 (11)0.0032 (11)
C70.0197 (13)0.0178 (13)0.0238 (14)0.0019 (11)0.0010 (11)0.0014 (11)
N80.0252 (12)0.0179 (12)0.0243 (12)0.0017 (10)0.0004 (10)0.0020 (10)
C90.0182 (13)0.0226 (13)0.0291 (15)0.0027 (11)0.0023 (11)0.0004 (12)
C100.0189 (13)0.0203 (13)0.0262 (14)0.0019 (11)0.0016 (11)0.0007 (11)
C110.0184 (13)0.0135 (12)0.0215 (13)0.0007 (10)0.0008 (10)0.0023 (10)
C120.0163 (12)0.0164 (12)0.0212 (13)0.0012 (10)0.0001 (10)0.0024 (10)
C130.0176 (12)0.0161 (13)0.0217 (13)0.0008 (10)0.0012 (10)0.0041 (10)
C140.0177 (12)0.0169 (13)0.0244 (14)0.0025 (10)0.0000 (11)0.0005 (11)
C150.0211 (13)0.0165 (12)0.0277 (14)0.0007 (11)0.0005 (11)0.0037 (11)
C160.0219 (13)0.0228 (14)0.0219 (14)0.0014 (11)0.0008 (11)0.0023 (11)
C170.0186 (12)0.0156 (12)0.0218 (13)0.0022 (10)0.0025 (11)0.0001 (11)
C180.0240 (13)0.0198 (13)0.0214 (13)0.0010 (11)0.0028 (11)0.0021 (11)
O190.0373 (13)0.0283 (11)0.0191 (10)0.0036 (10)0.0002 (9)0.0000 (8)
C200.041 (2)0.051 (2)0.0220 (16)0.0108 (17)0.0020 (14)0.0020 (15)
C210.0387 (19)0.058 (2)0.0235 (16)0.0002 (17)0.0030 (14)0.0006 (16)
O220.0419 (14)0.0598 (17)0.0256 (11)0.0039 (13)0.0025 (10)0.0024 (11)
C230.060 (3)0.065 (3)0.0329 (18)0.004 (2)0.0070 (18)0.0092 (19)
C240.074 (3)0.090 (4)0.032 (2)0.042 (3)0.008 (2)0.009 (2)
O250.071 (2)0.102 (3)0.0276 (13)0.047 (2)0.0056 (14)0.0071 (15)
C260.058 (2)0.044 (2)0.039 (2)0.0104 (19)0.0067 (18)0.0113 (17)
C270.047 (2)0.056 (2)0.039 (2)0.0106 (19)0.0011 (17)0.0036 (18)
O280.0580 (17)0.0458 (16)0.0534 (17)0.0114 (14)0.0022 (14)0.0053 (13)
C290.070 (3)0.105 (5)0.059 (3)0.026 (3)0.016 (3)0.020 (3)
C300.074 (4)0.100 (5)0.067 (3)0.013 (3)0.008 (3)0.031 (3)
O310.0538 (18)0.0617 (19)0.0568 (18)0.0099 (15)0.0151 (14)0.0050 (15)
C320.048 (2)0.0321 (18)0.045 (2)0.0065 (17)0.0026 (17)0.0059 (15)
C330.0324 (18)0.049 (2)0.0411 (19)0.0085 (17)0.0011 (15)0.0056 (16)
C350.0342 (18)0.047 (2)0.0248 (16)0.0012 (16)0.0008 (13)0.0086 (14)
O340.0338 (12)0.0496 (14)0.0295 (12)0.0102 (11)0.0037 (10)0.0114 (11)
C360.0366 (18)0.0351 (18)0.0294 (16)0.0035 (15)0.0030 (14)0.0080 (14)
O370.0283 (11)0.0313 (12)0.0318 (12)0.0049 (10)0.0001 (9)0.0001 (9)
C380.0380 (18)0.0323 (17)0.0315 (16)0.0122 (15)0.0023 (14)0.0029 (13)
C390.0365 (18)0.0407 (19)0.0273 (16)0.0099 (15)0.0043 (14)0.0012 (14)
O400.0288 (12)0.0489 (14)0.0304 (12)0.0003 (11)0.0034 (9)0.0052 (11)
C410.0294 (17)0.055 (2)0.044 (2)0.0014 (17)0.0054 (15)0.0014 (17)
O420.0264 (11)0.0151 (9)0.0304 (11)0.0044 (8)0.0008 (9)0.0043 (8)
C430.0410 (18)0.0231 (15)0.0248 (15)0.0055 (14)0.0005 (14)0.0067 (12)
C440.051 (2)0.0250 (16)0.0336 (17)0.0065 (15)0.0033 (16)0.0062 (13)
C450.057 (2)0.044 (2)0.043 (2)0.0039 (19)0.0128 (19)0.0030 (17)
O460.0336 (12)0.0146 (10)0.0302 (11)0.0038 (9)0.0051 (9)0.0006 (8)
O1O0.0209 (10)0.0170 (10)0.0662 (16)0.0015 (8)0.0043 (10)0.0062 (10)
C2O0.0180 (13)0.0163 (13)0.0364 (16)0.0010 (11)0.0023 (12)0.0000 (12)
O3O0.0223 (11)0.0216 (11)0.097 (2)0.0050 (9)0.0067 (13)0.0051 (13)
C4O0.0189 (13)0.0140 (12)0.0319 (15)0.0007 (10)0.0010 (11)0.0021 (11)
O5O0.0284 (11)0.0259 (11)0.0422 (13)0.0028 (9)0.0019 (10)0.0087 (10)
O6O0.0174 (10)0.0288 (11)0.0482 (14)0.0057 (9)0.0007 (10)0.0111 (10)
Geometric parameters (Å, º) top
O1—C131.378 (3)C24—H24B0.9900
O1—C21.473 (3)O25—C261.380 (5)
C2—C31.529 (4)C26—C271.492 (6)
C2—C111.553 (4)C26—H26A0.9900
C2—H21.0000C26—H26B0.9900
C3—O191.425 (4)C27—O281.411 (5)
C3—C41.519 (4)C27—H27A0.9900
C3—H31.0000C27—H27B0.9900
C4—C51.542 (4)O28—C291.377 (7)
C4—H4A0.9900C29—C301.447 (9)
C4—H4B0.9900C29—H29A0.9900
C5—C61.537 (4)C29—H29B0.9900
C5—H5A0.9900C30—O311.405 (7)
C5—H5B0.9900C30—H30A0.9900
C6—O421.431 (3)C30—H30B0.9900
C6—C111.534 (4)O31—C321.412 (5)
C6—C71.560 (4)C32—C331.499 (5)
C7—N81.514 (4)C32—H32A0.9900
C7—C181.543 (4)C32—H32B0.9900
C7—H71.0000C33—O341.408 (4)
N8—C91.505 (4)C33—H33A0.9900
N8—C431.512 (4)C33—H33B0.9900
N8—H80.879 (14)C35—O341.418 (4)
C9—C101.515 (4)C35—C361.492 (5)
C9—H9A0.9900C35—H35A0.9900
C9—H9B0.9900C35—H35B0.9900
C10—C111.531 (4)C36—O371.425 (4)
C10—H10A0.9900C36—H36A0.9900
C10—H10B0.9900C36—H36B0.9900
C11—C121.509 (4)O37—C381.420 (4)
C12—C131.368 (4)C38—C391.492 (5)
C12—C171.379 (4)C38—H38A0.9900
C13—C141.396 (4)C38—H38B0.9900
C14—O461.367 (3)C39—O401.424 (4)
C14—C151.391 (4)C39—H39A0.9900
C15—C161.396 (4)C39—H39B0.9900
C15—H150.9500O40—C411.420 (5)
C16—C171.400 (4)C41—H41A0.9800
C16—H160.9500C41—H41B0.9800
C17—C181.506 (4)C41—H41C0.9800
C18—H18A0.9900O42—H420.839 (14)
C18—H18B0.9900C43—C441.491 (5)
O19—C201.417 (4)C43—H43A0.9900
C20—C211.503 (5)C43—H43B0.9900
C20—H20A0.9900C44—C451.312 (6)
C20—H20B0.9900C44—H440.9500
C21—O221.398 (5)C45—H45A0.9500
C21—H21A0.9900C45—H45B0.9500
C21—H21B0.9900O46—H460.842 (14)
O22—C231.444 (5)O1O—C2O1.263 (4)
C23—C241.452 (7)C2O—O3O1.225 (4)
C23—H23A0.9900C2O—C4O1.538 (4)
C23—H23B0.9900C4O—O5O1.219 (4)
C24—O251.396 (5)C4O—O6O1.298 (4)
C24—H24A0.9900O6O—H6O0.848 (14)
C13—O1—C2106.4 (2)O22—C23—H23B109.3
O1—C2—C3110.3 (2)C24—C23—H23B109.3
O1—C2—C11106.2 (2)H23A—C23—H23B107.9
C3—C2—C11111.9 (2)O25—C24—C23114.0 (4)
O1—C2—H2109.5O25—C24—H24A108.7
C3—C2—H2109.5C23—C24—H24A108.7
C11—C2—H2109.5O25—C24—H24B108.7
O19—C3—C4108.1 (2)C23—C24—H24B108.7
O19—C3—C2112.2 (2)H24A—C24—H24B107.6
C4—C3—C2110.8 (2)C26—O25—C24114.8 (3)
O19—C3—H3108.5O25—C26—C27111.8 (3)
C4—C3—H3108.5O25—C26—H26A109.3
C2—C3—H3108.5C27—C26—H26A109.3
C3—C4—C5112.3 (2)O25—C26—H26B109.3
C3—C4—H4A109.1C27—C26—H26B109.3
C5—C4—H4A109.1H26A—C26—H26B107.9
C3—C4—H4B109.1O28—C27—C26113.1 (3)
C5—C4—H4B109.1O28—C27—H27A109.0
H4A—C4—H4B107.9C26—C27—H27A109.0
C6—C5—C4114.5 (2)O28—C27—H27B109.0
C6—C5—H5A108.6C26—C27—H27B109.0
C4—C5—H5A108.6H27A—C27—H27B107.8
C6—C5—H5B108.6C29—O28—C27118.3 (4)
C4—C5—H5B108.6O28—C29—C30118.3 (5)
H5A—C5—H5B107.6O28—C29—H29A107.7
O42—C6—C11108.1 (2)C30—C29—H29A107.7
O42—C6—C5111.3 (2)O28—C29—H29B107.7
C11—C6—C5112.0 (2)C30—C29—H29B107.7
O42—C6—C7107.7 (2)H29A—C29—H29B107.1
C11—C6—C7106.6 (2)O31—C30—C29122.4 (6)
C5—C6—C7110.9 (2)O31—C30—H30A106.7
N8—C7—C18112.2 (2)C29—C30—H30A106.7
N8—C7—C6106.7 (2)O31—C30—H30B106.7
C18—C7—C6114.9 (2)C29—C30—H30B106.7
N8—C7—H7107.6H30A—C30—H30B106.6
C18—C7—H7107.6C30—O31—C32119.2 (4)
C6—C7—H7107.6O31—C32—C33113.6 (3)
C9—N8—C43109.4 (2)O31—C32—H32A108.8
C9—N8—C7111.1 (2)C33—C32—H32A108.8
C43—N8—C7115.2 (2)O31—C32—H32B108.8
C9—N8—H8111 (3)C33—C32—H32B108.8
C43—N8—H8103 (3)H32A—C32—H32B107.7
C7—N8—H8107 (3)O34—C33—C32109.6 (3)
N8—C9—C10110.1 (2)O34—C33—H33A109.8
N8—C9—H9A109.6C32—C33—H33A109.8
C10—C9—H9A109.6O34—C33—H33B109.8
N8—C9—H9B109.6C32—C33—H33B109.8
C10—C9—H9B109.6H33A—C33—H33B108.2
H9A—C9—H9B108.2O34—C35—C36108.7 (3)
C9—C10—C11112.1 (2)O34—C35—H35A110.0
C9—C10—H10A109.2C36—C35—H35A110.0
C11—C10—H10A109.2O34—C35—H35B110.0
C9—C10—H10B109.2C36—C35—H35B110.0
C11—C10—H10B109.2H35A—C35—H35B108.3
H10A—C10—H10B107.9C33—O34—C35112.6 (3)
C12—C11—C10112.9 (2)O37—C36—C35109.9 (3)
C12—C11—C6105.0 (2)O37—C36—H36A109.7
C10—C11—C6110.7 (2)C35—C36—H36A109.7
C12—C11—C2100.6 (2)O37—C36—H36B109.7
C10—C11—C2111.1 (2)C35—C36—H36B109.7
C6—C11—C2115.9 (2)H36A—C36—H36B108.2
C13—C12—C17123.5 (3)C38—O37—C36110.8 (3)
C13—C12—C11109.5 (2)O37—C38—C39110.8 (3)
C17—C12—C11126.1 (2)O37—C38—H38A109.5
C12—C13—O1113.2 (2)C39—C38—H38A109.5
C12—C13—C14121.0 (3)O37—C38—H38B109.5
O1—C13—C14125.6 (3)C39—C38—H38B109.5
O46—C14—C15123.8 (2)H38A—C38—H38B108.1
O46—C14—C13120.2 (3)O40—C39—C38109.9 (3)
C15—C14—C13116.0 (3)O40—C39—H39A109.7
C14—C15—C16122.8 (3)C38—C39—H39A109.7
C14—C15—H15118.6O40—C39—H39B109.7
C16—C15—H15118.6C38—C39—H39B109.7
C15—C16—C17120.0 (3)H39A—C39—H39B108.2
C15—C16—H16120.0C41—O40—C39111.0 (3)
C17—C16—H16120.0O40—C41—H41A109.5
C12—C17—C16116.4 (3)O40—C41—H41B109.5
C12—C17—C18119.7 (2)H41A—C41—H41B109.5
C16—C17—C18123.5 (3)O40—C41—H41C109.5
C17—C18—C7113.4 (2)H41A—C41—H41C109.5
C17—C18—H18A108.9H41B—C41—H41C109.5
C7—C18—H18A108.9C6—O42—H42108 (3)
C17—C18—H18B108.9C44—C43—N8113.9 (3)
C7—C18—H18B108.9C44—C43—H43A108.8
H18A—C18—H18B107.7N8—C43—H43A108.8
C20—O19—C3113.8 (2)C44—C43—H43B108.8
O19—C20—C21109.4 (3)N8—C43—H43B108.8
O19—C20—H20A109.8H43A—C43—H43B107.7
C21—C20—H20A109.8C45—C44—C43122.6 (4)
O19—C20—H20B109.8C45—C44—H44118.7
C21—C20—H20B109.8C43—C44—H44118.7
H20A—C20—H20B108.2C44—C45—H45A120.0
O22—C21—C20110.9 (3)C44—C45—H45B120.0
O22—C21—H21A109.5H45A—C45—H45B120.0
C20—C21—H21A109.5C14—O46—H46106 (3)
O22—C21—H21B109.5O3O—C2O—O1O126.7 (3)
C20—C21—H21B109.5O3O—C2O—C4O116.4 (3)
H21A—C21—H21B108.1O1O—C2O—C4O116.9 (2)
C21—O22—C23109.6 (3)O5O—C4O—O6O125.6 (3)
O22—C23—C24111.8 (4)O5O—C4O—C2O120.5 (3)
O22—C23—H23A109.3O6O—C4O—C2O113.8 (3)
C24—C23—H23A109.3C4O—O6O—H6O114 (4)
C13—O1—C2—C3102.0 (2)C17—C12—C13—C146.1 (4)
C13—O1—C2—C1119.4 (3)C11—C12—C13—C14175.8 (3)
O1—C2—C3—O1947.5 (3)C2—O1—C13—C1212.2 (3)
C11—C2—C3—O19165.5 (2)C2—O1—C13—C14162.7 (3)
O1—C2—C3—C473.5 (3)C12—C13—C14—O46177.2 (3)
C11—C2—C3—C444.5 (3)O1—C13—C14—O468.3 (4)
O19—C3—C4—C5173.9 (2)C12—C13—C14—C153.0 (4)
C2—C3—C4—C562.7 (3)O1—C13—C14—C15171.5 (3)
C3—C4—C5—C622.0 (3)O46—C14—C15—C16179.2 (3)
C4—C5—C6—O4288.8 (3)C13—C14—C15—C160.6 (4)
C4—C5—C6—C1132.4 (3)C14—C15—C16—C171.4 (4)
C4—C5—C6—C7151.3 (2)C13—C12—C17—C165.0 (4)
O42—C6—C7—N851.1 (3)C11—C12—C17—C16173.0 (3)
C11—C6—C7—N864.7 (3)C13—C12—C17—C18167.3 (3)
C5—C6—C7—N8173.2 (2)C11—C12—C17—C180.6 (4)
O42—C6—C7—C18176.1 (2)C15—C16—C17—C121.3 (4)
C11—C6—C7—C1860.3 (3)C15—C16—C17—C18170.8 (3)
C5—C6—C7—C1861.9 (3)C12—C17—C18—C76.4 (4)
C18—C7—N8—C961.4 (3)C16—C17—C18—C7165.4 (3)
C6—C7—N8—C965.2 (3)N8—C7—C18—C1797.9 (3)
C18—C7—N8—C4363.7 (3)C6—C7—C18—C1724.1 (3)
C6—C7—N8—C43169.7 (2)C4—C3—O19—C20157.5 (3)
C43—N8—C9—C10173.1 (2)C2—C3—O19—C2080.0 (3)
C7—N8—C9—C1058.6 (3)C3—O19—C20—C21179.4 (3)
N8—C9—C10—C1152.4 (3)O19—C20—C21—O2269.0 (4)
C9—C10—C11—C1262.4 (3)C20—C21—O22—C23177.0 (3)
C9—C10—C11—C655.1 (3)C21—O22—C23—C24177.9 (4)
C9—C10—C11—C2174.6 (2)O22—C23—C24—O2569.9 (6)
O42—C6—C11—C12177.3 (2)C23—C24—O25—C26136.1 (5)
C5—C6—C11—C1259.7 (3)C24—O25—C26—C27173.2 (5)
C7—C6—C11—C1261.8 (3)O25—C26—C27—O28177.6 (4)
O42—C6—C11—C1055.1 (3)C26—C27—O28—C2978.4 (5)
C5—C6—C11—C10178.1 (2)C27—O28—C29—C3081.2 (7)
C7—C6—C11—C1060.4 (3)O28—C29—C30—O3170.5 (8)
O42—C6—C11—C272.6 (3)C29—C30—O31—C3260.2 (8)
C5—C6—C11—C250.4 (3)C30—O31—C32—C3380.4 (5)
C7—C6—C11—C2171.8 (2)O31—C32—C33—O3474.8 (4)
O1—C2—C11—C1218.8 (3)C32—C33—O34—C35178.3 (3)
C3—C2—C11—C12101.6 (3)C36—C35—O34—C33177.8 (3)
O1—C2—C11—C10101.0 (3)O34—C35—C36—O3768.8 (4)
C3—C2—C11—C10138.6 (2)C35—C36—O37—C38174.7 (3)
O1—C2—C11—C6131.4 (2)C36—O37—C38—C39176.6 (3)
C3—C2—C11—C611.0 (3)O37—C38—C39—O4070.0 (3)
C10—C11—C12—C13106.3 (3)C38—C39—O40—C41169.8 (3)
C6—C11—C12—C13132.9 (2)C9—N8—C43—C44177.1 (3)
C2—C11—C12—C1312.2 (3)C7—N8—C43—C4451.1 (3)
C10—C11—C12—C1784.4 (3)N8—C43—C44—C45133.6 (4)
C6—C11—C12—C1736.4 (4)O3O—C2O—C4O—O5O35.8 (5)
C2—C11—C12—C17157.2 (3)O1O—C2O—C4O—O5O143.3 (3)
C17—C12—C13—O1169.0 (2)O3O—C2O—C4O—O6O143.1 (3)
C11—C12—C13—O10.7 (3)O1O—C2O—C4O—O6O37.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O1Oi0.88 (1)2.23 (3)2.911 (3)134 (3)
O42—H42···O3Oii0.84 (1)2.12 (2)2.906 (3)157 (4)
O46—H46···O5O0.84 (1)2.09 (3)2.853 (3)151 (5)
O6O—H6O···O1Oiii0.85 (1)1.69 (2)2.536 (3)173 (6)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z+1; (iii) x1/2, y+3/2, z+1.
 

Acknowledgements

We thank Professor V. Kahlenberg for providing access to the X-ray diffractometer used in this study.

References

First citationArunasalam, V.-C., Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., Miller, S. A. S., Mingos, D. M. P. & Otway, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1331–1336.  CSD CrossRef Web of Science Google Scholar
First citationÅslund, B. L., Aurell, C. J., Bohlin, M. H., Healy, E. T., Jensen, D. R., Jonaitis, D. T., Parent, S., Sebhatu, T. & Ymén, B. I. (2012). Patent WO2012044243.  Google Scholar
First citationBaburin, I. A. & Blatov, V. A. (2007). Acta Cryst. B63, 791–802.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34, 1384–1394.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlatov, V. A. (2006). IUCr Compcomm Newsletter, 7, 4–38.  Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHursthouse, M. B., Hughes, D. S., Gelbrich, T. & Threlfall, T. L. (2015). Chem. Cent. J. 9, 1.  Web of Science CrossRef PubMed Google Scholar
First citationKarle, I. L. (1974). Acta Cryst. B30, 1682–1686.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKlein, C. L., Majeste, R. J. & Stevens, E. D. (1987). J. Am. Chem. Soc. 109, 6675–6681.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarkley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E. & Wüthrich, K. (1998). Eur. J. Biochem. 256, 1–15.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSime, R. L., Forehand, R. & Sime, R. J. (1975). Acta Cryst. B31, 2326–2330.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimoto, K., Dinnebier, R. E. & Zakrzewski, M. (2007). J. Pharm. Sci. 96, 3316–3323.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWei, Y. Y., Tinant, B., Declercq, J.-P., Van Meerssche, M. & Dale, J. (1987). Acta Cryst. C43, 1279–1281.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds