research communications
S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one; of rac-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one
and of (2aThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, Pa 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu
The crystal structures of isomeric rac-2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (C16H14N2O3S) (1) and (2S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (C16H14N2O3S) (2) are reported here. While 1 crystallizes in a centrosymmetric the crystal of 2 chosen for data collection has molecules only with (2S) This is the result of during crystallization, as the synthesis produces a A crystal with (2R) molecules was also found in the same crystallization vial (structure factors available). The six-membered thiazine ring in both 1 and 2 displays an with the S atom forming the flap. The aryl rings in both structures adopt an approximate V shape with angles between their planes of 46.97 (14)° in 1 and 58.37 (10)° in 2. In both structures, the molecules form layers in the ab plane. Within such a layer in 1, one of the O atoms of the nitrophenyl group accepts a C—H⋯O hydrogen bond from the CH group at position 5 of the thiazine ring of a molecule of opposite forming chains along the a-axis direction. Each of the thiazine rings also participate in C—H⋯O bonds with the same carbon atom as above, resulting in chains along the b-axis direction, albeit of monochiral type. Adjacent layers are consolidated along the c-axis direction by pairs of parallel hydrogen bonds (C—H⋯O type) between the nitrophenyl groups of enantiomers. In 2, the two C—H⋯O hydrogen bonds contribute to chain formation along the b-axis direction. Weak edge-to-face interactions between the of neighbouring molecules in 1, and C—H⋯π interactions between a thiazine ring CH group and a phenyl group of a neighboring molecule in 2 are also observed.
Keywords: crystal structure; nitro group; 1,3-thiazin-4-one; spontaneous resolution.
1. Chemical context
Compounds with an N-aryl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one scaffold have been shown to have a wide variety of bioactivities, including antifungal (Qu et al., 2013; Dandia et al., 2004; Krumkains, 1984), antitubercular (Dandia et al., 2004), antitumor (Chen et al., 2012), antidiabetic (Arya et al., 2012), regulation of plant growth (Krumkains, 1984), cleavage of DNA (possible antitumor) (Dandia et al., 2013), inhibition of cannabinoid receptor 1 (CB1) (Choi et al., 2008), and inhibition of angiogenesis (possible treatment of eye disease, neoplasm, arteriosclerosis, arthritis, psoriasis, diabetes, and mellitus) (Chen et al., 2012).
The ; Jacques et al., 1981; Eliel & Wilen, 1994; Pérez-Garcia & Amabilino, 2007). It has even been used in the production of chiral active pharmaceutical ingredients (Bredikhin & Bredikhina, 2017). However, the reasons why this occurs with a minority of molecules are not well understood (Pérez-Garcia & Amabilino, 2007) and have not yet yielded to attempts to predict occurrence (D'Oria, Karanertzanis & Price, 2010; Pérez-Garcia & Amabilino, 2007).
of a racemic solution by direct crystallization to form a conglomerate, a mechanical mixture of separate homochiral crystals, is an uncommon but well-known phenomenon, recognized first by Pasteur in 1848 (Pasteur, 1848In this work, we report the S)-2-(3-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one, 2. We later collected another crystal from the vial and confirmed that it had the (2R) configuration (identical packing, structure factors available upon request). We also report the racemic (centrosymmetric) structure of the isomeric 2-(4-nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one, 1. We have previously reported the of rac-2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar & Silverberg, 2014).
and of (22. Structural commentary
Both structures 1 and 2 (Figs. 1 and 2) exhibit an envelope pucker conformation of the thiazine ring with the sulfur atom forming the flap. The Cremer & Pople (1975) puckering parameters in 1 are: Q = 0.638 (3) Å, θ = 47.0 (3)°, φ = 339.8 (4)° and in 2: Q = 0.6654 (16) Å, θ = 44.20 (17)°, φ = 353.8 (3)°. The aryl rings in both structures form an approximate V shape with inter-centroid distances of 3.964 (2) and 4.160 (2) Å, and interplanar angles of 46.97 (14) and 58.37 (10)°, in 1 and 2, respectively.
3. Supramolecular features
In both structures, C—H⋯O interactions are observed (Tables 1 and 2, Figs. 3 and 4), resulting in layering of molecules in planes parallel to (001). In each layer of structure 1, one of the oxygen atoms of the nitrophenyl group accepts a C—H⋯O hydrogen bond from the CH group at position 5 of the thiazine ring of a molecule of opposite This results in infinite chains of mixed along the a-axis direction. The second oxygen atom of the nitrophenyl group also accepts a hydrogen bond from the thiazine 5-carbon atom, resulting this time in monochiral chains along the b-axis direction. Further, the stacking of layers along the c-axis direction is consolidated by pairs of parallel hydrogen bonds between the nitrophenyl groups of enantiomers. In 2, a monochiral structure, the C—H⋯O hydrogen bonds between the chiral carbon atom and the 4-oxygen atom on the neighboring thiazine ring results in a chain along the b-axis direction. The second hydrogen bond loops back to the second molecule in the reverse direction of the same chain. While weak edge-to-face interactions [Cg⋯Cg distance of 5.340 (3) Å and an interplanar angle of 84.99 (2)°] between the of neighboring molecules is observed in 1, in 2, the 6-carbon atom of the thiazine ring interacts with the phenyl group in a C—H⋯π type interaction [C4⋯Cg = 3.581 (2) Å].
|
4. Database survey
No substantially similar crystal structures were found other than certain ones we have published, including 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (Yennawar & Silverberg, 2014, 2015), 2-(3-nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar et al., 2013), and 2-(4-nitrophenyl)-3-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-one (Yennawar et al., 2015).
5. Synthesis and crystallization
General: A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar and the imine (6 mmol). 3-Mercaptopropionic acid (0.52 ml, 6 mmol) and then 2-methyltetrahydrofuran (2.3 ml) were added and the solution was stirred. Pyridine (1.95 ml, 24 mmol) and finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) in 2-methyltetrahydrofuran (50 weight percent; 7.3 ml, 12 mmol) were added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with dichloromethane and distilled water. The layers were separated and the aqueous was then extracted twice with dichloromethane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic was dried over sodium sulfate and concentrated under vacuum to give crude product.
2-(4-Nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (1): the crude product was recrystallized from 2-propanol to give a white powder. Yield: 1.397 g (74%). m.p. 410–412 K. Colorless blocks for data collection were grown by slow evaporation from 2-propanol solution.
2-(3-Nitrophenyl)-3-phenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one (2): The crude product was recrystallized from 2-propanol to give a yellow powder. Yield: 1.121 g (59%). m.p. 415 K. Colorless blocks were grown by slow evaporation from ethanol solution; the (2S) and (2R) crystals had identical morphology. The stereochemical configuration of individual crystals was identified by solving the After several were found to be (2S), a crystal was found that was (2R).
6. Refinement
Crystal data, data collection and structure 1 and 2 are summarized in Table 3. The H atoms were placed geometrically and allowed to ride on their parent C atoms during with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 (methyl) and with Uiso(H) = 1.2Ueq(aromatic or methylene C) or 1.5Ueq(methyl C). In structure 2, the for the chiral centres in the molecule was determined as (2S) with a Flack parameter of 0.09 (7) for 4055 Friedel pairs.
details for both structuresSupporting information
https://doi.org/10.1107/S2056989018003444/hb7733sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018003444/hb77331sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018003444/hb77332sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003444/hb77331sup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003444/hb77332sup5.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003444/hb77331sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003444/hb77332sup7.cml
For both structures, data collection: SMART (Bruker, 2001). Cell
SAINT (Bruker, 2016) for (1); SAINT (Bruker, 2001) for (2). Data reduction: SAINT (Bruker, 2016) for (1); SAINT (Bruker, 2001) for (2). Program(s) used to solve structure: olex2.solve (Bourhis et al., 2015) for (1); SHELXS97 (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H14N2O3S | Dx = 1.393 Mg m−3 |
Mr = 314.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3516 reflections |
a = 15.801 (6) Å | θ = 2.6–27.5° |
b = 10.280 (4) Å | µ = 0.23 mm−1 |
c = 18.460 (7) Å | T = 298 K |
V = 2998.4 (19) Å3 | Block, colorless |
Z = 8 | 0.2 × 0.16 × 0.09 mm |
F(000) = 1312 |
Bruker SMART CCD area detector diffractometer | 3769 independent reflections |
Radiation source: fine-focus sealed tube | 2297 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
phi and ω scans | θmax = 28.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −20→21 |
Tmin = 0.154, Tmax = 0.9 | k = −13→13 |
26571 measured reflections | l = −24→23 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.216 | H-atom parameters constrained |
S = 1.19 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
3769 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.38874 (16) | 0.8032 (2) | 0.80475 (15) | 0.0493 (7) | |
H1 | 0.3458 | 0.8713 | 0.7995 | 0.059* | |
C2 | 0.32207 (18) | 0.6103 (3) | 0.86948 (17) | 0.0613 (8) | |
C3 | 0.3466 (2) | 0.6614 (3) | 0.94234 (17) | 0.0744 (10) | |
H3A | 0.3941 | 0.6104 | 0.9597 | 0.089* | |
H3B | 0.2998 | 0.6462 | 0.9752 | 0.089* | |
C4 | 0.3704 (2) | 0.8027 (4) | 0.94716 (18) | 0.0746 (10) | |
H4A | 0.3901 | 0.8224 | 0.9957 | 0.090* | |
H4B | 0.3212 | 0.8562 | 0.9373 | 0.090* | |
C5 | 0.44572 (15) | 0.8058 (2) | 0.73915 (15) | 0.0446 (6) | |
C6 | 0.42995 (16) | 0.8917 (2) | 0.68348 (15) | 0.0482 (7) | |
H6 | 0.3860 | 0.9513 | 0.6880 | 0.058* | |
C7 | 0.47813 (18) | 0.8909 (3) | 0.62117 (15) | 0.0551 (7) | |
H7 | 0.4674 | 0.9495 | 0.5839 | 0.066* | |
C8 | 0.54241 (16) | 0.8013 (3) | 0.61555 (15) | 0.0525 (7) | |
C9 | 0.56167 (17) | 0.7155 (3) | 0.67046 (18) | 0.0584 (8) | |
H9 | 0.6058 | 0.6563 | 0.6658 | 0.070* | |
C10 | 0.51327 (17) | 0.7203 (3) | 0.73259 (16) | 0.0546 (7) | |
H10 | 0.5262 | 0.6650 | 0.7709 | 0.066* | |
C11 | 0.31097 (16) | 0.6326 (2) | 0.73959 (15) | 0.0488 (7) | |
C12 | 0.24278 (18) | 0.6965 (3) | 0.71096 (17) | 0.0572 (7) | |
H12 | 0.2159 | 0.7612 | 0.7375 | 0.069* | |
C13 | 0.2139 (2) | 0.6647 (3) | 0.64262 (19) | 0.0679 (9) | |
H13 | 0.1672 | 0.7078 | 0.6235 | 0.082* | |
C14 | 0.2530 (2) | 0.5712 (3) | 0.6032 (2) | 0.0747 (10) | |
H14 | 0.2336 | 0.5511 | 0.5569 | 0.090* | |
C15 | 0.3214 (2) | 0.5062 (3) | 0.6317 (2) | 0.0770 (10) | |
H15 | 0.3484 | 0.4423 | 0.6045 | 0.092* | |
C16 | 0.3502 (2) | 0.5354 (3) | 0.70058 (19) | 0.0660 (8) | |
H16 | 0.3955 | 0.4899 | 0.7204 | 0.079* | |
N1 | 0.34542 (14) | 0.6745 (2) | 0.80829 (12) | 0.0514 (6) | |
N2 | 0.59028 (18) | 0.7939 (3) | 0.54789 (16) | 0.0700 (7) | |
O1 | 0.28131 (16) | 0.5087 (2) | 0.86495 (14) | 0.0905 (8) | |
O2 | 0.57444 (17) | 0.8711 (3) | 0.49997 (13) | 0.0870 (8) | |
O3 | 0.6441 (2) | 0.7111 (3) | 0.54203 (18) | 0.1312 (13) | |
S1 | 0.45206 (5) | 0.83866 (9) | 0.88301 (4) | 0.0706 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0452 (15) | 0.0467 (14) | 0.0561 (17) | 0.0018 (11) | 0.0019 (12) | 0.0096 (11) |
C2 | 0.0498 (16) | 0.0657 (18) | 0.068 (2) | 0.0000 (14) | 0.0077 (14) | 0.0223 (16) |
C3 | 0.065 (2) | 0.099 (3) | 0.060 (2) | 0.0073 (18) | 0.0096 (16) | 0.0301 (18) |
C4 | 0.072 (2) | 0.100 (3) | 0.0521 (19) | 0.0153 (19) | 0.0029 (16) | 0.0062 (17) |
C5 | 0.0395 (13) | 0.0399 (12) | 0.0543 (16) | −0.0048 (10) | −0.0009 (11) | 0.0045 (11) |
C6 | 0.0439 (14) | 0.0458 (13) | 0.0550 (17) | 0.0024 (11) | −0.0026 (12) | 0.0079 (12) |
C7 | 0.0550 (16) | 0.0586 (16) | 0.0517 (17) | −0.0010 (14) | −0.0036 (13) | 0.0106 (13) |
C8 | 0.0445 (15) | 0.0585 (16) | 0.0545 (17) | −0.0061 (12) | 0.0055 (13) | 0.0029 (13) |
C9 | 0.0436 (15) | 0.0584 (16) | 0.073 (2) | 0.0060 (12) | 0.0027 (14) | 0.0090 (15) |
C10 | 0.0481 (15) | 0.0545 (15) | 0.0613 (18) | 0.0053 (13) | 0.0041 (13) | 0.0188 (13) |
C11 | 0.0438 (14) | 0.0466 (14) | 0.0559 (17) | −0.0038 (11) | 0.0047 (13) | 0.0097 (12) |
C12 | 0.0496 (16) | 0.0574 (16) | 0.065 (2) | 0.0008 (13) | −0.0008 (14) | −0.0009 (14) |
C13 | 0.0625 (19) | 0.0674 (19) | 0.074 (2) | −0.0120 (16) | −0.0130 (17) | 0.0057 (17) |
C14 | 0.083 (2) | 0.073 (2) | 0.069 (2) | −0.0263 (19) | −0.0012 (19) | −0.0034 (18) |
C15 | 0.086 (3) | 0.063 (2) | 0.083 (3) | −0.0113 (18) | 0.012 (2) | −0.0183 (18) |
C16 | 0.0600 (18) | 0.0513 (16) | 0.087 (2) | 0.0032 (14) | 0.0041 (17) | 0.0009 (15) |
N1 | 0.0475 (13) | 0.0509 (12) | 0.0558 (15) | −0.0010 (10) | 0.0032 (11) | 0.0165 (10) |
N2 | 0.0613 (16) | 0.0829 (19) | 0.0657 (19) | −0.0036 (15) | 0.0121 (14) | 0.0036 (15) |
O1 | 0.0943 (18) | 0.0839 (17) | 0.0934 (19) | −0.0271 (14) | 0.0132 (14) | 0.0336 (14) |
O2 | 0.0969 (18) | 0.1087 (19) | 0.0554 (15) | −0.0039 (15) | 0.0103 (13) | 0.0133 (14) |
O3 | 0.124 (3) | 0.155 (3) | 0.115 (3) | 0.062 (2) | 0.061 (2) | 0.030 (2) |
S1 | 0.0682 (6) | 0.0868 (6) | 0.0569 (6) | −0.0123 (4) | −0.0040 (4) | 0.0004 (4) |
C1—H1 | 0.9800 | C8—C9 | 1.378 (4) |
C1—C5 | 1.509 (4) | C8—N2 | 1.462 (4) |
C1—N1 | 1.491 (3) | C9—H9 | 0.9300 |
C1—S1 | 1.795 (3) | C9—C10 | 1.379 (4) |
C2—C3 | 1.495 (5) | C10—H10 | 0.9300 |
C2—N1 | 1.359 (3) | C11—C12 | 1.368 (4) |
C2—O1 | 1.230 (4) | C11—C16 | 1.379 (4) |
C3—H3A | 0.9700 | C11—N1 | 1.446 (4) |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C3—C4 | 1.503 (5) | C12—C13 | 1.381 (4) |
C4—H4A | 0.9700 | C13—H13 | 0.9300 |
C4—H4B | 0.9700 | C13—C14 | 1.355 (5) |
C4—S1 | 1.790 (3) | C14—H14 | 0.9300 |
C5—C6 | 1.378 (4) | C14—C15 | 1.375 (5) |
C5—C10 | 1.388 (4) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | C15—C16 | 1.384 (4) |
C6—C7 | 1.379 (4) | C16—H16 | 0.9300 |
C7—H7 | 0.9300 | N2—O2 | 1.215 (3) |
C7—C8 | 1.375 (4) | N2—O3 | 1.208 (4) |
C5—C1—H1 | 108.7 | C9—C8—N2 | 118.7 (3) |
C5—C1—S1 | 108.04 (18) | C8—C9—H9 | 121.1 |
N1—C1—H1 | 108.7 | C8—C9—C10 | 117.8 (3) |
N1—C1—C5 | 109.0 (2) | C10—C9—H9 | 121.1 |
N1—C1—S1 | 113.65 (17) | C5—C10—H10 | 119.3 |
S1—C1—H1 | 108.7 | C9—C10—C5 | 121.4 (3) |
N1—C2—C3 | 120.4 (3) | C9—C10—H10 | 119.3 |
O1—C2—C3 | 119.7 (3) | C12—C11—C16 | 120.0 (3) |
O1—C2—N1 | 119.9 (3) | C12—C11—N1 | 119.5 (2) |
C2—C3—H3A | 108.0 | C16—C11—N1 | 120.3 (3) |
C2—C3—H3B | 108.0 | C11—C12—H12 | 120.0 |
C2—C3—C4 | 117.2 (2) | C11—C12—C13 | 120.0 (3) |
H3A—C3—H3B | 107.2 | C13—C12—H12 | 120.0 |
C4—C3—H3A | 108.0 | C12—C13—H13 | 119.7 |
C4—C3—H3B | 108.0 | C14—C13—C12 | 120.5 (3) |
C3—C4—H4A | 109.7 | C14—C13—H13 | 119.7 |
C3—C4—H4B | 109.7 | C13—C14—H14 | 120.1 |
C3—C4—S1 | 109.9 (2) | C13—C14—C15 | 119.8 (3) |
H4A—C4—H4B | 108.2 | C15—C14—H14 | 120.1 |
S1—C4—H4A | 109.7 | C14—C15—H15 | 119.8 |
S1—C4—H4B | 109.7 | C14—C15—C16 | 120.3 (3) |
C6—C5—C1 | 120.1 (2) | C16—C15—H15 | 119.8 |
C6—C5—C10 | 118.7 (2) | C11—C16—C15 | 119.3 (3) |
C10—C5—C1 | 121.2 (2) | C11—C16—H16 | 120.3 |
C5—C6—H6 | 119.4 | C15—C16—H16 | 120.3 |
C5—C6—C7 | 121.2 (2) | C2—N1—C1 | 126.3 (3) |
C7—C6—H6 | 119.4 | C2—N1—C11 | 118.8 (2) |
C6—C7—H7 | 120.8 | C11—N1—C1 | 113.49 (19) |
C8—C7—C6 | 118.3 (3) | O2—N2—C8 | 118.8 (3) |
C8—C7—H7 | 120.8 | O3—N2—C8 | 118.5 (3) |
C7—C8—C9 | 122.4 (3) | O3—N2—O2 | 122.7 (3) |
C7—C8—N2 | 118.8 (3) | C4—S1—C1 | 95.08 (15) |
C1—C5—C6—C7 | −176.2 (2) | C12—C11—N1—C1 | −69.7 (3) |
C1—C5—C10—C9 | 175.0 (3) | C12—C11—N1—C2 | 97.7 (3) |
C2—C3—C4—S1 | −54.0 (4) | C12—C13—C14—C15 | 0.8 (5) |
C3—C2—N1—C1 | −5.9 (4) | C13—C14—C15—C16 | 0.3 (5) |
C3—C2—N1—C11 | −171.6 (3) | C14—C15—C16—C11 | −1.7 (5) |
C3—C4—S1—C1 | 63.8 (2) | C16—C11—C12—C13 | −0.9 (4) |
C5—C1—N1—C2 | 147.8 (3) | C16—C11—N1—C1 | 105.6 (3) |
C5—C1—N1—C11 | −45.9 (3) | C16—C11—N1—C2 | −87.0 (3) |
C5—C1—S1—C4 | −171.67 (19) | N1—C1—C5—C6 | 115.7 (3) |
C5—C6—C7—C8 | 0.4 (4) | N1—C1—C5—C10 | −62.5 (3) |
C6—C5—C10—C9 | −3.3 (4) | N1—C1—S1—C4 | −50.6 (2) |
C6—C7—C8—C9 | −1.9 (4) | N1—C2—C3—C4 | 20.1 (4) |
C6—C7—C8—N2 | 176.0 (3) | N1—C11—C12—C13 | 174.4 (2) |
C7—C8—C9—C10 | 0.7 (4) | N1—C11—C16—C15 | −173.3 (3) |
C7—C8—N2—O2 | 3.4 (4) | N2—C8—C9—C10 | −177.1 (3) |
C7—C8—N2—O3 | −176.7 (3) | O1—C2—C3—C4 | −160.7 (3) |
C8—C9—C10—C5 | 1.9 (4) | O1—C2—N1—C1 | 174.9 (3) |
C9—C8—N2—O2 | −178.6 (3) | O1—C2—N1—C11 | 9.3 (4) |
C9—C8—N2—O3 | 1.3 (4) | S1—C1—C5—C6 | −120.4 (2) |
C10—C5—C6—C7 | 2.1 (4) | S1—C1—C5—C10 | 61.4 (3) |
C11—C12—C13—C14 | −0.5 (5) | S1—C1—N1—C2 | 27.3 (3) |
C12—C11—C16—C15 | 1.9 (4) | S1—C1—N1—C11 | −166.44 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O2i | 0.97 | 2.62 | 3.405 (4) | 139 |
C3—H3B···O3ii | 0.97 | 2.57 | 3.253 (5) | 128 |
C7—H7···O2iii | 0.93 | 2.50 | 3.417 (4) | 170 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, y, −z+3/2; (iii) −x+1, −y+2, −z+1. |
C16H14N2O3S | Dx = 1.373 Mg m−3 |
Mr = 314.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1695 reflections |
a = 8.6877 (17) Å | θ = 2.6–27.4° |
b = 9.6547 (19) Å | µ = 0.23 mm−1 |
c = 18.137 (4) Å | T = 298 K |
V = 1521.3 (5) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.19 × 0.18 mm |
F(000) = 656 |
Bruker SMART CCD area detector diffractometer | 3775 independent reflections |
Radiation source: fine-focus sealed tube | 3144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.34 pixels mm-1 | θmax = 28.3°, θmin = 2.3° |
phi and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | k = −12→12 |
Tmin = 0.341, Tmax = 0.9 | l = −24→22 |
14176 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0783P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3775 reflections | Δρmax = 0.32 e Å−3 |
199 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 4055 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (7) |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.26199 (19) | 0.53305 (17) | 0.75480 (10) | 0.0468 (4) | |
H1 | 0.1885 | 0.6066 | 0.7426 | 0.056* | |
C2 | 0.0844 (3) | 0.3448 (2) | 0.79727 (12) | 0.0640 (5) | |
C3 | 0.0753 (3) | 0.4045 (3) | 0.87435 (13) | 0.0688 (6) | |
H3A | −0.0321 | 0.4053 | 0.8889 | 0.083* | |
H3B | 0.1283 | 0.3413 | 0.9073 | 0.083* | |
C4 | 0.1385 (2) | 0.5458 (2) | 0.88739 (13) | 0.0685 (6) | |
H4A | 0.1435 | 0.5638 | 0.9400 | 0.082* | |
H4B | 0.0710 | 0.6143 | 0.8653 | 0.082* | |
C5 | 0.39844 (19) | 0.54561 (17) | 0.70401 (10) | 0.0462 (4) | |
C6 | 0.3973 (2) | 0.64968 (18) | 0.65124 (11) | 0.0499 (4) | |
H6 | 0.3133 | 0.7089 | 0.6470 | 0.060* | |
C7 | 0.5226 (2) | 0.6638 (2) | 0.60521 (11) | 0.0535 (5) | |
C8 | 0.6496 (2) | 0.5792 (2) | 0.60899 (13) | 0.0614 (5) | |
H8 | 0.7326 | 0.5913 | 0.5773 | 0.074* | |
C9 | 0.6499 (2) | 0.4757 (2) | 0.66142 (14) | 0.0648 (6) | |
H9 | 0.7343 | 0.4168 | 0.6653 | 0.078* | |
C10 | 0.5258 (2) | 0.45870 (19) | 0.70826 (12) | 0.0546 (5) | |
H10 | 0.5274 | 0.3881 | 0.7431 | 0.066* | |
C11 | 0.17339 (19) | 0.34283 (18) | 0.67247 (10) | 0.0464 (4) | |
C12 | 0.0949 (2) | 0.4149 (2) | 0.61946 (11) | 0.0541 (4) | |
H12 | 0.0456 | 0.4973 | 0.6315 | 0.065* | |
C13 | 0.0889 (3) | 0.3649 (3) | 0.54785 (13) | 0.0697 (6) | |
H13 | 0.0360 | 0.4136 | 0.5116 | 0.084* | |
C14 | 0.1617 (3) | 0.2433 (3) | 0.53116 (13) | 0.0784 (8) | |
H14 | 0.1574 | 0.2088 | 0.4833 | 0.094* | |
C15 | 0.2404 (3) | 0.1724 (3) | 0.58378 (16) | 0.0748 (7) | |
H15 | 0.2902 | 0.0903 | 0.5715 | 0.090* | |
C16 | 0.2472 (2) | 0.2211 (2) | 0.65527 (13) | 0.0601 (5) | |
H16 | 0.3009 | 0.1723 | 0.6912 | 0.072* | |
N1 | 0.18311 (17) | 0.39713 (15) | 0.74654 (8) | 0.0473 (3) | |
N2 | 0.5185 (3) | 0.7744 (2) | 0.54921 (11) | 0.0695 (5) | |
O1 | 0.0060 (2) | 0.2427 (2) | 0.78250 (10) | 0.1044 (8) | |
O2 | 0.6279 (3) | 0.7859 (2) | 0.50693 (12) | 0.1032 (7) | |
O3 | 0.4078 (2) | 0.8498 (2) | 0.54701 (13) | 0.0971 (7) | |
S1 | 0.32852 (6) | 0.56010 (6) | 0.84780 (3) | 0.06274 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0395 (8) | 0.0424 (9) | 0.0586 (10) | 0.0006 (7) | −0.0046 (8) | 0.0003 (8) |
C2 | 0.0585 (11) | 0.0712 (13) | 0.0624 (12) | −0.0210 (11) | 0.0031 (10) | −0.0021 (10) |
C3 | 0.0573 (11) | 0.0877 (16) | 0.0613 (12) | −0.0131 (12) | 0.0106 (9) | −0.0027 (11) |
C4 | 0.0561 (11) | 0.0838 (15) | 0.0655 (12) | −0.0010 (11) | 0.0092 (10) | −0.0206 (12) |
C5 | 0.0399 (8) | 0.0400 (8) | 0.0587 (10) | −0.0030 (7) | −0.0068 (7) | −0.0026 (8) |
C6 | 0.0473 (8) | 0.0417 (9) | 0.0606 (11) | −0.0030 (7) | −0.0123 (9) | −0.0026 (8) |
C7 | 0.0648 (11) | 0.0428 (9) | 0.0529 (11) | −0.0117 (9) | −0.0069 (9) | −0.0005 (8) |
C8 | 0.0599 (11) | 0.0527 (11) | 0.0717 (13) | −0.0094 (10) | 0.0122 (10) | −0.0040 (10) |
C9 | 0.0482 (9) | 0.0530 (11) | 0.0932 (16) | 0.0051 (8) | 0.0087 (11) | 0.0020 (11) |
C10 | 0.0489 (9) | 0.0449 (10) | 0.0701 (12) | 0.0015 (8) | −0.0016 (9) | 0.0080 (9) |
C11 | 0.0377 (7) | 0.0471 (9) | 0.0544 (9) | −0.0070 (7) | −0.0012 (8) | −0.0017 (7) |
C12 | 0.0478 (9) | 0.0525 (10) | 0.0621 (11) | −0.0027 (8) | −0.0081 (9) | 0.0016 (9) |
C13 | 0.0786 (14) | 0.0757 (15) | 0.0547 (12) | −0.0185 (13) | −0.0091 (12) | 0.0099 (11) |
C14 | 0.0955 (18) | 0.0839 (17) | 0.0556 (12) | −0.0344 (16) | 0.0165 (13) | −0.0110 (12) |
C15 | 0.0721 (14) | 0.0633 (13) | 0.0891 (17) | −0.0018 (12) | 0.0275 (13) | −0.0183 (13) |
C16 | 0.0514 (10) | 0.0550 (11) | 0.0741 (13) | 0.0058 (9) | −0.0007 (10) | 0.0007 (11) |
N1 | 0.0431 (7) | 0.0500 (8) | 0.0489 (8) | −0.0088 (6) | −0.0029 (6) | −0.0002 (7) |
N2 | 0.0846 (14) | 0.0604 (11) | 0.0637 (11) | −0.0208 (11) | −0.0131 (10) | 0.0075 (9) |
O1 | 0.1126 (16) | 0.1198 (15) | 0.0807 (11) | −0.0768 (14) | 0.0227 (11) | −0.0220 (11) |
O2 | 0.133 (2) | 0.0990 (14) | 0.0779 (11) | −0.0127 (13) | 0.0272 (13) | 0.0221 (11) |
O3 | 0.0867 (12) | 0.0827 (13) | 0.1218 (16) | −0.0107 (11) | −0.0210 (12) | 0.0455 (12) |
S1 | 0.0486 (2) | 0.0780 (4) | 0.0616 (3) | −0.0121 (2) | −0.0044 (2) | −0.0156 (3) |
C1—H1 | 0.9800 | C8—H8 | 0.9300 |
C1—C5 | 1.506 (2) | C8—C9 | 1.380 (3) |
C1—N1 | 1.488 (2) | C9—H9 | 0.9300 |
C1—S1 | 1.802 (2) | C9—C10 | 1.383 (3) |
C2—C3 | 1.514 (3) | C10—H10 | 0.9300 |
C2—N1 | 1.356 (3) | C11—C12 | 1.369 (3) |
C2—O1 | 1.228 (3) | C11—C16 | 1.375 (3) |
C3—H3A | 0.9700 | C11—N1 | 1.444 (2) |
C3—H3B | 0.9700 | C12—H12 | 0.9300 |
C3—C4 | 1.490 (3) | C12—C13 | 1.386 (3) |
C4—H4A | 0.9700 | C13—H13 | 0.9300 |
C4—H4B | 0.9700 | C13—C14 | 1.368 (4) |
C4—S1 | 1.806 (2) | C14—H14 | 0.9300 |
C5—C6 | 1.388 (3) | C14—C15 | 1.359 (4) |
C5—C10 | 1.391 (2) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | C15—C16 | 1.380 (4) |
C6—C7 | 1.379 (3) | C16—H16 | 0.9300 |
C7—C8 | 1.375 (3) | N2—O2 | 1.226 (3) |
C7—N2 | 1.474 (3) | N2—O3 | 1.207 (3) |
C5—C1—H1 | 108.4 | C9—C8—H8 | 121.1 |
C5—C1—S1 | 107.96 (11) | C8—C9—H9 | 119.7 |
N1—C1—H1 | 108.4 | C8—C9—C10 | 120.51 (19) |
N1—C1—C5 | 111.83 (14) | C10—C9—H9 | 119.7 |
N1—C1—S1 | 111.70 (12) | C5—C10—H10 | 119.5 |
S1—C1—H1 | 108.4 | C9—C10—C5 | 121.00 (18) |
N1—C2—C3 | 121.17 (18) | C9—C10—H10 | 119.5 |
O1—C2—C3 | 118.6 (2) | C12—C11—C16 | 120.49 (19) |
O1—C2—N1 | 120.1 (2) | C12—C11—N1 | 119.87 (16) |
C2—C3—H3A | 107.7 | C16—C11—N1 | 119.61 (18) |
C2—C3—H3B | 107.7 | C11—C12—H12 | 120.0 |
H3A—C3—H3B | 107.1 | C11—C12—C13 | 120.0 (2) |
C4—C3—C2 | 118.4 (2) | C13—C12—H12 | 120.0 |
C4—C3—H3A | 107.7 | C12—C13—H13 | 120.4 |
C4—C3—H3B | 107.7 | C14—C13—C12 | 119.2 (2) |
C3—C4—H4A | 109.6 | C14—C13—H13 | 120.4 |
C3—C4—H4B | 109.6 | C13—C14—H14 | 119.7 |
C3—C4—S1 | 110.09 (15) | C15—C14—C13 | 120.6 (2) |
H4A—C4—H4B | 108.2 | C15—C14—H14 | 119.7 |
S1—C4—H4A | 109.6 | C14—C15—H15 | 119.7 |
S1—C4—H4B | 109.6 | C14—C15—C16 | 120.6 (2) |
C6—C5—C1 | 118.31 (16) | C16—C15—H15 | 119.7 |
C6—C5—C10 | 118.75 (17) | C11—C16—C15 | 119.0 (2) |
C10—C5—C1 | 122.93 (16) | C11—C16—H16 | 120.5 |
C5—C6—H6 | 120.5 | C15—C16—H16 | 120.5 |
C7—C6—C5 | 118.90 (17) | C2—N1—C1 | 123.49 (16) |
C7—C6—H6 | 120.5 | C2—N1—C11 | 117.31 (15) |
C6—C7—N2 | 118.02 (19) | C11—N1—C1 | 116.14 (14) |
C8—C7—C6 | 123.01 (18) | O2—N2—C7 | 118.5 (2) |
C8—C7—N2 | 119.0 (2) | O3—N2—C7 | 118.6 (2) |
C7—C8—H8 | 121.1 | O3—N2—O2 | 122.8 (2) |
C7—C8—C9 | 117.81 (19) | C1—S1—C4 | 93.89 (9) |
C1—C5—C6—C7 | 178.90 (16) | C12—C11—N1—C1 | −61.8 (2) |
C1—C5—C10—C9 | −178.72 (19) | C12—C11—N1—C2 | 99.1 (2) |
C2—C3—C4—S1 | −48.3 (3) | C12—C13—C14—C15 | −0.6 (4) |
C3—C2—N1—C1 | −14.7 (3) | C13—C14—C15—C16 | 0.6 (4) |
C3—C2—N1—C11 | −174.1 (2) | C14—C15—C16—C11 | −0.2 (4) |
C3—C4—S1—C1 | 63.17 (18) | C16—C11—C12—C13 | 0.3 (3) |
C5—C1—N1—C2 | 162.42 (18) | C16—C11—N1—C1 | 116.17 (18) |
C5—C1—N1—C11 | −37.9 (2) | C16—C11—N1—C2 | −82.9 (2) |
C5—C1—S1—C4 | 177.36 (13) | N1—C1—C5—C6 | 118.45 (17) |
C5—C6—C7—C8 | 0.1 (3) | N1—C1—C5—C10 | −62.3 (2) |
C5—C6—C7—N2 | 179.58 (16) | N1—C1—S1—C4 | −59.28 (14) |
C6—C5—C10—C9 | 0.5 (3) | N1—C2—C3—C4 | 18.6 (4) |
C6—C7—C8—C9 | 0.1 (3) | N1—C11—C12—C13 | 178.24 (18) |
C6—C7—N2—O2 | −178.4 (2) | N1—C11—C16—C15 | −178.26 (19) |
C6—C7—N2—O3 | 1.7 (3) | N2—C7—C8—C9 | −179.38 (18) |
C7—C8—C9—C10 | 0.0 (3) | O1—C2—C3—C4 | −165.2 (2) |
C8—C7—N2—O2 | 1.1 (3) | O1—C2—N1—C1 | 169.2 (2) |
C8—C7—N2—O3 | −178.8 (2) | O1—C2—N1—C11 | 9.8 (3) |
C8—C9—C10—C5 | −0.4 (3) | S1—C1—C5—C6 | −118.27 (14) |
C10—C5—C6—C7 | −0.4 (3) | S1—C1—C5—C10 | 61.0 (2) |
C11—C12—C13—C14 | 0.2 (3) | S1—C1—N1—C2 | 41.3 (2) |
C12—C11—C16—C15 | −0.3 (3) | S1—C1—N1—C11 | −159.05 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.98 | 2.19 | 3.158 (2) | 170 |
C15—H15···O3ii | 0.93 | 2.58 | 3.501 (3) | 174 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, y−1, z. |
Acknowledgements
The authors thank Euticals Inc. for the gift of T3P.
References
Arya, K., Rawat, D. S., Dandia, A. & Sasai, H. M. (2012). J. Fluor. Chem. 137, 117–122. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bredikhin, A. A. & Bredikhina, Z. A. (2017). Chem. Eng. Technol. 40, 1211–1220. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y., Wu, J. Yu. L., Zhai, D., Yi, Z., Luo, J. N. & Liu, M. (2012). Patent CN102653526A. Google Scholar
Choi, H., Wang, Z., Zhu, X., He, X., Yang, K. & Liu, H. (2008). Patent WO2008112674, A1. Google Scholar
Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon, 179, 551–564. Web of Science CrossRef CAS Google Scholar
Dandia, A., Singh, R. & Saini, D. (2013). J. Chem. Sci. 125, 1045–1053. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
D'Oria, E., Karamertzanis, P. G. & Price, S. L. (2010). Cryst. Growth Des. 10, 1749–1756. CAS Google Scholar
Eliel, E. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds. New York: John Wiley & Sons. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates, and Resolutions. New York: John Wiley & Sons. Google Scholar
Krumkains, E. V. (1984). EP, 10420, B1. Google Scholar
Pasteur, L. (1848). Ann. Chim. Phys. 22, 442–459. Google Scholar
Pérez-García, L. & Amabilino, D. B. (2007). Chem. Soc. Rev. 36, 941–967. Google Scholar
Qu, H., Zhang, R., Hu, Y., Ke, Y., Gao, Z. & Xu, H. (2013). J. Biosci. 68, 77–81. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yennawar, H., Cali, A. S., Xie, Y. & Silverberg, L. J. (2015). Acta Cryst. E71, 414–417. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133. Corrigendum: (2015), E71, e5. Google Scholar
Yennawar, H. P. & Silverberg, L. J. (2015), E71, e5. Google Scholar
Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.