research communications
Synthesis and crystal structures of 2-bromo-1,3-dimethylimidazolium iodides
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80–82, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: lampl.martin@uibk.ac.at
Attempts at direct bromination of 1,3-dimethylimidazolium salts were futile. The title compounds, 2-bromo-1,3-dimethylimidazolium iodide chloroform 0.33-solvate, C5H8BrN2+·I−·0.33CHCl3, 2-bromo-1,3-dimethylimidazolium iodide dichloromethane hemisolvate, C5H8BrN2+·I−·0.5CH2Cl2, and 2-bromo-1,3-dimethylimidazolium iodide hemi(diiodide), C5H8BrN2+·I−·0.5I2, were obtained by methylation of 2-bromo-1-methylimidazole. They crystallized as CHCl3, CH2Cl2 or I2 solvates/adducts. The Br atom acts as a σ-hole to accept short C—Br⋯I interactions. C—H⋯I hydrogen bonds are observed in each structure.
Keywords: crystal structure; bromo; chloroform; dichloromethane; imidazole; iodide.
1. Chemical context
Salts containing 2-bromo-1,3-dimethylimidazolium (C5H8N2Br+) cations are the objective of this work. They are presumed to be valuable precursors for substitution reactions. This cation, despite its simplicity, has not yet been described. Since brominations in the 1,3-dimethoxyimidazolium series (Laus et al., 2007) and also bromination of 1-hydroxyimidazole-3-oxide (Laus et al., 2012) gave the respective 2-bromo derivatives, we hoped that in the present case bromination would also yield the desired 2-bromoimidazolium salts. However, on attempted bromination of 1,3-dimethylimidazolium hexafluoridophosphate (Holbrey et al., 2002), no substitution occurred in the 2-position as indicated by NMR. The absence of P—F vibrations in the infrared spectra suggested the formation of a different anion, which was confirmed by X-ray diffraction. Though direct bromination of the quaternary salt did not yield the desired product, it was discovered that an altered sequence of reaction was successful. Thus, the reaction between the 2-lithio derivative of 1-methylimidazole and an equimolar amount of CBr4 (Boga et al., 2000) or Br2 (El Borai et al., 1981) gave 2-bromo-1-methylimidazole in good yield, followed by methylation using MeI to afford the desired quaternary salt as an iodide.
Now that the elusive title cation has been secured, further modifications are envisioned, giving access to a plethora of new 2-substituted imidazolium derivatives.
2. Structural commentary
The 2-bromo-1,3-dimethylimidazolium cations and iodide counter-ions crystallize as a CHCl3 1/3-solvate (1) (Fig. 1), a CH2Cl2 monosolvate (2) (Fig. 2) and an I2 adduct (3) (Fig. 3). In every case, the cation is almost planar. In the of 1, there are one and a half ion pairs, which are completed by mirror symmetry; the chloroform molecule also lies on a crystallographic mirror plane. In 2, there are two cations, two anions and two half-molecules of dichloromethane (both completed by crystallographic twofold symmetry) in the In 3, the iodine molecule is generated by crystallographic inversion symmetry.
3. Supramolecular features
Halogen–halogen interactions constitute the main supramolecular features of the three compounds. The cations in 1 are arranged in a tridimensional array of chains by C—H⋯I1 interactions. The chloroform molecule bridges these chains by C—H7⋯Cl1 and C—H9⋯I2 hydrogen bonds (Table 1). Interhalogen Br1⋯I2(x, y, −1 + z) [3.544 (1) Å] and Br2⋯I2 [3.546 (2) Å] contacts complete the network (Fig. 4). The respective C—Br⋯I angles are 173.4 (2) and 173.6 (3)°, indicating an interaction involving the positive end cap (σ-hole) of the terminal Br atom (Awwadi et al., 2006; Clark et al., 2007).
This type of interaction is also identified in the structures of compounds 2 and 3. In the dichloromethane solvate 2, almost linear halogen interactions Br1⋯I1 [3.483 (1) Å] and Br2⋯I2 [3.411 (1) Å] exhibit C—Br⋯I angles of 173.7 (1) and 176.7 (1)°, respectively (Fig. 5). The I1 and I2 anions are linked by hydrogen bonds donated by the solvent molecules (Table 2).
|
In 3, a molecular addition compound with iodine (Fig. 6), interactions I1⋯I2 [3.426 (1) Å] and I2—I2 [related by inversion, bond length 2.826 (1) Å] are present. The I1⋯Br(1 + x, y, z) [3.499 (1) Å] interaction displays a C—Br⋯I angle of 168.0 (2)° (Fig. 6) and the iodide anion (I1) accepts a hydrogen bond from the methyl group (Table 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) for 2-halogeno-1,3-dialkyl or diarylimidazolium salts gave 30 hits. When carbon substituents were allowed in positions 4 and 5, the tally was 34. Of these 64 compounds, there were 11 containing chlorine, 19 bromine and 33 iodine. Closely related imidazolin-2-ylidene–iodine (Kuhn et al., 1993) and imidazolin-2-ylidene–bromine (Kuhn et al., 2004) coordination compounds have been reported.
5. Synthesis and crystallization
Compound 1: A solution of 2-bromo-1-methylimidazole (150 µl, 1.54 mmol) in CHCl3 (1 ml) was carefully layered over a solution of CH3I (190 µl, 3.07 mmol) in CHCl3 (2 ml). The mixture was kept at room temperature and protected from light. After 2 h, the formation of colourless crystals of 1 was observed. The product was collected after seven days at 278 K, yielding 252 mg (48%); m.p. 453 K (decomposition). 1H NMR (300 MHz, DMSO-d6): δ 3.81 (s, 6H), 7.90 (s, 2H), 8.31 (s) ppm. 13C NMR (75 MHz, DMSO-d6): δ 36.8 (2C), 79.3, 123.5, 124.5 (2C) ppm. IR (neat): ν 3066, 2931, 1521, 1240, 1098, 765, 738, 652, 635 cm−1.
Compound 2: A solution of 2-bromo-1-methylimidazole (150 µl, 1.54 mmol) in CH2Cl2 (1 ml) was carefully layered over a solution of CH3I (190 µl, 3.07 mmol) in CH2Cl2 (2 ml). The mixture was kept at room temperature and protected from light. After 2 h, the formation of colourless crystals of 2 was observed. The product was collected after 18 h, yielding 145 mg (27%); m.p. 452–453 K (decomposition). 1H NMR (300 MHz, DMSO-d6): δ 3.81 (s, 6H), 5.75, 7.90 (s, 2H) ppm. 13C NMR (75 MHz, DMSO-d6): δ 36.8 (2C), 55.0, 123.3, 124.7 (2C) ppm. IR (neat): ν 3066, 3011, 2944, 1523, 1240, 1101, 779, 728, 696, 635 cm−1.
Compound 3: The I2 adduct was obtained as a byproduct of 1 and 2 in the form of brown crystals of 3; approximate yield 10%; m.p. 451 K (decomposition). 1H NMR (300 MHz, DMSO-d6): δ 3.81 (s, 6H), 7.89 (d, 2H) ppm IR (neat): ν 3063, 1523, 1226, 739, 634 cm−1.
6. Refinement
Crystal data, data collection and structure . All H atoms were poisitioned geometrically (C—H = 0.95–1.0 Å) and treated as riding with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989018003390/hb7718sup1.cif
contains datablocks 1, 2, 3, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018003390/hb77181sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018003390/hb77182sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989018003390/hb77183sup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77181sup5.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77182sup6.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77183sup7.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77181sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77182sup9.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003390/hb77183sup10.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2014) for (1); APEX2 (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Cell
CrysAlis PRO (Oxford Diffraction, 2014) for (1); SAINT (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Data reduction: CrysAlis PRO (Oxford Diffraction, 2014) for (1); SAINT (Bruker, 2014) for (2); CrysAlis PRO (Oxford Diffraction, 2014). for (3). Program(s) used to solve structure: SIR2002 (Burla et al., 2003) for (1), (3); SHELXTL (Sheldrick, 2008) for (2). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015) for (1), (3); SHELXL2014 (Sheldrick, 2015) for (2). For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).3C5H8BrN2+·3I−·CHCl3 | F(000) = 956 |
Mr = 1028.20 | Dx = 2.208 Mg m−3 |
Monoclinic, Cm | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9135 (14) Å | Cell parameters from 3263 reflections |
b = 21.9492 (10) Å | θ = 3.3–28.4° |
c = 6.4529 (6) Å | µ = 7.18 mm−1 |
β = 128.314 (16)° | T = 173 K |
V = 1546.2 (3) Å3 | Prismatic, colourless |
Z = 2 | 0.26 × 0.14 × 0.06 mm |
Gemini-R Ultra diffractometer | 2426 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.026 |
ω scans | θmax = 25.3°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2014) | h = −16→13 |
Tmin = 0.427, Tmax = 1 | k = −22→26 |
4904 measured reflections | l = −7→7 |
2522 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0049P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.035 | (Δ/σ)max < 0.001 |
S = 0.95 | Δρmax = 0.41 e Å−3 |
2522 reflections | Δρmin = −0.43 e Å−3 |
151 parameters | Absolute structure: Flack x determined using 961 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.038 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.12194 (6) | 0.39565 (3) | −0.07927 (14) | 0.03269 (15) | |
C2 | 0.0731 (6) | 0.2987 (3) | 0.3714 (13) | 0.0354 (15) | |
H2 | 0.100922 | 0.279634 | 0.532098 | 0.042* | |
C3 | −0.0414 (6) | 0.2992 (3) | 0.1483 (14) | 0.0353 (16) | |
H3 | −0.110268 | 0.280970 | 0.121251 | 0.042* | |
C1 | 0.0731 (5) | 0.3488 (2) | 0.0790 (11) | 0.0246 (14) | |
N1 | 0.1435 (4) | 0.3305 (2) | 0.3284 (9) | 0.0284 (11) | |
C4 | 0.2778 (6) | 0.3372 (3) | 0.5169 (14) | 0.0405 (17) | |
H4A | 0.313345 | 0.325857 | 0.430407 | 0.061* | |
H4B | 0.310751 | 0.310582 | 0.669397 | 0.061* | |
H4C | 0.298588 | 0.379637 | 0.576266 | 0.061* | |
N2 | −0.0420 (4) | 0.3308 (2) | −0.0364 (10) | 0.0283 (12) | |
C5 | −0.1452 (5) | 0.3358 (3) | −0.3220 (12) | 0.0353 (15) | |
H5A | −0.144701 | 0.376365 | −0.385102 | 0.053* | |
H5B | −0.222661 | 0.329753 | −0.351574 | 0.053* | |
H5C | −0.136654 | 0.304732 | −0.418510 | 0.053* | |
I1 | 0.62590 (4) | 0.29885 (2) | 0.94514 (6) | 0.02823 (10) | |
I2 | 0.21304 (5) | 0.500000 | 0.65285 (9) | 0.02890 (13) | |
Br2 | 0.40367 (7) | 0.500000 | 0.46275 (15) | 0.0313 (2) | |
C8 | 0.4948 (7) | 0.6124 (3) | 0.2888 (14) | 0.0462 (18) | |
H8A | 0.405961 | 0.618288 | 0.177487 | 0.069* | |
H8B | 0.529339 | 0.639748 | 0.230124 | 0.069* | |
H8C | 0.531481 | 0.621371 | 0.472955 | 0.069* | |
N3 | 0.5211 (4) | 0.5494 (2) | 0.2675 (9) | 0.0315 (12) | |
C6 | 0.4874 (7) | 0.500000 | 0.3242 (15) | 0.0269 (19) | |
C7 | 0.5758 (6) | 0.5305 (3) | 0.1602 (12) | 0.0399 (16) | |
H7 | 0.607822 | 0.556086 | 0.097268 | 0.048* | |
C9 | 0.8764 (8) | 0.500000 | 0.0794 (19) | 0.038 (2) | |
H9 | 0.962304 | 0.500000 | 0.247965 | 0.045* | |
Cl1 | 0.8016 (2) | 0.43407 (7) | 0.0686 (5) | 0.0569 (5) | |
Cl2 | 0.8806 (3) | 0.500000 | −0.1852 (6) | 0.0636 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0383 (3) | 0.0293 (3) | 0.0368 (3) | −0.0004 (3) | 0.0265 (3) | 0.0013 (3) |
C2 | 0.052 (4) | 0.032 (3) | 0.033 (4) | 0.001 (3) | 0.031 (4) | −0.001 (3) |
C3 | 0.046 (4) | 0.031 (4) | 0.050 (4) | 0.002 (3) | 0.040 (4) | 0.003 (3) |
C1 | 0.029 (3) | 0.019 (3) | 0.023 (3) | 0.003 (3) | 0.015 (3) | −0.003 (3) |
N1 | 0.032 (3) | 0.025 (3) | 0.026 (3) | 0.003 (2) | 0.017 (2) | −0.003 (2) |
C4 | 0.043 (4) | 0.032 (3) | 0.038 (4) | 0.006 (3) | 0.021 (4) | 0.002 (3) |
N2 | 0.028 (3) | 0.024 (3) | 0.035 (3) | 0.002 (2) | 0.021 (2) | −0.001 (2) |
C5 | 0.022 (3) | 0.033 (3) | 0.031 (4) | 0.003 (3) | 0.007 (3) | 0.005 (3) |
I1 | 0.03254 (19) | 0.02663 (18) | 0.0289 (2) | −0.00359 (18) | 0.02071 (17) | 0.00012 (18) |
I2 | 0.0286 (3) | 0.0344 (3) | 0.0280 (3) | 0.000 | 0.0196 (3) | 0.000 |
Br2 | 0.0373 (5) | 0.0385 (5) | 0.0292 (5) | 0.000 | 0.0262 (4) | 0.000 |
C8 | 0.059 (5) | 0.044 (4) | 0.052 (5) | −0.021 (3) | 0.043 (4) | −0.015 (3) |
N3 | 0.028 (3) | 0.045 (3) | 0.023 (3) | −0.011 (2) | 0.016 (2) | −0.005 (2) |
C6 | 0.021 (4) | 0.044 (5) | 0.018 (4) | 0.000 | 0.013 (4) | 0.000 |
C7 | 0.031 (3) | 0.064 (4) | 0.031 (4) | −0.008 (3) | 0.022 (3) | −0.004 (3) |
C9 | 0.034 (5) | 0.031 (5) | 0.053 (6) | 0.000 | 0.030 (5) | 0.000 |
Cl1 | 0.0748 (12) | 0.0285 (7) | 0.1059 (15) | 0.0015 (10) | 0.0751 (12) | 0.0040 (11) |
Cl2 | 0.102 (2) | 0.0363 (14) | 0.097 (2) | 0.000 | 0.084 (2) | 0.000 |
Br1—C1 | 1.850 (6) | C5—H5C | 0.9800 |
C2—C3 | 1.329 (9) | Br2—C6 | 1.857 (8) |
C2—N1 | 1.364 (8) | C8—N3 | 1.457 (8) |
C2—H2 | 0.9500 | C8—H8A | 0.9800 |
C3—N2 | 1.374 (8) | C8—H8B | 0.9800 |
C3—H3 | 0.9500 | C8—H8C | 0.9800 |
C1—N1 | 1.325 (7) | N3—C6 | 1.321 (6) |
C1—N2 | 1.340 (7) | N3—C7 | 1.372 (7) |
N1—C4 | 1.475 (8) | C7—C7i | 1.340 (13) |
C4—H4A | 0.9800 | C7—H7 | 0.9500 |
C4—H4B | 0.9800 | C9—Cl2 | 1.744 (9) |
C4—H4C | 0.9800 | C9—Cl1i | 1.759 (5) |
N2—C5 | 1.480 (8) | C9—Cl1 | 1.759 (5) |
C5—H5A | 0.9800 | C9—H9 | 1.0000 |
C5—H5B | 0.9800 | ||
C3—C2—N1 | 107.7 (6) | N2—C5—H5C | 109.5 |
C3—C2—H2 | 126.1 | H5A—C5—H5C | 109.5 |
N1—C2—H2 | 126.1 | H5B—C5—H5C | 109.5 |
C2—C3—N2 | 107.6 (6) | N3—C8—H8A | 109.5 |
C2—C3—H3 | 126.2 | N3—C8—H8B | 109.5 |
N2—C3—H3 | 126.2 | H8A—C8—H8B | 109.5 |
N1—C1—N2 | 108.3 (5) | N3—C8—H8C | 109.5 |
N1—C1—Br1 | 126.2 (4) | H8A—C8—H8C | 109.5 |
N2—C1—Br1 | 125.3 (4) | H8B—C8—H8C | 109.5 |
C1—N1—C2 | 108.6 (5) | C6—N3—C7 | 107.1 (5) |
C1—N1—C4 | 125.2 (5) | C6—N3—C8 | 126.8 (5) |
C2—N1—C4 | 125.8 (5) | C7—N3—C8 | 125.8 (5) |
N1—C4—H4A | 109.5 | N3i—C6—N3 | 110.5 (7) |
N1—C4—H4B | 109.5 | N3i—C6—Br2 | 124.8 (4) |
H4A—C4—H4B | 109.5 | N3—C6—Br2 | 124.8 (4) |
N1—C4—H4C | 109.5 | C7i—C7—N3 | 107.6 (4) |
H4A—C4—H4C | 109.5 | C7i—C7—H7 | 126.2 |
H4B—C4—H4C | 109.5 | N3—C7—H7 | 126.2 |
C1—N2—C3 | 107.7 (5) | Cl2—C9—Cl1i | 109.8 (4) |
C1—N2—C5 | 125.0 (5) | Cl2—C9—Cl1 | 109.8 (4) |
C3—N2—C5 | 126.6 (5) | Cl1i—C9—Cl1 | 110.8 (5) |
N2—C5—H5A | 109.5 | Cl2—C9—H9 | 108.8 |
N2—C5—H5B | 109.5 | Cl1i—C9—H9 | 108.8 |
H5A—C5—H5B | 109.5 | Cl1—C9—H9 | 108.8 |
N1—C2—C3—N2 | 0.8 (7) | Br1—C1—N2—C5 | 11.5 (8) |
N2—C1—N1—C2 | 1.8 (6) | C2—C3—N2—C1 | 0.3 (7) |
Br1—C1—N1—C2 | 178.1 (4) | C2—C3—N2—C5 | 171.0 (5) |
N2—C1—N1—C4 | 175.1 (5) | C7—N3—C6—N3i | 2.1 (8) |
Br1—C1—N1—C4 | −8.6 (8) | C8—N3—C6—N3i | 176.4 (4) |
C3—C2—N1—C1 | −1.6 (7) | C7—N3—C6—Br2 | −177.6 (5) |
C3—C2—N1—C4 | −174.9 (6) | C8—N3—C6—Br2 | −3.3 (10) |
N1—C1—N2—C3 | −1.3 (6) | C6—N3—C7—C7i | −1.3 (5) |
Br1—C1—N2—C3 | −177.6 (4) | C8—N3—C7—C7i | −175.7 (5) |
N1—C1—N2—C5 | −172.2 (5) |
Symmetry code: (i) x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cl1i | 0.95 | 2.82 | 3.623 (7) | 142 |
C8—H8C···I1i | 0.98 | 3.02 | 3.935 (6) | 156 |
C9—H9···I2ii | 1.00 | 2.77 | 3.760 (8) | 169 |
C2—H2···I1iii | 0.95 | 3.01 | 3.932 (6) | 165 |
C3—H3···I1iv | 0.95 | 3.12 | 3.952 (9) | 147 |
Symmetry codes: (i) x, −y+1, z; (ii) x+1, y, z; (iii) x−1/2, −y+1/2, z; (iv) x−1, y, z−1. |
2C5H8BrN2+·2I−·CH2Cl2 | F(000) = 1288 |
Mr = 690.79 | Dx = 2.103 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
a = 16.0223 (8) Å | Cell parameters from 9539 reflections |
b = 8.5334 (4) Å | θ = 2.5–26.8° |
c = 16.2881 (8) Å | µ = 6.79 mm−1 |
β = 101.590 (1)° | T = 193 K |
V = 2181.58 (18) Å3 | Prism, colourless |
Z = 4 | 0.18 × 0.16 × 0.14 mm |
Quest Photon 100 diffractometer | 4302 independent reflections |
Radiation source: Incoatec Microfocus | 3952 reflections with I > 2σ(I) |
Multi layered optics monochromator | Rint = 0.028 |
Detector resolution: 10.4 pixels mm-1 | θmax = 26.0°, θmin = 2.4° |
φ and ω scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −10→10 |
Tmin = 0.296, Tmax = 0.433 | l = −20→20 |
62055 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0332P)2 + 2.6592P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 1.07 e Å−3 |
4302 reflections | Δρmin = −0.76 e Å−3 |
196 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00234 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 0.67871 (2) | 0.51565 (2) | 0.93259 (2) | 0.03524 (8) | |
I2 | 0.43487 (2) | 1.00139 (2) | 0.67926 (2) | 0.03507 (8) | |
Br1 | 0.58435 (2) | 0.60778 (4) | 0.72654 (2) | 0.04235 (10) | |
Br2 | 0.23431 (2) | 0.90371 (4) | 0.57720 (2) | 0.03775 (10) | |
N1 | 0.44318 (17) | 0.5987 (3) | 0.58815 (16) | 0.0365 (6) | |
N2 | 0.54830 (15) | 0.7333 (3) | 0.55936 (15) | 0.0345 (5) | |
N3 | 0.06441 (15) | 0.7732 (3) | 0.54179 (15) | 0.0344 (5) | |
N4 | 0.09163 (16) | 0.9098 (3) | 0.43839 (16) | 0.0347 (5) | |
C1 | 0.52208 (19) | 0.6502 (4) | 0.61831 (18) | 0.0347 (6) | |
C2 | 0.4178 (2) | 0.6538 (4) | 0.50716 (19) | 0.0387 (7) | |
H2 | 0.3644 | 0.6356 | 0.4708 | 0.046* | |
C3 | 0.4831 (2) | 0.7381 (4) | 0.48965 (19) | 0.0389 (7) | |
H3 | 0.4841 | 0.7913 | 0.4386 | 0.047* | |
C4 | 0.3892 (3) | 0.5077 (5) | 0.6337 (3) | 0.0550 (10) | |
H4A | 0.4211 | 0.4167 | 0.6602 | 0.083* | |
H4B | 0.3382 | 0.4720 | 0.5945 | 0.083* | |
H4C | 0.3724 | 0.5737 | 0.6769 | 0.083* | |
C5 | 0.6292 (2) | 0.8180 (4) | 0.5680 (2) | 0.0494 (8) | |
H5A | 0.6345 | 0.8927 | 0.6145 | 0.074* | |
H5B | 0.6305 | 0.8747 | 0.5160 | 0.074* | |
H5C | 0.6765 | 0.7433 | 0.5793 | 0.074* | |
C6 | 0.12335 (18) | 0.8585 (3) | 0.51581 (19) | 0.0334 (6) | |
C7 | −0.00661 (19) | 0.7668 (4) | 0.4784 (2) | 0.0383 (7) | |
H7 | −0.0580 | 0.7122 | 0.4797 | 0.046* | |
C8 | 0.01002 (19) | 0.8519 (4) | 0.4140 (2) | 0.0387 (7) | |
H8 | −0.0274 | 0.8689 | 0.3617 | 0.046* | |
C9 | 0.0746 (2) | 0.6917 (5) | 0.6219 (2) | 0.0503 (8) | |
H9A | 0.1254 | 0.6251 | 0.6298 | 0.075* | |
H9B | 0.0243 | 0.6266 | 0.6224 | 0.075* | |
H9C | 0.0809 | 0.7686 | 0.6674 | 0.075* | |
C10 | 0.1357 (3) | 1.0097 (5) | 0.3880 (3) | 0.0530 (10) | |
H10A | 0.1510 | 1.1091 | 0.4172 | 0.080* | |
H10B | 0.0982 | 1.0301 | 0.3336 | 0.080* | |
H10C | 0.1875 | 0.9569 | 0.3792 | 0.080* | |
C11 | 0.2500 | 0.2120 (5) | 0.7500 | 0.0409 (10) | |
H11A | 0.2931 | 0.1437 | 0.7324 | 0.049* | 0.5 |
H11B | 0.2069 | 0.1436 | 0.7676 | 0.049* | 0.5 |
Cl1 | 0.29912 (8) | 0.32404 (14) | 0.83510 (8) | 0.0829 (4) | |
C12 | 0.2500 | 0.7005 (5) | 0.2500 | 0.0416 (10) | |
H12A | 0.2689 | 0.6322 | 0.2081 | 0.050* | 0.5 |
H12B | 0.2311 | 0.6322 | 0.2919 | 0.050* | 0.5 |
Cl2 | 0.16400 (7) | 0.81502 (12) | 0.20000 (7) | 0.0695 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03410 (12) | 0.03872 (13) | 0.03155 (12) | 0.00227 (8) | 0.00338 (9) | 0.00373 (7) |
I2 | 0.03022 (12) | 0.04024 (13) | 0.03290 (12) | 0.00221 (7) | 0.00191 (8) | −0.00410 (7) |
Br1 | 0.04481 (19) | 0.04589 (19) | 0.03212 (17) | 0.01593 (14) | −0.00236 (13) | 0.00018 (13) |
Br2 | 0.03094 (16) | 0.04058 (18) | 0.03833 (17) | −0.00138 (12) | −0.00111 (12) | −0.01062 (12) |
N1 | 0.0399 (14) | 0.0358 (14) | 0.0331 (13) | 0.0018 (11) | 0.0057 (11) | −0.0024 (10) |
N2 | 0.0315 (12) | 0.0374 (13) | 0.0331 (13) | 0.0056 (10) | 0.0025 (10) | −0.0051 (11) |
N3 | 0.0320 (13) | 0.0379 (13) | 0.0326 (13) | 0.0021 (10) | 0.0050 (10) | −0.0042 (11) |
N4 | 0.0326 (13) | 0.0356 (13) | 0.0349 (13) | 0.0003 (10) | 0.0046 (10) | −0.0052 (10) |
C1 | 0.0382 (16) | 0.0325 (15) | 0.0317 (15) | 0.0085 (12) | 0.0032 (12) | −0.0038 (12) |
C2 | 0.0384 (16) | 0.0429 (17) | 0.0315 (15) | 0.0033 (14) | −0.0004 (12) | −0.0052 (13) |
C3 | 0.0413 (17) | 0.0454 (18) | 0.0282 (15) | 0.0076 (14) | 0.0026 (12) | −0.0018 (13) |
C4 | 0.058 (2) | 0.057 (2) | 0.051 (2) | −0.0060 (17) | 0.0125 (19) | 0.0077 (17) |
C5 | 0.0364 (17) | 0.054 (2) | 0.055 (2) | −0.0011 (15) | 0.0048 (15) | −0.0014 (17) |
C6 | 0.0317 (14) | 0.0315 (14) | 0.0356 (15) | 0.0037 (12) | 0.0032 (12) | −0.0082 (12) |
C7 | 0.0270 (14) | 0.0438 (18) | 0.0428 (17) | −0.0011 (12) | 0.0039 (12) | −0.0061 (14) |
C8 | 0.0306 (15) | 0.0435 (17) | 0.0383 (16) | 0.0011 (13) | −0.0019 (12) | −0.0042 (14) |
C9 | 0.054 (2) | 0.058 (2) | 0.0390 (18) | −0.0011 (17) | 0.0089 (16) | 0.0067 (16) |
C10 | 0.051 (2) | 0.061 (2) | 0.046 (2) | −0.0109 (17) | 0.0077 (17) | 0.0060 (16) |
C11 | 0.034 (2) | 0.042 (2) | 0.046 (3) | 0.000 | 0.0059 (19) | 0.000 |
Cl1 | 0.0724 (7) | 0.0690 (7) | 0.0889 (8) | 0.0138 (6) | −0.0277 (6) | −0.0346 (6) |
C12 | 0.044 (2) | 0.040 (2) | 0.037 (2) | 0.000 | −0.0023 (19) | 0.000 |
Cl2 | 0.0684 (6) | 0.0583 (6) | 0.0657 (6) | 0.0183 (5) | −0.0249 (5) | −0.0070 (5) |
Br1—C1 | 1.878 (3) | C4—H4C | 0.9800 |
Br2—C6 | 1.896 (3) | C5—H5A | 0.9800 |
N1—C1 | 1.335 (4) | C5—H5B | 0.9800 |
N1—C2 | 1.382 (4) | C5—H5C | 0.9800 |
N1—C4 | 1.469 (5) | C7—C8 | 1.345 (5) |
N2—C1 | 1.328 (4) | C7—H7 | 0.9500 |
N2—C3 | 1.380 (4) | C8—H8 | 0.9500 |
N2—C5 | 1.465 (4) | C9—H9A | 0.9800 |
N3—C6 | 1.327 (4) | C9—H9B | 0.9800 |
N3—C7 | 1.376 (4) | C9—H9C | 0.9800 |
N3—C9 | 1.459 (4) | C10—H10A | 0.9800 |
N4—C6 | 1.335 (4) | C10—H10B | 0.9800 |
N4—C8 | 1.380 (4) | C10—H10C | 0.9800 |
N4—C10 | 1.460 (4) | C11—Cl1 | 1.737 (3) |
C2—C3 | 1.347 (5) | C11—H11A | 0.9900 |
C2—H2 | 0.9500 | C11—H11B | 0.9900 |
C3—H3 | 0.9500 | C12—Cl2 | 1.751 (3) |
C4—H4A | 0.9800 | C12—H12A | 0.9900 |
C4—H4B | 0.9800 | C12—H12B | 0.9900 |
C1—N1—C2 | 108.3 (3) | N3—C6—N4 | 108.7 (3) |
C1—N1—C4 | 126.7 (3) | N3—C6—Br2 | 126.5 (2) |
C2—N1—C4 | 124.8 (3) | N4—C6—Br2 | 124.7 (2) |
C1—N2—C3 | 108.3 (3) | C8—C7—N3 | 107.5 (3) |
C1—N2—C5 | 126.6 (3) | C8—C7—H7 | 126.3 |
C3—N2—C5 | 124.9 (3) | N3—C7—H7 | 126.3 |
C6—N3—C7 | 108.5 (3) | C7—C8—N4 | 107.1 (3) |
C6—N3—C9 | 126.0 (3) | C7—C8—H8 | 126.4 |
C7—N3—C9 | 125.4 (3) | N4—C8—H8 | 126.4 |
C6—N4—C8 | 108.2 (3) | N3—C9—H9A | 109.5 |
C6—N4—C10 | 126.0 (3) | N3—C9—H9B | 109.5 |
C8—N4—C10 | 125.8 (3) | H9A—C9—H9B | 109.5 |
N2—C1—N1 | 108.9 (3) | N3—C9—H9C | 109.5 |
N2—C1—Br1 | 126.6 (2) | H9A—C9—H9C | 109.5 |
N1—C1—Br1 | 124.5 (2) | H9B—C9—H9C | 109.5 |
C3—C2—N1 | 106.9 (3) | N4—C10—H10A | 109.5 |
C3—C2—H2 | 126.5 | N4—C10—H10B | 109.5 |
N1—C2—H2 | 126.5 | H10A—C10—H10B | 109.5 |
C2—C3—N2 | 107.6 (3) | N4—C10—H10C | 109.5 |
C2—C3—H3 | 126.2 | H10A—C10—H10C | 109.5 |
N2—C3—H3 | 126.2 | H10B—C10—H10C | 109.5 |
N1—C4—H4A | 109.5 | Cl1i—C11—Cl1 | 113.2 (3) |
N1—C4—H4B | 109.5 | Cl1i—C11—H11A | 108.9 |
H4A—C4—H4B | 109.5 | Cl1—C11—H11A | 108.9 |
N1—C4—H4C | 109.5 | Cl1i—C11—H11B | 108.9 |
H4A—C4—H4C | 109.5 | Cl1—C11—H11B | 108.9 |
H4B—C4—H4C | 109.5 | H11A—C11—H11B | 107.7 |
N2—C5—H5A | 109.5 | Cl2—C12—Cl2ii | 112.1 (3) |
N2—C5—H5B | 109.5 | Cl2—C12—H12A | 109.2 |
H5A—C5—H5B | 109.5 | Cl2ii—C12—H12A | 109.2 |
N2—C5—H5C | 109.5 | Cl2—C12—H12B | 109.2 |
H5A—C5—H5C | 109.5 | Cl2ii—C12—H12B | 109.2 |
H5B—C5—H5C | 109.5 | H12A—C12—H12B | 107.9 |
C3—N2—C1—N1 | 1.4 (3) | C7—N3—C6—N4 | 1.4 (3) |
C5—N2—C1—N1 | 176.4 (3) | C9—N3—C6—N4 | 177.9 (3) |
C3—N2—C1—Br1 | −179.2 (2) | C7—N3—C6—Br2 | −179.2 (2) |
C5—N2—C1—Br1 | −4.3 (4) | C9—N3—C6—Br2 | −2.6 (4) |
C2—N1—C1—N2 | −1.1 (3) | C8—N4—C6—N3 | −1.2 (3) |
C4—N1—C1—N2 | −177.4 (3) | C10—N4—C6—N3 | 178.9 (3) |
C2—N1—C1—Br1 | 179.5 (2) | C8—N4—C6—Br2 | 179.3 (2) |
C4—N1—C1—Br1 | 3.2 (4) | C10—N4—C6—Br2 | −0.5 (4) |
C1—N1—C2—C3 | 0.3 (3) | C6—N3—C7—C8 | −1.0 (3) |
C4—N1—C2—C3 | 176.7 (3) | C9—N3—C7—C8 | −177.5 (3) |
N1—C2—C3—N2 | 0.5 (3) | N3—C7—C8—N4 | 0.2 (4) |
C1—N2—C3—C2 | −1.2 (3) | C6—N4—C8—C7 | 0.6 (3) |
C5—N2—C3—C2 | −176.2 (3) | C10—N4—C8—C7 | −179.6 (3) |
Symmetry codes: (i) −x+1/2, y, −z+3/2; (ii) −x+1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···I2iii | 0.99 | 2.86 | 3.834 (2) | 169 |
C12—H12A···I1iv | 0.99 | 2.89 | 3.862 (2) | 170 |
Symmetry codes: (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1. |
C5H8BrN2+·I−·0.5I2 | F(000) = 772 |
Mr = 429.83 | Dx = 2.719 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0861 (4) Å | Cell parameters from 3142 reflections |
b = 14.4773 (11) Å | θ = 3.3–27.6° |
c = 12.0303 (7) Å | µ = 9.74 mm−1 |
β = 97.812 (5)° | T = 173 K |
V = 1050.16 (12) Å3 | Lath shaped, red-brown |
Z = 4 | 0.36 × 0.10 × 0.08 mm |
Gemini-R Ultra diffractometer | 1746 reflections with I > 2σ(I) |
ω scans | Rint = 0.030 |
Absorption correction: analytical | θmax = 25.4°, θmin = 3.3° |
Tmin = 0.065, Tmax = 0.446 | h = −6→7 |
6287 measured reflections | k = −17→13 |
1912 independent reflections | l = −14→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0102P)2 + 8.6812P] where P = (Fo2 + 2Fc2)/3 |
S = 1.34 | (Δ/σ)max < 0.001 |
1912 reflections | Δρmax = 0.76 e Å−3 |
93 parameters | Δρmin = −0.97 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.59338 (9) | 0.17085 (4) | 0.05590 (4) | 0.02835 (16) | |
I2 | 0.51595 (9) | 0.40299 (5) | 0.01140 (5) | 0.03726 (18) | |
Br | 0.04393 (13) | 0.28681 (6) | 0.20566 (7) | 0.0274 (2) | |
N2 | 0.4459 (11) | 0.3501 (5) | 0.3339 (5) | 0.0246 (15) | |
N1 | 0.2322 (11) | 0.4618 (5) | 0.2630 (5) | 0.0269 (15) | |
C1 | 0.2538 (13) | 0.3703 (6) | 0.2721 (6) | 0.0236 (17) | |
C4 | 0.0471 (14) | 0.5121 (6) | 0.1973 (7) | 0.034 (2) | |
H4A | 0.076771 | 0.518793 | 0.119610 | 0.051* | |
H4B | 0.032629 | 0.573356 | 0.230131 | 0.051* | |
H4C | −0.090958 | 0.477458 | 0.198377 | 0.051* | |
C3 | 0.5500 (14) | 0.4327 (6) | 0.3649 (7) | 0.031 (2) | |
H3 | 0.690601 | 0.439536 | 0.409197 | 0.037* | |
C5 | 0.5298 (14) | 0.2578 (6) | 0.3667 (7) | 0.0293 (19) | |
H5A | 0.422473 | 0.225817 | 0.406887 | 0.044* | |
H5B | 0.671533 | 0.263396 | 0.415747 | 0.044* | |
H5C | 0.551338 | 0.222595 | 0.299519 | 0.044* | |
C2 | 0.4191 (15) | 0.5011 (6) | 0.3217 (7) | 0.032 (2) | |
H2 | 0.449093 | 0.565310 | 0.329958 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0248 (3) | 0.0341 (3) | 0.0254 (3) | −0.0032 (2) | 0.0007 (2) | 0.0003 (2) |
I2 | 0.0282 (3) | 0.0522 (4) | 0.0320 (3) | −0.0097 (3) | 0.0062 (2) | −0.0096 (3) |
Br | 0.0267 (4) | 0.0248 (5) | 0.0306 (4) | −0.0047 (3) | 0.0028 (3) | −0.0036 (3) |
N2 | 0.025 (3) | 0.030 (4) | 0.020 (3) | −0.005 (3) | 0.005 (3) | −0.003 (3) |
N1 | 0.030 (4) | 0.024 (4) | 0.026 (4) | 0.001 (3) | 0.002 (3) | −0.006 (3) |
C1 | 0.031 (4) | 0.021 (4) | 0.021 (4) | −0.005 (4) | 0.011 (3) | −0.003 (3) |
C4 | 0.035 (5) | 0.033 (5) | 0.033 (5) | 0.008 (4) | −0.003 (4) | 0.007 (4) |
C3 | 0.024 (4) | 0.034 (5) | 0.034 (5) | −0.013 (4) | 0.002 (3) | −0.003 (4) |
C5 | 0.029 (4) | 0.023 (5) | 0.036 (5) | 0.002 (4) | 0.003 (4) | 0.001 (3) |
C2 | 0.041 (5) | 0.023 (5) | 0.031 (5) | −0.008 (4) | 0.002 (4) | −0.003 (4) |
I2—I2i | 2.8265 (14) | C4—H4B | 0.9800 |
Br—C1 | 1.858 (8) | C4—H4C | 0.9800 |
N2—C1 | 1.330 (10) | C3—C2 | 1.331 (12) |
N2—C3 | 1.380 (11) | C3—H3 | 0.9500 |
N2—C5 | 1.465 (11) | C5—H5A | 0.9800 |
N1—C1 | 1.335 (11) | C5—H5B | 0.9800 |
N1—C2 | 1.377 (11) | C5—H5C | 0.9800 |
N1—C4 | 1.477 (10) | C2—H2 | 0.9500 |
C4—H4A | 0.9800 | ||
C1—N2—C3 | 107.3 (7) | H4B—C4—H4C | 109.5 |
C1—N2—C5 | 126.7 (7) | C2—C3—N2 | 108.1 (7) |
C3—N2—C5 | 125.9 (7) | C2—C3—H3 | 125.9 |
C1—N1—C2 | 107.6 (7) | N2—C3—H3 | 125.9 |
C1—N1—C4 | 126.3 (7) | N2—C5—H5A | 109.5 |
C2—N1—C4 | 126.0 (7) | N2—C5—H5B | 109.5 |
N2—C1—N1 | 109.4 (7) | H5A—C5—H5B | 109.5 |
N2—C1—Br | 126.8 (6) | N2—C5—H5C | 109.5 |
N1—C1—Br | 123.8 (6) | H5A—C5—H5C | 109.5 |
N1—C4—H4A | 109.5 | H5B—C5—H5C | 109.5 |
N1—C4—H4B | 109.5 | C3—C2—N1 | 107.6 (8) |
H4A—C4—H4B | 109.5 | C3—C2—H2 | 126.2 |
N1—C4—H4C | 109.5 | N1—C2—H2 | 126.2 |
H4A—C4—H4C | 109.5 | ||
C3—N2—C1—N1 | −0.1 (8) | C4—N1—C1—Br | −2.2 (11) |
C5—N2—C1—N1 | 178.0 (7) | C1—N2—C3—C2 | 0.2 (9) |
C3—N2—C1—Br | 179.2 (6) | C5—N2—C3—C2 | −177.9 (7) |
C5—N2—C1—Br | −2.7 (11) | N2—C3—C2—N1 | −0.2 (10) |
C2—N1—C1—N2 | 0.0 (9) | C1—N1—C2—C3 | 0.2 (9) |
C4—N1—C1—N2 | 177.1 (7) | C4—N1—C2—C3 | −177.0 (8) |
C2—N1—C1—Br | −179.4 (6) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5B···I1ii | 0.98 | 3.03 | 3.986 (8) | 166 |
Symmetry code: (ii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
We are grateful to H. Kopacka for the NMR spectra.
References
Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. Web of Science CrossRef PubMed CAS Google Scholar
Boga, C., Del Vecchio, E., Forlani, L. & Todesco, P. E. (2000). J. Organomet. Chem. 601, 233–236. Web of Science CrossRef CAS Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291–296. Web of Science CrossRef PubMed CAS Google Scholar
El Borai, M., Moustafa, A. H., Anwar, M. & Abdel Hay, F. I. (1981). Pol. J. Chem. 55, 1659–1665. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Holbrey, J. D., Reichert, W. M., Swatloski, R. P., Broker, G. A., Pitner, W. R., Seddon, K. R. & Rogers, R. D. (2002). Green Chem. 4, 407–413. Web of Science CSD CrossRef CAS Google Scholar
Kuhn, N., Abu-Rayyan, A., Eichele, K., Schwarz, S. & Steimann, M. (2004). Inorg. Chim. Acta, 357, 1799–1804. Web of Science CSD CrossRef CAS Google Scholar
Kuhn, N., Kratz, T. & Henkel, G. (1993). J. Chem. Soc. Chem. Commun. pp. 1778–1779. CSD CrossRef Web of Science Google Scholar
Laus, G., Schwärzler, A., Schuster, P., Bentivoglio, G., Hummel, M., Wurst, K., Kahlenberg, V., Lörting, T., Schütz, J., Peringer, P., Bonn, G., Nauer, G. & Schottenberger, H. (2007). Z. Naturforsch. Teil B, 62, 295–308. CAS Google Scholar
Laus, G., Wurst, K., Kahlenberg, V. & Schottenberger, H. (2012). Z. Naturforsch. Teil B, 67, 354–358. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.