research communications
cis-diiodidobis(oxolato-κ2O1,O2)stannate(IV)
of bis(diisopropylammonium)aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB, UMR CNRS 6302, Universite Bourgogne Franche Comte, 9 avenue Alain Savary, 21078 Dijon cedex, France
*Correspondence e-mail: bouks89@gmail.com
In the title compound, (iPr2NH2)2[SnI2(C2O4)2], which was prepared by reacting (iPr2NH2+)2·C2O42− with SnI4 in a 2:1 molar ratio in a mixed ethanol–acetonitrile solvent, the Sn atom is coordinated by two chelating oxalate ions and two iodide ions, with the latter in a cis configuration. In the crystal, the cations are linked to the anions by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds, generating [10-1] chains.
Keywords: crystal structure; tin(IV) oxalate; N—H⋯O hydrogen bonding; bifurcated N—H⋯(O,O) hydrogen bonds.
CCDC reference: 1826865
1. Chemical context
As a result of their numerous applications (treatment of cancer, fertilizers, PVC stabilizers, catalysts or reaction intermediates), organotin compounds have been studied for many years (Christie et al., 1979; Seik & Kumar Das, 1993; Ramaswamy et al., 2008; Reichelt & Reuter, 2014). As a continuation of our work on organotin compounds (Diop et al., 2002, 2003; Sarr et al., 2013), we now describe the synthesis and of the title compound, (I).
2. Structural commentary
Compound (I) crystallizes in the monoclinic system, P21/c with Z = 4 formula units. The contains two diisopropylammonium cations and one anionic complex [SnI2(C2O4)2]2− (Fig. 1). The SnIV atom of the stannate anion is six-coordinated by four oxygen atoms arising from two chelating oxalate dianions and two iodo anions in the cis-positions, generating a distorted octahedral geometry [I2—Sn1—I1 = 99.164 (7), O1—Sn1—O4 = 78.96 (6), O8—Sn1—O6 = 78.60 (5)°]. The C—O bond lengths for the oxygen atoms involved in the coordination of the metal atom [C1—O1 = 1.298 (3), C2—O4 = 1.288 (3), C3—O6 = 1.286 (3), C4—O8 = 1.293 (3) Å] are significantly longer than the non-coordinating C—O bonds [C2—O3 = 1.223 (3), C3—O5 = 1.221 (3), C4—O7 = 1.215 (3), C1—O2 = 1.217 (3) Å]. The Sn—I distances [Sn1—I1 = 2.7190 (2), Sn1—I2 = 2.7039 (2) Å] as well as the Sn1—O distances [Sn1—O1 = 2.0826 (15), Sn1—O4 = 2.1164 (15), Sn1—O6 = 2.1203 (15), Sn1—O8 = 2.0890 (14) Å] are typical and consistent with previous studies (Reichelt & Reuter, 2014; Skapski et al., 1974; Sow et al., 2013). Atoms I1, I2, O4 and O6 are equatorial while O1 and O8 occupy the apical positions in the tin coordination sphere. The angle O1—Sn1—O8 measures 158.49 (6)°: this value deviates considerably from 180°, which may be due to of the iodine atoms. In the equatorial plane the atoms I1, I2, O4 and O6 and the tin(IV) atom are almost coplanar (sum of equatorial angles = 360.3°).
3. Supramolecular features
In the crystal of (I), the oxalate ions accept hydrogen bonds from the protonated cations: each cation forms one simple N—H⋯O hydrogen bond and one asymmetric bifurcated N—H⋯(O,O) bond. In the N1 cation, N1—H1A⋯(O2i,O3i) [N⋯O = 2.909 (2), 3.006 (3) Å; symmetry code: (i) −x + 1, −y + 1, −z] and a simple hydrogen bond N1—H1B⋯O3 [2.916 (2) Å] (Table 1); it is notable that O3 accepts a simple and a bifurcated bond. The N2 cation forms a bifurcated N2—H2B⋯(O5,O7) bond [2.847 (2), 3.027 (2) Å] and a simple bond N2—H2A⋯O7ii [2.968 (2) Å; symmetry code: (ii) −x + 2, −y + 1, −z + 1]. Together, these generate [10] infinite chains as represented in Fig. 2. The packing also features some weak C—H⋯O interactions but the main inter-chain interactions are as shown in Fig. 3.
4. Database survey
A survey of the Cambridge Structural Database (Version 5.39 plus one update, November 2017; Groom et al., 2016) reveals 229 hits for diisopropylammonium [iPr2NH2]+ but no hits for the [SnI2(C2O4)2]2− anion.
5. Synthesis and crystallization
The title compound was obtained in mixed solvents of ethanol/acetonitrile (50/50) by the reaction of bis(diisopropylammonium) oxalate (iPr2NH2)2·C2O4 (0.20 g; 0.63 mmol) with tin(IV) iodide (SnI4) (0.20 g; 0.32 mmol) in a 2:1 molar ratio. The yellow solution obtained was stirred for 1 h and then filtered. Yellow prisms of (I) were obtained by slow solvent evaporation of the filtrate after two weeks.
The bands at 3039 and 1698 cm−1 in the IR spectrum of (I) are assigned respectively to the stretching and deformation vibrations νN—H and δN—H while the broad band at 1676 and those at 1369, 1237 cm−1 are attributed to the asymmetric and symmetric vibrations of the oxalate –CO2 groups. The shape of the band at 1676 cm−1 may be due to a superposition of several bands, which may correlate with the different hydrogen-bonding patterns of the oxalate O atoms. The IR spectrum is available in the supporting information.
6. details
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å and an N—H distance of 0.91 Å. All displacement parameters of H atoms Uiso(H) were set to 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1826865
https://doi.org/10.1107/S2056989018003602/hb7738sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003602/hb7738Isup2.hkl
IR spectrum. DOI: https://doi.org/10.1107/S2056989018003602/hb7738sup3.pdf
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C6H16N)2[Sn(C2O4)2I2] | F(000) = 1448 |
Mr = 752.92 | Dx = 1.914 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8129 (5) Å | Cell parameters from 9952 reflections |
b = 18.3694 (8) Å | θ = 2.2–27.5° |
c = 14.7122 (7) Å | µ = 3.38 mm−1 |
β = 99.769 (2)° | T = 115 K |
V = 2613.5 (2) Å3 | Prism, clear light yellow |
Z = 4 | 0.33 × 0.26 × 0.19 mm |
Nonius Kappa APEXII diffractometer | 6000 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 5464 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 512 x 512 pixels mm-1 | θmax = 27.5°, θmin = 1.8° |
φ and ω scans' | h = −12→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −23→23 |
Tmin = 0.601, Tmax = 0.746 | l = −18→19 |
53617 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0083P)2 + 3.7038P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.002 |
6000 reflections | Δρmax = 0.53 e Å−3 |
270 parameters | Δρmin = −0.66 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.78573 (2) | 0.31450 (2) | 0.25379 (2) | 0.01392 (4) | |
I2 | 0.99273 (2) | 0.25442 (2) | 0.17904 (2) | 0.02417 (4) | |
I1 | 0.78310 (2) | 0.22030 (2) | 0.39605 (2) | 0.02759 (4) | |
O4 | 0.75849 (16) | 0.39502 (8) | 0.14940 (11) | 0.0192 (3) | |
O8 | 0.92027 (14) | 0.39011 (8) | 0.32756 (10) | 0.0168 (3) | |
O6 | 0.64543 (15) | 0.38330 (8) | 0.30781 (11) | 0.0184 (3) | |
O1 | 0.61143 (16) | 0.27511 (8) | 0.16703 (10) | 0.0185 (3) | |
O3 | 0.59844 (17) | 0.43524 (9) | 0.03477 (12) | 0.0265 (4) | |
C3 | 0.7012 (2) | 0.43729 (12) | 0.35596 (14) | 0.0157 (4) | |
C4 | 0.8615 (2) | 0.44251 (12) | 0.36505 (14) | 0.0160 (4) | |
C2 | 0.6436 (2) | 0.38963 (11) | 0.09265 (15) | 0.0181 (4) | |
O5 | 0.64018 (15) | 0.48291 (8) | 0.39423 (11) | 0.0205 (3) | |
O7 | 0.92302 (16) | 0.49320 (9) | 0.40632 (11) | 0.0237 (4) | |
O2 | 0.44899 (17) | 0.31071 (9) | 0.05028 (11) | 0.0250 (4) | |
N2 | 0.77987 (17) | 0.54725 (9) | 0.56021 (12) | 0.0141 (3) | |
H2A | 0.873537 | 0.542656 | 0.572405 | 0.017* | |
H2B | 0.750338 | 0.526638 | 0.504073 | 0.017* | |
C11 | 0.7460 (2) | 0.62725 (11) | 0.55284 (16) | 0.0183 (4) | |
H11 | 0.780729 | 0.651151 | 0.613398 | 0.022* | |
C14 | 0.7209 (2) | 0.50374 (12) | 0.63123 (15) | 0.0179 (4) | |
H14 | 0.617667 | 0.505053 | 0.615884 | 0.022* | |
C12 | 0.8204 (3) | 0.65960 (13) | 0.47974 (17) | 0.0262 (5) | |
H12A | 0.920144 | 0.651556 | 0.497267 | 0.039* | |
H12B | 0.801782 | 0.711982 | 0.474547 | 0.039* | |
H12C | 0.787330 | 0.636123 | 0.420273 | 0.039* | |
C13 | 0.5906 (2) | 0.63719 (13) | 0.5296 (2) | 0.0298 (6) | |
H13A | 0.554419 | 0.609123 | 0.474071 | 0.045* | |
H13B | 0.569223 | 0.688867 | 0.518454 | 0.045* | |
H13C | 0.547803 | 0.620006 | 0.581158 | 0.045* | |
C15 | 0.7659 (3) | 0.53661 (15) | 0.72612 (17) | 0.0293 (5) | |
H15A | 0.866283 | 0.544033 | 0.736978 | 0.044* | |
H15B | 0.741206 | 0.503573 | 0.773029 | 0.044* | |
H15C | 0.719419 | 0.583483 | 0.729668 | 0.044* | |
C16 | 0.7691 (3) | 0.42562 (13) | 0.62586 (19) | 0.0276 (5) | |
H16A | 0.738383 | 0.406800 | 0.563414 | 0.041* | |
H16B | 0.729842 | 0.395753 | 0.670199 | 0.041* | |
H16C | 0.870287 | 0.423841 | 0.640488 | 0.041* | |
N1 | 0.67810 (18) | 0.58445 (10) | 0.08654 (13) | 0.0188 (4) | |
H1A | 0.616623 | 0.608623 | 0.043775 | 0.023* | |
H1B | 0.662980 | 0.535988 | 0.076743 | 0.023* | |
C6 | 0.8219 (2) | 0.60163 (13) | 0.06907 (17) | 0.0240 (5) | |
H6 | 0.837304 | 0.655336 | 0.075377 | 0.029* | |
C8 | 0.6461 (2) | 0.60273 (14) | 0.18069 (16) | 0.0260 (5) | |
H8 | 0.722502 | 0.583589 | 0.228434 | 0.031* | |
C10 | 0.5125 (3) | 0.56523 (15) | 0.19254 (19) | 0.0322 (6) | |
H10A | 0.436853 | 0.583129 | 0.145719 | 0.048* | |
H10B | 0.492012 | 0.575786 | 0.254106 | 0.048* | |
H10C | 0.522388 | 0.512540 | 0.185450 | 0.048* | |
C9 | 0.6388 (3) | 0.68473 (16) | 0.1915 (2) | 0.0367 (6) | |
H9A | 0.728046 | 0.706354 | 0.185379 | 0.055* | |
H9B | 0.616971 | 0.696324 | 0.252461 | 0.055* | |
H9C | 0.566489 | 0.704460 | 0.143656 | 0.055* | |
C7 | 0.9297 (2) | 0.56314 (14) | 0.13818 (19) | 0.0304 (6) | |
H7A | 0.927002 | 0.582008 | 0.200145 | 0.046* | |
H7B | 1.021584 | 0.571705 | 0.122522 | 0.046* | |
H7C | 0.910520 | 0.510758 | 0.136630 | 0.046* | |
C5 | 0.8285 (3) | 0.57961 (17) | −0.0294 (2) | 0.0396 (7) | |
H5A | 0.816851 | 0.526780 | −0.035890 | 0.059* | |
H5B | 0.918410 | 0.593638 | −0.044577 | 0.059* | |
H5C | 0.754643 | 0.604200 | −0.071496 | 0.059* | |
C1 | 0.5582 (2) | 0.31967 (11) | 0.10212 (15) | 0.0174 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01150 (7) | 0.01436 (7) | 0.01526 (7) | −0.00066 (5) | 0.00046 (5) | −0.00098 (5) |
I2 | 0.02246 (8) | 0.02548 (8) | 0.02626 (8) | 0.00472 (6) | 0.00897 (6) | −0.00448 (6) |
I1 | 0.02680 (8) | 0.03201 (9) | 0.02397 (8) | −0.00116 (7) | 0.00428 (6) | 0.01047 (6) |
O4 | 0.0185 (8) | 0.0158 (7) | 0.0215 (8) | −0.0027 (6) | −0.0017 (6) | 0.0029 (6) |
O8 | 0.0091 (7) | 0.0211 (8) | 0.0200 (8) | 0.0002 (6) | 0.0014 (6) | −0.0063 (6) |
O6 | 0.0096 (7) | 0.0216 (8) | 0.0235 (8) | −0.0014 (6) | 0.0014 (6) | −0.0053 (6) |
O1 | 0.0194 (8) | 0.0141 (7) | 0.0195 (8) | −0.0032 (6) | −0.0038 (6) | 0.0001 (6) |
O3 | 0.0292 (9) | 0.0197 (8) | 0.0271 (9) | 0.0005 (7) | −0.0053 (7) | 0.0064 (7) |
C3 | 0.0106 (10) | 0.0202 (10) | 0.0158 (10) | −0.0007 (8) | 0.0012 (8) | 0.0020 (8) |
C4 | 0.0119 (10) | 0.0220 (11) | 0.0145 (10) | −0.0027 (8) | 0.0032 (8) | −0.0008 (8) |
C2 | 0.0198 (11) | 0.0149 (10) | 0.0190 (11) | 0.0001 (8) | 0.0019 (9) | −0.0021 (8) |
O5 | 0.0128 (7) | 0.0242 (8) | 0.0248 (8) | 0.0016 (6) | 0.0038 (6) | −0.0057 (7) |
O7 | 0.0138 (8) | 0.0288 (9) | 0.0291 (9) | −0.0045 (7) | 0.0051 (6) | −0.0135 (7) |
O2 | 0.0223 (8) | 0.0205 (8) | 0.0277 (9) | −0.0024 (7) | −0.0082 (7) | −0.0018 (7) |
N2 | 0.0100 (8) | 0.0167 (9) | 0.0159 (9) | −0.0015 (7) | 0.0031 (7) | 0.0007 (7) |
C11 | 0.0210 (11) | 0.0130 (10) | 0.0228 (11) | −0.0018 (8) | 0.0089 (9) | 0.0007 (8) |
C14 | 0.0126 (10) | 0.0201 (11) | 0.0217 (11) | −0.0006 (8) | 0.0048 (8) | 0.0069 (9) |
C12 | 0.0276 (13) | 0.0232 (12) | 0.0300 (13) | −0.0040 (10) | 0.0115 (10) | 0.0074 (10) |
C13 | 0.0224 (12) | 0.0203 (12) | 0.0499 (16) | 0.0076 (10) | 0.0148 (11) | 0.0099 (11) |
C15 | 0.0301 (13) | 0.0374 (14) | 0.0221 (12) | −0.0046 (11) | 0.0089 (10) | 0.0049 (10) |
C16 | 0.0244 (12) | 0.0211 (12) | 0.0376 (14) | 0.0026 (10) | 0.0062 (10) | 0.0091 (10) |
N1 | 0.0161 (9) | 0.0198 (9) | 0.0196 (9) | 0.0009 (7) | 0.0004 (7) | 0.0028 (7) |
C6 | 0.0196 (11) | 0.0216 (12) | 0.0319 (13) | −0.0025 (9) | 0.0073 (10) | 0.0039 (10) |
C8 | 0.0207 (12) | 0.0389 (14) | 0.0172 (11) | 0.0048 (10) | −0.0005 (9) | 0.0028 (10) |
C10 | 0.0293 (14) | 0.0379 (15) | 0.0322 (14) | 0.0070 (11) | 0.0126 (11) | 0.0109 (11) |
C9 | 0.0291 (14) | 0.0429 (16) | 0.0372 (15) | −0.0037 (12) | 0.0034 (11) | −0.0158 (13) |
C7 | 0.0165 (12) | 0.0302 (13) | 0.0432 (16) | −0.0014 (10) | 0.0015 (10) | 0.0038 (11) |
C5 | 0.0365 (16) | 0.0491 (18) | 0.0366 (16) | 0.0084 (13) | 0.0163 (12) | 0.0075 (13) |
C1 | 0.0199 (11) | 0.0142 (10) | 0.0173 (10) | −0.0005 (8) | 0.0003 (8) | −0.0053 (8) |
Sn1—I2 | 2.7039 (2) | C13—H13B | 0.9800 |
Sn1—I1 | 2.7190 (2) | C13—H13C | 0.9800 |
Sn1—O4 | 2.1164 (15) | C15—H15A | 0.9800 |
Sn1—O8 | 2.0890 (14) | C15—H15B | 0.9800 |
Sn1—O6 | 2.1203 (15) | C15—H15C | 0.9800 |
Sn1—O1 | 2.0826 (15) | C16—H16A | 0.9800 |
O4—C2 | 1.288 (3) | C16—H16B | 0.9800 |
O8—C4 | 1.293 (3) | C16—H16C | 0.9800 |
O6—C3 | 1.286 (3) | N1—H1A | 0.9100 |
O1—C1 | 1.298 (3) | N1—H1B | 0.9100 |
O3—C2 | 1.223 (3) | N1—C6 | 1.510 (3) |
C3—C4 | 1.560 (3) | N1—C8 | 1.509 (3) |
C3—O5 | 1.221 (3) | C6—H6 | 1.0000 |
C4—O7 | 1.215 (3) | C6—C7 | 1.513 (3) |
C2—C1 | 1.553 (3) | C6—C5 | 1.517 (4) |
O2—C1 | 1.217 (3) | C8—H8 | 1.0000 |
N2—H2A | 0.9100 | C8—C10 | 1.517 (3) |
N2—H2B | 0.9100 | C8—C9 | 1.518 (4) |
N2—C11 | 1.507 (3) | C10—H10A | 0.9800 |
N2—C14 | 1.507 (3) | C10—H10B | 0.9800 |
C11—H11 | 1.0000 | C10—H10C | 0.9800 |
C11—C12 | 1.520 (3) | C9—H9A | 0.9800 |
C11—C13 | 1.515 (3) | C9—H9B | 0.9800 |
C14—H14 | 1.0000 | C9—H9C | 0.9800 |
C14—C15 | 1.516 (3) | C7—H7A | 0.9800 |
C14—C16 | 1.517 (3) | C7—H7B | 0.9800 |
C12—H12A | 0.9800 | C7—H7C | 0.9800 |
C12—H12B | 0.9800 | C5—H5A | 0.9800 |
C12—H12C | 0.9800 | C5—H5B | 0.9800 |
C13—H13A | 0.9800 | C5—H5C | 0.9800 |
I2—Sn1—I1 | 99.164 (7) | C14—C15—H15A | 109.5 |
O4—Sn1—I2 | 90.07 (4) | C14—C15—H15B | 109.5 |
O4—Sn1—I1 | 170.69 (4) | C14—C15—H15C | 109.5 |
O4—Sn1—O6 | 81.10 (6) | H15A—C15—H15B | 109.5 |
O8—Sn1—I2 | 91.75 (4) | H15A—C15—H15C | 109.5 |
O8—Sn1—I1 | 96.37 (4) | H15B—C15—H15C | 109.5 |
O8—Sn1—O4 | 84.45 (6) | C14—C16—H16A | 109.5 |
O8—Sn1—O6 | 78.60 (5) | C14—C16—H16B | 109.5 |
O6—Sn1—I2 | 167.44 (4) | C14—C16—H16C | 109.5 |
O6—Sn1—I1 | 89.96 (4) | H16A—C16—H16B | 109.5 |
O1—Sn1—I2 | 101.80 (4) | H16A—C16—H16C | 109.5 |
O1—Sn1—I1 | 97.85 (4) | H16B—C16—H16C | 109.5 |
O1—Sn1—O4 | 78.96 (6) | H1A—N1—H1B | 107.3 |
O1—Sn1—O8 | 158.49 (6) | C6—N1—H1A | 108.0 |
O1—Sn1—O6 | 85.34 (6) | C6—N1—H1B | 108.0 |
C2—O4—Sn1 | 113.94 (13) | C8—N1—H1A | 108.0 |
C4—O8—Sn1 | 115.37 (13) | C8—N1—H1B | 108.0 |
C3—O6—Sn1 | 115.07 (12) | C8—N1—C6 | 117.10 (18) |
C1—O1—Sn1 | 114.70 (13) | N1—C6—H6 | 108.7 |
O6—C3—C4 | 115.05 (18) | N1—C6—C7 | 110.82 (19) |
O5—C3—O6 | 125.98 (19) | N1—C6—C5 | 107.4 (2) |
O5—C3—C4 | 118.97 (19) | C7—C6—H6 | 108.7 |
O8—C4—C3 | 115.73 (18) | C7—C6—C5 | 112.3 (2) |
O7—C4—O8 | 124.36 (19) | C5—C6—H6 | 108.7 |
O7—C4—C3 | 119.90 (19) | N1—C8—H8 | 108.6 |
O4—C2—C1 | 115.57 (18) | N1—C8—C10 | 108.8 (2) |
O3—C2—O4 | 125.0 (2) | N1—C8—C9 | 109.8 (2) |
O3—C2—C1 | 119.46 (19) | C10—C8—H8 | 108.6 |
H2A—N2—H2B | 107.2 | C10—C8—C9 | 112.4 (2) |
C11—N2—H2A | 107.9 | C9—C8—H8 | 108.6 |
C11—N2—H2B | 107.9 | C8—C10—H10A | 109.5 |
C11—N2—C14 | 117.46 (16) | C8—C10—H10B | 109.5 |
C14—N2—H2A | 107.9 | C8—C10—H10C | 109.5 |
C14—N2—H2B | 107.9 | H10A—C10—H10B | 109.5 |
N2—C11—H11 | 109.0 | H10A—C10—H10C | 109.5 |
N2—C11—C12 | 107.79 (17) | H10B—C10—H10C | 109.5 |
N2—C11—C13 | 109.59 (17) | C8—C9—H9A | 109.5 |
C12—C11—H11 | 109.0 | C8—C9—H9B | 109.5 |
C13—C11—H11 | 109.0 | C8—C9—H9C | 109.5 |
C13—C11—C12 | 112.3 (2) | H9A—C9—H9B | 109.5 |
N2—C14—H14 | 108.9 | H9A—C9—H9C | 109.5 |
N2—C14—C15 | 109.93 (18) | H9B—C9—H9C | 109.5 |
N2—C14—C16 | 107.79 (18) | C6—C7—H7A | 109.5 |
C15—C14—H14 | 108.9 | C6—C7—H7B | 109.5 |
C15—C14—C16 | 112.3 (2) | C6—C7—H7C | 109.5 |
C16—C14—H14 | 108.9 | H7A—C7—H7B | 109.5 |
C11—C12—H12A | 109.5 | H7A—C7—H7C | 109.5 |
C11—C12—H12B | 109.5 | H7B—C7—H7C | 109.5 |
C11—C12—H12C | 109.5 | C6—C5—H5A | 109.5 |
H12A—C12—H12B | 109.5 | C6—C5—H5B | 109.5 |
H12A—C12—H12C | 109.5 | C6—C5—H5C | 109.5 |
H12B—C12—H12C | 109.5 | H5A—C5—H5B | 109.5 |
C11—C13—H13A | 109.5 | H5A—C5—H5C | 109.5 |
C11—C13—H13B | 109.5 | H5B—C5—H5C | 109.5 |
C11—C13—H13C | 109.5 | O1—C1—C2 | 115.59 (18) |
H13A—C13—H13B | 109.5 | O2—C1—O1 | 125.3 (2) |
H13A—C13—H13C | 109.5 | O2—C1—C2 | 119.15 (19) |
H13B—C13—H13C | 109.5 | ||
Sn1—O4—C2—O3 | 170.08 (18) | O3—C2—C1—O1 | −178.0 (2) |
Sn1—O4—C2—C1 | −8.8 (2) | O3—C2—C1—O2 | 1.6 (3) |
Sn1—O8—C4—C3 | 4.8 (2) | O5—C3—C4—O8 | 175.99 (19) |
Sn1—O8—C4—O7 | −176.05 (18) | O5—C3—C4—O7 | −3.2 (3) |
Sn1—O6—C3—C4 | 0.5 (2) | C11—N2—C14—C15 | −57.1 (2) |
Sn1—O6—C3—O5 | −179.06 (18) | C11—N2—C14—C16 | −179.84 (18) |
Sn1—O1—C1—C2 | 7.6 (2) | C14—N2—C11—C12 | 178.03 (18) |
Sn1—O1—C1—O2 | −171.97 (18) | C14—N2—C11—C13 | −59.5 (2) |
O4—C2—C1—O1 | 1.0 (3) | C6—N1—C8—C10 | −166.20 (19) |
O4—C2—C1—O2 | −179.5 (2) | C6—N1—C8—C9 | 70.4 (2) |
O6—C3—C4—O8 | −3.6 (3) | C8—N1—C6—C7 | 57.7 (3) |
O6—C3—C4—O7 | 177.2 (2) | C8—N1—C6—C5 | −179.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.91 | 2.05 | 2.909 (2) | 156 |
N1—H1A···O3i | 0.91 | 2.37 | 3.006 (3) | 127 |
N1—H1B···O3 | 0.91 | 2.02 | 2.916 (2) | 168 |
N2—H2A···O7ii | 0.91 | 2.07 | 2.968 (2) | 167 |
N2—H2B···O5 | 0.91 | 1.96 | 2.847 (2) | 165 |
N2—H2B···O7 | 0.91 | 2.48 | 3.027 (2) | 119 |
C5—H5C···O2i | 0.98 | 2.60 | 3.359 (3) | 135 |
C13—H13B···O2iii | 0.98 | 2.45 | 3.397 (3) | 162 |
C14—H14···O5iv | 1.00 | 2.52 | 3.508 (3) | 170 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z+1. |
Funding information
The authors thank Cheikh Anta Diop University, Dakar, Senegal and the CNRS in X-ray Cystallography, Dijon, France, for financial support. All measurements were performed at the Pôle Chimie Moléculaire, the technological platform for chemical analysis and molecular synthesis (https://www.wpcm.fr) which relies on the Institute of Molecular Chemistry of the University of Burgundy and Welience, a Burgundy University private subsidiary.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christie, A. D., Howie, R. A. & Moser, W. (1979). Inorg. Chim. Acta, 36, L447–L448. CSD CrossRef CAS Web of Science Google Scholar
Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328. CAS Google Scholar
Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramaswamy, P., Datta, A. & Natarajan, S. (2008). Eur. J. Inorg. Chem. 2008, 1376–1385. Web of Science CSD CrossRef Google Scholar
Reichelt, M. & Reuter, H. (2014). Acta Cryst. E70, m133. CSD CrossRef IUCr Journals Google Scholar
Sarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013). Acta Cryst. E69, m581–m582. CSD CrossRef IUCr Journals Google Scholar
Seik, W. N. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175–179. CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skapski, A. C., Guerchais, J.-E. & Calves, J.-Y. (1974). C. R. Acad. Sci. Ser. C Chim, 278, 1377–1379. CAS Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.