research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of bis­­(2,6-di­amino­pyridinium) tetra­chlorido­cobaltate(II)

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, and bUniversity of Tunis, Preparatory Institute for Engineering Studies of Tunis, Street Jawaher Lel Nehru, 1089 Montfleury, Tunis, Tunisia
*Correspondence e-mail: medfaouzi.zid57@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 January 2018; accepted 23 February 2018; online 2 March 2018)

In the title mol­ecular salt, (C5H8N3)2[CoCl4], the cations are protonated at their pyridine N atoms and the anion is an almost regular tetra­hedron. The crystal structure consists of alternating inorganic layers, built from tetra­chlorido­cobaltate anions, and organic layers formed by protonated cations of 2,6-di­amino­pyridinium. The crystal packing is governed by C/N—H⋯Cl hydrogen-bonding inter­actions between the organic and the inorganic ions and Cl⋯Cl inter­actions. Moreover, the cations show a ππ stacking inter­action [inter­centroid distance = 3.763 (2) Å]. The prevalence of these inter­actions is illustrated by an analysis of the three-dimensional Hirshfeld surface and by two-dimensional fingerprint plots.

1. Chemical context

One of the best studied groups of organic–inorganic hybrid materials are the cobalt(II) halide compounds because of their important properties such as fluorescence and magnetism (Decaroli et al., 2015[Decaroli, C., Arevalo-Lopez, A. M., Woodall, C. H., Rodriguez, E. E., Attfield, J. P., Parker, S. F. & Stock, C. (2015). Acta Cryst. B71, 20-24.]; Kurmoo, 2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]). The coordination sphere of CoII is variable, leading to different geometries including octa­hedral, tetra­hedral, square pyramidal, trigonal bipyramidal and square planar (Kurmoo, 2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]). Pyridine as an organic heterocyclic mol­ecule has various biological activities (Sellin, 1981[Sellin, L. C. (1981). Med. Biol. 59, 11-20.]; Davidson et al., 1988[Davidson, M., Zemishlany, Z., Mohs, R. C., Horvath, T. B., Powchik, P., Blass, J. P. & Davis, K. L. (1988). Biol. Psychiatry, 23, 485-490.]). As part of our studies in this area, the title compound, (C5H8N3)2[CoCl4] (I)[link], has been investigated.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] is made up of one tetra­chlorido­cobaltate, [CoCl4]2−, anion and two protonated 2,6-di­amino­pyridinium, (C5H8N3)+, organic cations (Fig. 1[link]). The geometry of the CoCl4 anion is characterized by a range of Co—Cl bond length from 2.2595 (14) to 2.2795 (13) Å and Cl—Co—Cl angles varying from 106.44 (5) to 112.69 (5)°, building a slightly distorted tetra­hedron. These data are in agreement with those found in related compounds (Mghandef & Boughzala, 2015[Mghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555-557.]). The calculated average values of the distortion indice as described by Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]) corresponding to the different lengths and angles in the CoCl4 tetra­hedra [ΔI(Co—Cl) = 0.004 and ΔI(Cl—Co—Cl) = 0.0019] show a slight distortion of the tetra­hedra. The inter­anionic Cl⋯Cl contact distances between the nearest neighbor tetra­hedra are 3.986 (2) Å along the a axis and 3.889 (2) Å along the c axis (Fig. 2[link]), compared to a van der Waals contact distance of 3.50 Å. These contacts are sometimes associated with weak anti­ferromagnetic inter­actions (Shapiro et al., 2007[Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952-959.]), which decrease rapidly with increasing Cl⋯Cl separation.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The inter­anionic Cl⋯Cl contact in the tetra­chloro­cobaltate anion of (I)[link] along the a and c axis.

Pyridinium cations always possess an expanded angle of C—N—C in comparison with the parent pyridine (Ben Nasr et al., 2015[Ben Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446-456.]). Thus, the observed angles in (I)[link] of C1—N2—C5 and C6—N5—C10 are 124.2 (3) and 124.1 (3)°, respectively, are wider than that in neutral pyridine (116.6°), indicating that protonation takes place on the pyridine ring N2 and N5 atoms. Accordingly, within the cations, we note that the N—C and C—C distances range from 1.332 (5) to 1.393 (6) Å, while the C—C—C, N—C—N, C—C—N and N—C—C angles vary from 116.00 (4) to 126.50 (4)°. The 2,6-di­amino­pyridinium units are essentially planar, with an r.m.s. deviation from the mean plane of 0.002 and 0.006 Å for the N2 and N5 species, respectively.

3. Supra­molecular features

Examination of the crystal structure of (I)[link] reveals organic layers parallel to the ab plane made of 2,6-di­amino­pyridinium cations alternating with inorganic layers formed by tetra­chlorido­cobaltate anions (Fig. 3[link]), which is similar to those of related materials: (C5H6Br2N3)2[MBr4] (M = Cd, Mn) (Al-Far et al., 2009[Al-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. C65, m321-m324.]) and (C5H7N2)2[CoBr4] (Mhadhbi et al., 2016[Mhadhbi, N., Saïd, S., Elleuch, S. & Naïli, H. (2016). J. Mol. Struct. 1108, 223-234.]).

[Figure 3]
Figure 3
View of (I)[link] towards the bc plane. The dotted lines indicate hydrogen bonds.

The construction of the three-dimensional architecture is consolidated by N—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 1[link]), generating R22(4), R22(6), R21(6), R44(8) and R22(8) graph-set motifs (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯Cl2 0.84 (5) 2.69 (5) 3.432 (4) 147 (4)
N4—H2N4⋯Cl2i 0.84 (5) 2.65 (5) 3.465 (5) 162 (4)
N6—H1N6⋯Cl4 0.85 (5) 2.58 (5) 3.406 (4) 165 (4)
N2—H1N2⋯Cl2 0.82 (4) 2.44 (4) 3.240 (3) 168 (4)
N5—H1N5⋯Cl1 0.82 (5) 2.43 (5) 3.191 (3) 156 (4)
N3—H1N3⋯Cl4ii 0.88 (4) 2.53 (5) 3.390 (5) 166 (4)
N4—H1N4⋯Cl1 0.79 (4) 2.79 (4) 3.481 (5) 147 (4)
N6—H2N6⋯Cl3iii 0.82 (5) 2.75 (5) 3.516 (4) 156 (4)
N3—H2N3⋯Cl3 0.83 (6) 2.61 (6) 3.420 (5) 166 (6)
N1—H1N1⋯Cl1iv 0.94 (5) 2.69 (5) 3.326 (4) 126 (4)
C7—H7⋯Cl3iii 0.91 (4) 2.89 (4) 3.669 (4) 145 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Projection of a part of the crystalline structure of the compound (I)[link], showing the formation of the motifs R22(4), R22(6), R21(6), R44(8) and R22(8).

As can be seen from Fig. 5[link], the two nearest neighboring anti-parallel organic cations, which are not connected by hydrogen bonding, are stacked in a face-to-face mode. The centroid–centroid distance is 3.762 (5) Å, slightly less than 3.8 Å, which is the maximum value accepted for ππ inter­actions (Ben Hassen et al., 2017[Ben Hassen, C., Dammak, T., Chniba-Boudjada, N., Mhiri, T. & Boujelbene, M. (2017). J. Mol. Struct. 1127, 43-52.]; Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Figure 5]
Figure 5
ππ stacking inter­actions between the neighboring aromatic organic cations in (I)[link]. The inorganic anions are shown as sticks for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots were performed with CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The Hirshfeld surface of the title compound mapped over dnorm is illustrated in Fig. 6[link]. The red spots correspond to the H⋯Cl close contacts, which are due to the N—H⋯Cl hydrogen bonds. Similarly, the presence of H⋯Cl contacts (due to C—H⋯Cl hydrogen bonds) are indicated by a light-red color. The white areas correspond to the places where the distance separating neighboring atoms are close to the sum of the van der Waals radius of the considered atoms and indicate H⋯H inter­actions. The bluish areas illustrate areas where neighboring atoms are too far apart for there to be inter­actions between them. In the shape-index map (Fig. 7[link]), the adjacent red and blue triangle-like patches show concave regions that indicate ππ stacking inter­actions (Bitzer et al., 2017[Bitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165-173.]).

[Figure 6]
Figure 6
View of the Hirshfeld surface of (I)[link] mapped over dnorm.
[Figure 7]
Figure 7
Hirshfeld surface mapped over shape-index, highlighting the regions involved in ππ stacking inter­actions.

The fingerprint plots of (I)[link] (Fig. 8[link]a) (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]; Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]), reveal that the main inter­molecular inter­actions with the highest percentage contributions are: H⋯Cl/Cl⋯H (41.6%, Fig. 8[link]b), H⋯H (30.8%, Fig. 8[link]c) and C⋯H/H⋯C (11.3%, Fig. 8[link]d).

[Figure 8]
Figure 8
The two-dimensional fingerprint plots of (I)[link], (a) showing all inter­actions and delineated into H⋯Cl/Cl⋯H (b), H⋯H (c) and C⋯H/H⋯C (d) inter­actions.

Fig. 9[link] shows the voids (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) in the crystal structure of (I)[link]. These are based on the sum of spherical atomic electron densities at the appropriate nuclear positions (procrystal electron density). The crystal voids calculation (results under 0.002 a.u. isovalue) shows the void volume of title compound to be of the order of 172 Å3 and surface area in the order of 648 Å2. With the porosity, the calculated void volume of (I)[link] is 10%. There are no large cavities. We note that the electron-density isosurfaces are not completely closed around the components, but are open at those locations where inter­species approaches are found, e.g. N—H⋯Cl and C—H⋯Cl.

[Figure 9]
Figure 9
Void plot for (I)[link].

5. Synthesis and crystallization

2,6-di­amino­pyridine and CoCl2·6H2O (molar ratio 1:1) were dissolved in 10 ml of methanol; 3 ml of hydro­chloric acid (37%) was added dropwise to the mixture and the resulting blue solution was put aside for crystallization at room temperature. After two weeks, blue crystals of (I)[link] were recovered.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were found in a difference-Fourier map and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula (C5H8N3)2[CoCl4]
Mr 421.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.390 (4), 15.373 (4), 15.387 (4)
β (°) 98.203 (4)
V3) 1730.1 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.61
Crystal size (mm) 0.4 × 0.3 × 0.1
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.777, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 4367, 3770, 2396
Rint 0.038
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.01
No. of reflections 3770
No. of parameters 255
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.42
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Bis(2,6-diaminopyridinium) tetrachloridocobaltate(II) top
Crystal data top
(C5H8N3)2[CoCl4]F(000) = 852
Mr = 421.02Dx = 1.616 Mg m3
Dm = 1.616 Mg m3
Dm measured by ?
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.390 (4) ÅCell parameters from 25 reflections
b = 15.373 (4) Åθ = 10.1–14.9°
c = 15.387 (4) ŵ = 1.61 mm1
β = 98.203 (4)°T = 293 K
V = 1730.1 (11) Å3Parallelepiped, blue
Z = 40.4 × 0.3 × 0.1 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2396 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.0°, θmin = 2.7°
ω/2θ scansh = 91
Absorption correction: ψ scan
(North et al., 1968)
k = 119
Tmin = 0.777, Tmax = 0.998l = 1919
4367 measured reflections2 standard reflections every 120 reflections
3770 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0522P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.37 e Å3
3770 reflectionsΔρmin = 0.42 e Å3
255 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.44824 (7)0.51081 (3)0.73764 (3)0.03878 (16)
Cl10.66787 (14)0.61509 (6)0.73884 (6)0.0497 (2)
Cl20.36703 (14)0.46854 (6)0.59572 (6)0.0500 (3)
Cl30.20113 (14)0.56398 (7)0.79102 (6)0.0547 (3)
Cl40.58007 (17)0.39816 (6)0.81784 (7)0.0627 (3)
N20.1002 (5)0.6175 (2)0.4994 (2)0.0451 (7)
N50.8682 (4)0.6428 (2)0.9347 (2)0.0425 (7)
N40.9624 (6)0.7606 (3)0.8611 (3)0.0623 (10)
N10.1431 (6)0.5199 (3)0.3912 (3)0.0646 (10)
N60.7523 (6)0.5209 (2)0.9947 (3)0.0678 (12)
N30.0650 (7)0.7017 (3)0.6196 (3)0.0759 (13)
C60.8422 (5)0.5964 (2)1.0067 (2)0.0444 (8)
C100.9484 (5)0.7226 (2)0.9377 (2)0.0434 (8)
C10.0856 (5)0.5995 (3)0.4122 (2)0.0483 (9)
C70.9051 (6)0.6309 (3)1.0881 (2)0.0571 (11)
C50.0425 (6)0.6919 (2)0.5325 (3)0.0489 (9)
C91.0121 (6)0.7571 (3)1.0189 (3)0.0532 (10)
C80.9889 (6)0.7105 (3)1.0922 (3)0.0581 (11)
C20.0069 (6)0.6621 (4)0.3543 (3)0.0630 (12)
C30.0514 (6)0.7378 (3)0.3851 (3)0.0651 (13)
C40.0359 (6)0.7541 (3)0.4729 (4)0.0606 (12)
H70.874 (6)0.603 (3)1.136 (3)0.066 (13)*
H20.000 (6)0.648 (3)0.298 (3)0.074 (14)*
H40.066 (5)0.803 (3)0.498 (2)0.047 (11)*
H91.071 (6)0.802 (3)1.022 (3)0.075 (15)*
H81.035 (6)0.735 (3)1.146 (3)0.062 (12)*
H30.108 (7)0.784 (3)0.345 (3)0.094 (16)*
H2N10.222 (6)0.493 (3)0.427 (3)0.061 (14)*
H2N41.020 (6)0.808 (3)0.863 (3)0.067 (14)*
H1N60.720 (7)0.498 (3)0.945 (3)0.074 (15)*
H1N20.157 (6)0.581 (3)0.530 (3)0.058 (13)*
H1N50.839 (6)0.623 (3)0.886 (3)0.079 (16)*
H1N30.026 (6)0.748 (3)0.645 (3)0.062 (13)*
H1N40.913 (6)0.740 (3)0.817 (3)0.047 (13)*
H2N60.747 (7)0.488 (3)1.036 (3)0.082 (17)*
H2N30.095 (9)0.661 (4)0.654 (4)0.12 (2)*
H1N10.139 (7)0.508 (3)0.331 (3)0.089 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0442 (3)0.0358 (3)0.0350 (2)0.0012 (2)0.00079 (19)0.00112 (19)
Cl10.0558 (6)0.0446 (5)0.0472 (5)0.0080 (4)0.0022 (4)0.0022 (4)
Cl20.0553 (6)0.0531 (5)0.0382 (5)0.0072 (4)0.0049 (4)0.0042 (4)
Cl30.0573 (6)0.0547 (6)0.0547 (5)0.0058 (5)0.0170 (5)0.0013 (5)
Cl40.0892 (8)0.0407 (5)0.0511 (6)0.0053 (5)0.0141 (5)0.0073 (4)
N20.0487 (19)0.0386 (16)0.0468 (17)0.0056 (15)0.0027 (15)0.0068 (14)
N50.0458 (18)0.0446 (17)0.0360 (16)0.0034 (14)0.0023 (13)0.0017 (14)
N40.068 (3)0.059 (2)0.059 (2)0.015 (2)0.006 (2)0.010 (2)
N10.061 (2)0.077 (3)0.054 (2)0.011 (2)0.0023 (19)0.011 (2)
N60.103 (3)0.053 (2)0.045 (2)0.028 (2)0.001 (2)0.0006 (18)
N30.122 (4)0.047 (2)0.063 (3)0.011 (2)0.030 (3)0.001 (2)
C60.051 (2)0.0416 (19)0.0397 (19)0.0056 (17)0.0037 (16)0.0002 (15)
C100.040 (2)0.041 (2)0.049 (2)0.0030 (16)0.0073 (16)0.0048 (16)
C10.039 (2)0.057 (2)0.048 (2)0.0024 (18)0.0032 (16)0.0011 (18)
C70.078 (3)0.057 (3)0.035 (2)0.015 (2)0.004 (2)0.0021 (18)
C50.054 (2)0.041 (2)0.053 (2)0.0032 (18)0.0151 (18)0.0070 (18)
C90.050 (2)0.046 (2)0.062 (3)0.013 (2)0.002 (2)0.0082 (19)
C80.070 (3)0.058 (3)0.044 (2)0.014 (2)0.002 (2)0.0083 (19)
C20.054 (3)0.085 (3)0.047 (2)0.006 (2)0.000 (2)0.016 (2)
C30.060 (3)0.061 (3)0.073 (3)0.001 (2)0.005 (2)0.029 (2)
C40.059 (3)0.040 (2)0.085 (3)0.009 (2)0.019 (2)0.015 (2)
Geometric parameters (Å, º) top
Co1—Cl32.2595 (14)N6—H2N60.82 (5)
Co1—Cl42.2645 (11)N3—C51.335 (6)
Co1—Cl22.2754 (11)N3—H1N30.88 (4)
Co1—Cl12.2795 (13)N3—H2N30.83 (6)
N2—C51.346 (5)C6—C71.379 (5)
N2—C11.359 (5)C10—C91.378 (5)
N2—H1N20.82 (4)C1—C21.382 (6)
N5—C61.355 (4)C7—C81.369 (6)
N5—C101.360 (5)C7—H70.91 (4)
N5—H1N50.82 (5)C5—C41.393 (6)
N4—C101.332 (5)C9—C81.367 (6)
N4—H2N40.84 (5)C9—H90.82 (5)
N4—H1N40.79 (4)C8—H80.93 (4)
N1—C11.349 (5)C2—C31.350 (7)
N1—H2N10.84 (5)C2—H20.89 (4)
N1—H1N10.94 (5)C3—C41.362 (7)
N6—C61.337 (5)C3—H30.99 (5)
N6—H1N60.85 (5)C4—H40.89 (4)
Cl3—Co1—Cl4112.69 (5)N4—C10—N5117.1 (4)
Cl3—Co1—Cl2109.64 (5)N4—C10—C9125.0 (4)
Cl4—Co1—Cl2109.80 (4)N5—C10—C9117.9 (3)
Cl3—Co1—Cl1110.73 (5)N1—C1—N2116.0 (4)
Cl4—Co1—Cl1106.44 (5)N1—C1—C2126.5 (4)
Cl2—Co1—Cl1107.37 (4)N2—C1—C2117.4 (4)
C5—N2—C1124.2 (3)C8—C7—C6118.5 (4)
C5—N2—H1N2123 (3)C8—C7—H7123 (3)
C1—N2—H1N2113 (3)C6—C7—H7118 (3)
C6—N5—C10124.1 (3)N3—C5—N2118.3 (4)
C6—N5—H1N5120 (3)N3—C5—C4124.4 (4)
C10—N5—H1N5116 (3)N2—C5—C4117.3 (4)
C10—N4—H2N4117 (3)C8—C9—C10118.7 (4)
C10—N4—H1N4120 (3)C8—C9—H9121 (3)
H2N4—N4—H1N4123 (4)C10—C9—H9120 (3)
C1—N1—H2N1119 (3)C9—C8—C7122.7 (4)
C1—N1—H1N1117 (3)C9—C8—H8117 (3)
H2N1—N1—H1N1118 (4)C7—C8—H8121 (3)
C6—N6—H1N6124 (3)C3—C2—C1120.0 (4)
C6—N6—H2N6121 (4)C3—C2—H2125 (3)
H1N6—N6—H2N6114 (4)C1—C2—H2115 (3)
C5—N3—H1N3122 (3)C2—C3—C4121.4 (4)
C5—N3—H2N3123 (4)C2—C3—H3122 (3)
H1N3—N3—H2N3114 (5)C4—C3—H3117 (3)
N6—C6—N5118.1 (3)C3—C4—C5119.7 (4)
N6—C6—C7123.7 (4)C3—C4—H4127 (2)
N5—C6—C7118.1 (3)C5—C4—H4114 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N1···Cl20.84 (5)2.69 (5)3.432 (4)147 (4)
N4—H2N4···Cl2i0.84 (5)2.65 (5)3.465 (5)162 (4)
N6—H1N6···Cl40.85 (5)2.58 (5)3.406 (4)165 (4)
N2—H1N2···Cl20.82 (4)2.44 (4)3.240 (3)168 (4)
N5—H1N5···Cl10.82 (5)2.43 (5)3.191 (3)156 (4)
N3—H1N3···Cl4ii0.88 (4)2.53 (5)3.390 (5)166 (4)
N4—H1N4···Cl10.79 (4)2.79 (4)3.481 (5)147 (4)
N6—H2N6···Cl3iii0.82 (5)2.75 (5)3.516 (4)156 (4)
N3—H2N3···Cl30.83 (6)2.61 (6)3.420 (5)166 (6)
N1—H1N1···Cl1iv0.94 (5)2.69 (5)3.326 (4)126 (4)
C7—H7···Cl3iii0.91 (4)2.89 (4)3.669 (4)145 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1.
 

Funding information

The authors acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAl-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. C65, m321–m324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBen Hassen, C., Dammak, T., Chniba-Boudjada, N., Mhiri, T. & Boujelbene, M. (2017). J. Mol. Struct. 1127, 43–52.  Web of Science CrossRef CAS Google Scholar
First citationBen Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446–456.  CSD CrossRef CAS Google Scholar
First citationBitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavidson, M., Zemishlany, Z., Mohs, R. C., Horvath, T. B., Powchik, P., Blass, J. P. & Davis, K. L. (1988). Biol. Psychiatry, 23, 485–490.  CrossRef CAS Web of Science Google Scholar
First citationDecaroli, C., Arevalo-Lopez, A. M., Woodall, C. H., Rodriguez, E. E., Attfield, J. P., Parker, S. F. & Stock, C. (2015). Acta Cryst. B71, 20–24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMghandef, M. & Boughzala, H. (2015). Acta Cryst. E71, 555–557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMhadhbi, N., Saïd, S., Elleuch, S. & Naïli, H. (2016). J. Mol. Struct. 1108, 223–234.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSellin, L. C. (1981). Med. Biol. 59, 11–20.  CAS Google Scholar
First citationShapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds