research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(diiso­propyl­ammonium) cis-di­iodido­bis­­(oxolato-κ2O1,O2)stannate(IV)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB, UMR CNRS 6302, Universite Bourgogne Franche Comte, 9 avenue Alain Savary, 21078 Dijon cedex, France
*Correspondence e-mail: bouks89@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 February 2018; accepted 1 March 2018; online 9 March 2018)

In the title compound, (iPr2NH2)2[SnI2(C2O4)2], which was prepared by reacting (iPr2NH2+)2·C2O42− with SnI4 in a 2:1 molar ratio in a mixed ethanol–aceto­nitrile solvent, the Sn atom is coordinated by two chelating oxalate ions and two iodide ions, with the latter in a cis configuration. In the crystal, the cations are linked to the anions by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds, generating [10-1] chains.

1. Chemical context

As a result of their numerous applications (treatment of cancer, fertilizers, PVC stabilizers, catalysts or reaction inter­mediates), organotin compounds have been studied for many years (Christie et al., 1979[Christie, A. D., Howie, R. A. & Moser, W. (1979). Inorg. Chim. Acta, 36, L447-L448.]; Seik & Kumar Das, 1993[Seik, W. N. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175-179.]; Ramaswamy et al., 2008[Ramaswamy, P., Datta, A. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 2008, 1376-1385.]; Reichelt & Reuter, 2014[Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.]). As a continuation of our work on organotin compounds (Diop et al., 2002[Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.], 2003[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]; Sarr et al., 2013[Sarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m581-m582.]), we now describe the synthesis and crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

Compound (I)[link] crystallizes in the monoclinic system, space group P21/c with Z = 4 formula units. The asymmetric unit contains two diiso­propyl­ammonium cations and one anionic complex [SnI2(C2O4)2]2− (Fig. 1[link]). The SnIV atom of the stannate anion is six-coordinated by four oxygen atoms arising from two chelating oxalate dianions and two iodo anions in the cis-positions, generating a distorted octa­hedral geometry [I2—Sn1—I1 = 99.164 (7), O1—Sn1—O4 = 78.96 (6), O8—Sn1—O6 = 78.60 (5)°]. The C—O bond lengths for the oxygen atoms involved in the coordination of the metal atom [C1—O1 = 1.298 (3), C2—O4 = 1.288 (3), C3—O6 = 1.286 (3), C4—O8 = 1.293 (3) Å] are significantly longer than the non-coordinating C—O bonds [C2—O3 = 1.223 (3), C3—O5 = 1.221 (3), C4—O7 = 1.215 (3), C1—O2 = 1.217 (3) Å]. The Sn—I distances [Sn1—I1 = 2.7190 (2), Sn1—I2 = 2.7039 (2) Å] as well as the Sn1—O distances [Sn1—O1 = 2.0826 (15), Sn1—O4 = 2.1164 (15), Sn1—O6 = 2.1203 (15), Sn1—O8 = 2.0890 (14) Å] are typical and consistent with previous studies (Reichelt & Reuter, 2014[Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.]; Skapski et al., 1974[Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim, 278, 1377-1379.]; Sow et al., 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]). Atoms I1, I2, O4 and O6 are equatorial while O1 and O8 occupy the apical positions in the tin coordination sphere. The angle O1—Sn1—O8 measures 158.49 (6)°: this value deviates considerably from 180°, which may be due to steric hindrance of the iodine atoms. In the equatorial plane the atoms I1, I2, O4 and O6 and the tin(IV) atom are almost coplanar (sum of equatorial angles = 360.3°).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids depicted at the 50% probability level and N—H⋯O hydrogen bonds shown as dashed lines.

3. Supra­molecular features

In the crystal of (I)[link], the oxalate ions accept hydrogen bonds from the protonated cations: each cation forms one simple N—H⋯O hydrogen bond and one asymmetric bifurcated N—H⋯(O,O) bond. In the N1 cation, N1—H1A⋯(O2i,O3i) [N⋯O = 2.909 (2), 3.006 (3) Å; symmetry code: (i) −x + 1, −y + 1, −z] and a simple hydrogen bond N1—H1B⋯O3 [2.916 (2) Å] (Table 1[link]); it is notable that O3 accepts a simple and a bifurcated bond. The N2 cation forms a bifurcated N2—H2B⋯(O5,O7) bond [2.847 (2), 3.027 (2) Å] and a simple bond N2—H2A⋯O7ii [2.968 (2) Å; symmetry code: (ii) −x + 2, −y + 1, −z + 1]. Together, these generate [10[\overline1]] infinite chains as represented in Fig. 2[link]. The packing also features some weak C—H⋯O inter­actions but the main inter-chain inter­actions are van der Waals forces as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.91 2.05 2.909 (2) 156
N1—H1A⋯O3i 0.91 2.37 3.006 (3) 127
N1—H1B⋯O3 0.91 2.02 2.916 (2) 168
N2—H2A⋯O7ii 0.91 2.07 2.968 (2) 167
N2—H2B⋯O5 0.91 1.96 2.847 (2) 165
N2—H2B⋯O7 0.91 2.48 3.027 (2) 119
C5—H5C⋯O2i 0.98 2.60 3.359 (3) 135
C13—H13B⋯O2iii 0.98 2.45 3.397 (3) 162
C14—H14⋯O5iv 1.00 2.52 3.508 (3) 170
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Perspective view of an infinite chain in (I)[link], showing the two types of hydrogen bonds as light-blue dashed lines.
[Figure 3]
Figure 3
The crystal packing for (I)[link] viewed down [100].

4. Database survey

A survey of the Cambridge Structural Database (Version 5.39 plus one update, November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals 229 hits for diiso­propyl­ammonium [iPr2NH2]+ but no hits for the [SnI2(C2O4)2]2− anion.

5. Synthesis and crystallization

The title compound was obtained in mixed solvents of ethanol/aceto­nitrile (50/50) by the reaction of bis­(diiso­propyl­ammonium) oxalate (iPr2NH2)2·C2O4 (0.20 g; 0.63 mmol) with tin(IV) iodide (SnI4) (0.20 g; 0.32 mmol) in a 2:1 molar ratio. The yellow solution obtained was stirred for 1 h and then filtered. Yellow prisms of (I)[link] were obtained by slow solvent evaporation of the filtrate after two weeks.

The bands at 3039 and 1698 cm−1 in the IR spectrum of (I)[link] are assigned respectively to the stretching and deformation vibrations νN—H and δN—H while the broad band at 1676 and those at 1369, 1237 cm−1 are attributed to the asymmetric and symmetric vibrations of the oxalate –CO2 groups. The shape of the band at 1676 cm−1 may be due to a superposition of several bands, which may correlate with the different hydrogen-bonding patterns of the oxalate O atoms. The IR spectrum is available in the supporting information.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å and an N—H distance of 0.91 Å. All displacement parameters of H atoms Uiso(H) were set to 1.2Ueq(C,N) or 1.5Ueq(Cmeth­yl).

Table 2
Experimental details

Crystal data
Chemical formula (C6H16N)2[Sn(C2O4)2I2]
Mr 752.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 115
a, b, c (Å) 9.8129 (5), 18.3694 (8), 14.7122 (7)
β (°) 99.769 (2)
V3) 2613.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.38
Crystal size (mm) 0.33 × 0.26 × 0.19
 
Data collection
Diffractometer Nonius Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.601, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 53617, 6000, 5464
Rint 0.025
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.038, 1.13
No. of reflections 6000
No. of parameters 270
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.66
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(diisopropylammonium) cis-diiodidobis(oxolato-κ2O1,O2)stannate(IV) top
Crystal data top
(C6H16N)2[Sn(C2O4)2I2]F(000) = 1448
Mr = 752.92Dx = 1.914 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8129 (5) ÅCell parameters from 9952 reflections
b = 18.3694 (8) Åθ = 2.2–27.5°
c = 14.7122 (7) ŵ = 3.38 mm1
β = 99.769 (2)°T = 115 K
V = 2613.5 (2) Å3Prism, clear light yellow
Z = 40.33 × 0.26 × 0.19 mm
Data collection top
Nonius Kappa APEXII
diffractometer
6000 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1805464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 512 x 512 pixels mm-1θmax = 27.5°, θmin = 1.8°
φ and ω scans'h = 129
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2323
Tmin = 0.601, Tmax = 0.746l = 1819
53617 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0083P)2 + 3.7038P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
6000 reflectionsΔρmax = 0.53 e Å3
270 parametersΔρmin = 0.66 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.78573 (2)0.31450 (2)0.25379 (2)0.01392 (4)
I20.99273 (2)0.25442 (2)0.17904 (2)0.02417 (4)
I10.78310 (2)0.22030 (2)0.39605 (2)0.02759 (4)
O40.75849 (16)0.39502 (8)0.14940 (11)0.0192 (3)
O80.92027 (14)0.39011 (8)0.32756 (10)0.0168 (3)
O60.64543 (15)0.38330 (8)0.30781 (11)0.0184 (3)
O10.61143 (16)0.27511 (8)0.16703 (10)0.0185 (3)
O30.59844 (17)0.43524 (9)0.03477 (12)0.0265 (4)
C30.7012 (2)0.43729 (12)0.35596 (14)0.0157 (4)
C40.8615 (2)0.44251 (12)0.36505 (14)0.0160 (4)
C20.6436 (2)0.38963 (11)0.09265 (15)0.0181 (4)
O50.64018 (15)0.48291 (8)0.39423 (11)0.0205 (3)
O70.92302 (16)0.49320 (9)0.40632 (11)0.0237 (4)
O20.44899 (17)0.31071 (9)0.05028 (11)0.0250 (4)
N20.77987 (17)0.54725 (9)0.56021 (12)0.0141 (3)
H2A0.8735370.5426560.5724050.017*
H2B0.7503380.5266380.5040730.017*
C110.7460 (2)0.62725 (11)0.55284 (16)0.0183 (4)
H110.7807290.6511510.6133980.022*
C140.7209 (2)0.50374 (12)0.63123 (15)0.0179 (4)
H140.6176670.5050530.6158840.022*
C120.8204 (3)0.65960 (13)0.47974 (17)0.0262 (5)
H12A0.9201440.6515560.4972670.039*
H12B0.8017820.7119820.4745470.039*
H12C0.7873300.6361230.4202730.039*
C130.5906 (2)0.63719 (13)0.5296 (2)0.0298 (6)
H13A0.5544190.6091230.4740710.045*
H13B0.5692230.6888670.5184540.045*
H13C0.5478030.6200060.5811580.045*
C150.7659 (3)0.53661 (15)0.72612 (17)0.0293 (5)
H15A0.8662830.5440330.7369780.044*
H15B0.7412060.5035730.7730290.044*
H15C0.7194190.5834830.7296680.044*
C160.7691 (3)0.42562 (13)0.62586 (19)0.0276 (5)
H16A0.7383830.4068000.5634140.041*
H16B0.7298420.3957530.6701990.041*
H16C0.8702870.4238410.6404880.041*
N10.67810 (18)0.58445 (10)0.08654 (13)0.0188 (4)
H1A0.6166230.6086230.0437750.023*
H1B0.6629800.5359880.0767430.023*
C60.8219 (2)0.60163 (13)0.06907 (17)0.0240 (5)
H60.8373040.6553360.0753770.029*
C80.6461 (2)0.60273 (14)0.18069 (16)0.0260 (5)
H80.7225020.5835890.2284340.031*
C100.5125 (3)0.56523 (15)0.19254 (19)0.0322 (6)
H10A0.4368530.5831290.1457190.048*
H10B0.4920120.5757860.2541060.048*
H10C0.5223880.5125400.1854500.048*
C90.6388 (3)0.68473 (16)0.1915 (2)0.0367 (6)
H9A0.7280460.7063540.1853790.055*
H9B0.6169710.6963240.2524610.055*
H9C0.5664890.7044600.1436560.055*
C70.9297 (2)0.56314 (14)0.13818 (19)0.0304 (6)
H7A0.9270020.5820080.2001450.046*
H7B1.0215840.5717050.1225220.046*
H7C0.9105200.5107580.1366300.046*
C50.8285 (3)0.57961 (17)0.0294 (2)0.0396 (7)
H5A0.8168510.5267800.0358900.059*
H5B0.9184100.5936380.0445770.059*
H5C0.7546430.6042000.0714960.059*
C10.5582 (2)0.31967 (11)0.10212 (15)0.0174 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01150 (7)0.01436 (7)0.01526 (7)0.00066 (5)0.00046 (5)0.00098 (5)
I20.02246 (8)0.02548 (8)0.02626 (8)0.00472 (6)0.00897 (6)0.00448 (6)
I10.02680 (8)0.03201 (9)0.02397 (8)0.00116 (7)0.00428 (6)0.01047 (6)
O40.0185 (8)0.0158 (7)0.0215 (8)0.0027 (6)0.0017 (6)0.0029 (6)
O80.0091 (7)0.0211 (8)0.0200 (8)0.0002 (6)0.0014 (6)0.0063 (6)
O60.0096 (7)0.0216 (8)0.0235 (8)0.0014 (6)0.0014 (6)0.0053 (6)
O10.0194 (8)0.0141 (7)0.0195 (8)0.0032 (6)0.0038 (6)0.0001 (6)
O30.0292 (9)0.0197 (8)0.0271 (9)0.0005 (7)0.0053 (7)0.0064 (7)
C30.0106 (10)0.0202 (10)0.0158 (10)0.0007 (8)0.0012 (8)0.0020 (8)
C40.0119 (10)0.0220 (11)0.0145 (10)0.0027 (8)0.0032 (8)0.0008 (8)
C20.0198 (11)0.0149 (10)0.0190 (11)0.0001 (8)0.0019 (9)0.0021 (8)
O50.0128 (7)0.0242 (8)0.0248 (8)0.0016 (6)0.0038 (6)0.0057 (7)
O70.0138 (8)0.0288 (9)0.0291 (9)0.0045 (7)0.0051 (6)0.0135 (7)
O20.0223 (8)0.0205 (8)0.0277 (9)0.0024 (7)0.0082 (7)0.0018 (7)
N20.0100 (8)0.0167 (9)0.0159 (9)0.0015 (7)0.0031 (7)0.0007 (7)
C110.0210 (11)0.0130 (10)0.0228 (11)0.0018 (8)0.0089 (9)0.0007 (8)
C140.0126 (10)0.0201 (11)0.0217 (11)0.0006 (8)0.0048 (8)0.0069 (9)
C120.0276 (13)0.0232 (12)0.0300 (13)0.0040 (10)0.0115 (10)0.0074 (10)
C130.0224 (12)0.0203 (12)0.0499 (16)0.0076 (10)0.0148 (11)0.0099 (11)
C150.0301 (13)0.0374 (14)0.0221 (12)0.0046 (11)0.0089 (10)0.0049 (10)
C160.0244 (12)0.0211 (12)0.0376 (14)0.0026 (10)0.0062 (10)0.0091 (10)
N10.0161 (9)0.0198 (9)0.0196 (9)0.0009 (7)0.0004 (7)0.0028 (7)
C60.0196 (11)0.0216 (12)0.0319 (13)0.0025 (9)0.0073 (10)0.0039 (10)
C80.0207 (12)0.0389 (14)0.0172 (11)0.0048 (10)0.0005 (9)0.0028 (10)
C100.0293 (14)0.0379 (15)0.0322 (14)0.0070 (11)0.0126 (11)0.0109 (11)
C90.0291 (14)0.0429 (16)0.0372 (15)0.0037 (12)0.0034 (11)0.0158 (13)
C70.0165 (12)0.0302 (13)0.0432 (16)0.0014 (10)0.0015 (10)0.0038 (11)
C50.0365 (16)0.0491 (18)0.0366 (16)0.0084 (13)0.0163 (12)0.0075 (13)
C10.0199 (11)0.0142 (10)0.0173 (10)0.0005 (8)0.0003 (8)0.0053 (8)
Geometric parameters (Å, º) top
Sn1—I22.7039 (2)C13—H13B0.9800
Sn1—I12.7190 (2)C13—H13C0.9800
Sn1—O42.1164 (15)C15—H15A0.9800
Sn1—O82.0890 (14)C15—H15B0.9800
Sn1—O62.1203 (15)C15—H15C0.9800
Sn1—O12.0826 (15)C16—H16A0.9800
O4—C21.288 (3)C16—H16B0.9800
O8—C41.293 (3)C16—H16C0.9800
O6—C31.286 (3)N1—H1A0.9100
O1—C11.298 (3)N1—H1B0.9100
O3—C21.223 (3)N1—C61.510 (3)
C3—C41.560 (3)N1—C81.509 (3)
C3—O51.221 (3)C6—H61.0000
C4—O71.215 (3)C6—C71.513 (3)
C2—C11.553 (3)C6—C51.517 (4)
O2—C11.217 (3)C8—H81.0000
N2—H2A0.9100C8—C101.517 (3)
N2—H2B0.9100C8—C91.518 (4)
N2—C111.507 (3)C10—H10A0.9800
N2—C141.507 (3)C10—H10B0.9800
C11—H111.0000C10—H10C0.9800
C11—C121.520 (3)C9—H9A0.9800
C11—C131.515 (3)C9—H9B0.9800
C14—H141.0000C9—H9C0.9800
C14—C151.516 (3)C7—H7A0.9800
C14—C161.517 (3)C7—H7B0.9800
C12—H12A0.9800C7—H7C0.9800
C12—H12B0.9800C5—H5A0.9800
C12—H12C0.9800C5—H5B0.9800
C13—H13A0.9800C5—H5C0.9800
I2—Sn1—I199.164 (7)C14—C15—H15A109.5
O4—Sn1—I290.07 (4)C14—C15—H15B109.5
O4—Sn1—I1170.69 (4)C14—C15—H15C109.5
O4—Sn1—O681.10 (6)H15A—C15—H15B109.5
O8—Sn1—I291.75 (4)H15A—C15—H15C109.5
O8—Sn1—I196.37 (4)H15B—C15—H15C109.5
O8—Sn1—O484.45 (6)C14—C16—H16A109.5
O8—Sn1—O678.60 (5)C14—C16—H16B109.5
O6—Sn1—I2167.44 (4)C14—C16—H16C109.5
O6—Sn1—I189.96 (4)H16A—C16—H16B109.5
O1—Sn1—I2101.80 (4)H16A—C16—H16C109.5
O1—Sn1—I197.85 (4)H16B—C16—H16C109.5
O1—Sn1—O478.96 (6)H1A—N1—H1B107.3
O1—Sn1—O8158.49 (6)C6—N1—H1A108.0
O1—Sn1—O685.34 (6)C6—N1—H1B108.0
C2—O4—Sn1113.94 (13)C8—N1—H1A108.0
C4—O8—Sn1115.37 (13)C8—N1—H1B108.0
C3—O6—Sn1115.07 (12)C8—N1—C6117.10 (18)
C1—O1—Sn1114.70 (13)N1—C6—H6108.7
O6—C3—C4115.05 (18)N1—C6—C7110.82 (19)
O5—C3—O6125.98 (19)N1—C6—C5107.4 (2)
O5—C3—C4118.97 (19)C7—C6—H6108.7
O8—C4—C3115.73 (18)C7—C6—C5112.3 (2)
O7—C4—O8124.36 (19)C5—C6—H6108.7
O7—C4—C3119.90 (19)N1—C8—H8108.6
O4—C2—C1115.57 (18)N1—C8—C10108.8 (2)
O3—C2—O4125.0 (2)N1—C8—C9109.8 (2)
O3—C2—C1119.46 (19)C10—C8—H8108.6
H2A—N2—H2B107.2C10—C8—C9112.4 (2)
C11—N2—H2A107.9C9—C8—H8108.6
C11—N2—H2B107.9C8—C10—H10A109.5
C11—N2—C14117.46 (16)C8—C10—H10B109.5
C14—N2—H2A107.9C8—C10—H10C109.5
C14—N2—H2B107.9H10A—C10—H10B109.5
N2—C11—H11109.0H10A—C10—H10C109.5
N2—C11—C12107.79 (17)H10B—C10—H10C109.5
N2—C11—C13109.59 (17)C8—C9—H9A109.5
C12—C11—H11109.0C8—C9—H9B109.5
C13—C11—H11109.0C8—C9—H9C109.5
C13—C11—C12112.3 (2)H9A—C9—H9B109.5
N2—C14—H14108.9H9A—C9—H9C109.5
N2—C14—C15109.93 (18)H9B—C9—H9C109.5
N2—C14—C16107.79 (18)C6—C7—H7A109.5
C15—C14—H14108.9C6—C7—H7B109.5
C15—C14—C16112.3 (2)C6—C7—H7C109.5
C16—C14—H14108.9H7A—C7—H7B109.5
C11—C12—H12A109.5H7A—C7—H7C109.5
C11—C12—H12B109.5H7B—C7—H7C109.5
C11—C12—H12C109.5C6—C5—H5A109.5
H12A—C12—H12B109.5C6—C5—H5B109.5
H12A—C12—H12C109.5C6—C5—H5C109.5
H12B—C12—H12C109.5H5A—C5—H5B109.5
C11—C13—H13A109.5H5A—C5—H5C109.5
C11—C13—H13B109.5H5B—C5—H5C109.5
C11—C13—H13C109.5O1—C1—C2115.59 (18)
H13A—C13—H13B109.5O2—C1—O1125.3 (2)
H13A—C13—H13C109.5O2—C1—C2119.15 (19)
H13B—C13—H13C109.5
Sn1—O4—C2—O3170.08 (18)O3—C2—C1—O1178.0 (2)
Sn1—O4—C2—C18.8 (2)O3—C2—C1—O21.6 (3)
Sn1—O8—C4—C34.8 (2)O5—C3—C4—O8175.99 (19)
Sn1—O8—C4—O7176.05 (18)O5—C3—C4—O73.2 (3)
Sn1—O6—C3—C40.5 (2)C11—N2—C14—C1557.1 (2)
Sn1—O6—C3—O5179.06 (18)C11—N2—C14—C16179.84 (18)
Sn1—O1—C1—C27.6 (2)C14—N2—C11—C12178.03 (18)
Sn1—O1—C1—O2171.97 (18)C14—N2—C11—C1359.5 (2)
O4—C2—C1—O11.0 (3)C6—N1—C8—C10166.20 (19)
O4—C2—C1—O2179.5 (2)C6—N1—C8—C970.4 (2)
O6—C3—C4—O83.6 (3)C8—N1—C6—C757.7 (3)
O6—C3—C4—O7177.2 (2)C8—N1—C6—C5179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.912.052.909 (2)156
N1—H1A···O3i0.912.373.006 (3)127
N1—H1B···O30.912.022.916 (2)168
N2—H2A···O7ii0.912.072.968 (2)167
N2—H2B···O50.911.962.847 (2)165
N2—H2B···O70.912.483.027 (2)119
C5—H5C···O2i0.982.603.359 (3)135
C13—H13B···O2iii0.982.453.397 (3)162
C14—H14···O5iv1.002.523.508 (3)170
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Funding information

The authors thank Cheikh Anta Diop University, Dakar, Senegal and the CNRS in X-ray Cystallography, Dijon, France, for financial support. All measurements were performed at the Pôle Chimie Moléculaire, the technological platform for chemical analysis and mol­ecular synthesis (https://www.wpcm.fr) which relies on the Institute of Mol­ecular Chemistry of the University of Burgundy and Welience, a Burgundy University private subsidiary.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristie, A. D., Howie, R. A. & Moser, W. (1979). Inorg. Chim. Acta, 36, L447–L448.  CSD CrossRef CAS Web of Science Google Scholar
First citationDiop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamaswamy, P., Datta, A. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 2008, 1376–1385.  Web of Science CSD CrossRef Google Scholar
First citationReichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133.  CSD CrossRef IUCr Journals Google Scholar
First citationSarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m581–m582.  CSD CrossRef IUCr Journals Google Scholar
First citationSeik, W. N. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175–179.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim, 278, 1377–1379.  CAS Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds