research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,3-Bis(anthracen-9-yl)prop-2-en-1-one: crystal structure and DFT study

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 February 2018; accepted 5 March 2018; online 9 March 2018)

The title compound, C31H20O, was synthesized using a Claisen–Schmidt condensation. The enone group adopts an s-trans conformation and the anthracene ring systems are twisted at angles of 85.21 (19) and 83.98 (19)° from the enone plane. In the crystal, mol­ecules are connected into chains along [100] via weak C—H⋯π inter­actions. The observed band gap of 3.03 eV is in excellent agreement with that (3.07 eV) calculated using density functional theory (DFT) at the B3LYP/6–311++G(d,p) level. The Hirshfeld surface analysis indicates a high percentage of C⋯H/H⋯C (41.2%) contacts in the crystal.

1. Chemical context

Anthrancene and its derivatives constitute a very well-known class with inter­esting photophysical properties and they are used extensively in the design of luminescent chemosensors and switches (Montalti et al., 2000[Montalti, M., Prodi, L. & Zaccheroni, N. (2000). J. Fluoresence, 10, 71-76.]). A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the terminal aromatic rings. Strong inter­molecular charge transfer (ICT) will give rise to second harmonic generation (SHG) efficiency and this may enhance the non-linear optical (NLO) properties (D'silva et al., 2011[D'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5362-5369.]). Furthermore, π-conjugated mol­ecular materials with fused rings are the focus of considerable inter­est in the emerging area of organic electronics, since the combination of good charge-carrier mobility and high stability may lead to potential optoelectronic applications (Wu et al., 2010[Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489-1502.]). As part of our work in this area, we now report the synthesis and combined experimental and theoretical studies of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] (for the optimized structure, see Fig. S1 in the Supporting information). The structure consists of two anthracene rings (Anth A and Anth B) . Anth A is formed by the aromatic rings labeled as Cg1(C1–C6), Cg2(C1/C6–C8/C13/C14) and Cg3(C8–C13). Anth B consists of Cg4(C18/C19/C24–C26/C31, Cg5(C19–C24) and Cg6(C26–C31).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing 50% displacement ellipsoids.

The C—C distances in the central ring of the anthracene units show little variation compared to the other rings (Anth A: C20—C21, C22—C23, C27—C28 and C29—C30; Anth B: C2—C3, C4—C5, C9—C10 and C11—C12), which are much shorter. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.]). Both theoretical and experimental structures exist in an E configuration with respect to the C16=C17 double bond [experimental = 1.291 (2) Å and DFT (see below) = 1.34 Å].

The enone moiety (O1/C15–C17) shows an s-trans configuration with the O1—C15—C16—C17 torsion angle being −179.19 (19) and 179.64° in the experimental and calculated structures, respectively. Additionally, the enone moiety [O1/C15–C17, maximum deviation of 0.0039 (18) Å at C16] forms dihedral angles of 85.21 (19) and 83.98 (19)° with the Anth A [C1–C14, maximum deviation of 0.103 (2) Å at C11] and Anth B [C18–C31, maximum deviation of 0.016 (3) Å at C27] groups, respectively. The large dihedral-angle deviation indicates that the possibility for electronic effects between the anthracene units through the enone moiety has decreased (Jung et al., 2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]). This is in contrast with the mol­ecular structure of (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one (Abdullah et al. 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]), which shows the enone moiety locked in an s-cis configuration because of the intra­molecular hydrogen bond. Furthermore, the bulkiness of the anthracene ring gives rise to a highly twisted structure at both terminal rings. Compound (I)[link] is twisted at the C17—C18 and C14—C15 bonds with C16—C17—C18—C19 and C1—C14—C15—C16 torsion angles of 84.0 (2) and 93.65 (19)°, respectively (see Fig. S2 in the Supporting information). The corresponding torsion angles for the DFT study are 48.01 and 94.05°, respectively. We propose that the torsion-angle difference of about 35.9° between the experimental and DFT studies are the result of the formation of inter­molecular C—H⋯π inter­actions involving the anthracene units. The observed inter­molecular inter­actions in the crystal packing are the main cause of the angle difference when this inter­action is not taken into consideration during the optimization process.

3. Supra­molecular features

In the crystal of (I)[link], C—H⋯π inter­actions are mainly responsible for the packing. Two C—H⋯π inter­actions (Fig. 2[link] and Table 1[link]) occur between anthracene rings (Anth A and Anth B), connecting the mol­ecules into infinite zigzag chains propagating along the [100] direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg6 are the centroids of the C18/C19/C24–C26/C31 and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg4i 0.93 2.75 3.511 (2) 140
C7—H7ACg6i 0.93 2.91 3.672 (2) 140
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
The weak C—H⋯π inter­actions in the crystal of (I)[link].

4. Theoretical chemistry study

The optimization of the mol­ecular geometries leading to energy minima was achieved using DFT [with Becke's non-local three parameter exchange and the Lee–Yang–Parr correlation functional (B3LYP)] with the 6-311++G (d,p) basis set as implemented in Gaussian09 program package (Frisch et al., 2009[Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA.]). The selected bond lengths and angles of the optimized structure in comparison to the experimental values are presented in Table S2 in the Supporting information and the optimized structure is presented in Figure S1. Agreement between experimental and calculated geometrical data is generally good and any deviations may be ascribed to the fact that the optimization is performed in an isolated condition, whereas the crystal environment affects the mol­ecular geometry (Ramya et al., 2015[Ramya, T., Gunasekaran, S. & Ramkumaar, G. R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 149, 132-142.]).

5. Absorption spectrum and frontier mol­ecular orbitals

The longest wavelength absorption maxima for (I)[link] is observed in the UV region at 383 nm as shown in Fig. 3[link]. The TD–DFT calculation at the B3LYP/6-311G++(d,p) level shows that this feature is due to an electronic transition from the highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO). In the ground state (HOMO), the charge densities are mainly delocalized over the anthracene rings and the enone moiety, while in the LUMO state, the charge densities are accumulated on the Anth A and enone moiety (see Fig. S3 in the Supporting information). The calculated λmax of 390 nm is shifted from the experimental value, which may be attributed to solvent effects, compared to the gas-phase calculation.

[Figure 3]
Figure 3
UV–Vis absorption spectra of (I)[link].

The HOMO–LUMO energy gap (Fig. S3) relates to the chemical activity of the mol­ecule (Kosar & Albayrak, 2011[Kosar, B. & Albayrak, C. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 160-167.]). The predicted energy gap of 3.07 eV shows excellent agreement with the estimated experimental energy gap of 3.03 eV. These optical band-gap values indicate the potential suitability of this compound for optoelectronic applications, as previously reported by Prabhu et al. (2016[Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76-86.]). Additionally, Nietfeld et al. (2011[Nietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. 76, 6383-6388.]) compared the structural, electrochemical and optical properties of fused-ring and non-fused ring compounds, indicating that fused rings have lower band gaps than other structures.

6. Hirshfeld Surface analysis

Fig. 4[link] shows the Hirshfeld surface mapped over dnorm. As expected, the dnorm surfaces reveal the C—H⋯π inter­molecular inter­action as a large depression (bright-red spot). The presence of this C—H⋯π inter­action is also indicated through the combination of pale-orange and bright-red spots that are present on the Hirshfeld surfaces mapped over de (Fig. 5[link]a) and shape-index (Fig. 5[link]b).

[Figure 4]
Figure 4
View of the Hirshfeld surfaces mapped over dnorm for (I)[link].
[Figure 5]
Figure 5
View of the Hirshfeld surfaces for (I)[link] mapped over (a) de and (b) shape-index with the pale-orange spot within the red circles showing the presence of the C—H⋯π inter­actions.

The two-dimensional fingerprint plots shown in Fig. 6[link] illustrate the difference between the inter­molecular inter­action patterns and the major inter­molecular contacts associated with the title compound. The H⋯H contacts (Fig. 6[link]b) appear to be the major contributor to the Hirshfeld surface and are seen as one distinct spike with a minimum value for de + di that is less than the sum of the van der Waals radii (2.4 Å). The inter­molecular C—H⋯π inter­actions are characterized by the short inter­atomic C⋯H/H⋯C (41.2%) contacts and their presence is indicated by the distribution of points around a pair of wings at de + di ∼2.6 Å (Fig. 6[link]c).

[Figure 6]
Figure 6
Fingerprint plots of inter­actions, listing the percentage of contacts (a) full two-dimensional fingerprint plots, and (b) H⋯H and (c) C⋯H/H⋯C contributions to the total Hirshfeld surface. The outline of the full fingerprint plots is shown in grey.

7. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.38, last update Nov 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed fused-ring substituted chalcones similar to the title compound. There are four compounds which have an anthracene-ketone subtituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) (Harlow et al., 1975[Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344-1350.]), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (Girisha et al., 2016[Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153-1158.]) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl) prop-2-en-1-one (Abdullah et al., 2016[Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648-651.]). Jung et al. (2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]) reported two ferrocenyl chalcones containing an anthracenyl subtituent, 9-(2-ferrocenyl­ethen­yl­carbon­yl)anthracene and 1-(9-anthracen­yl)-3-ferrocenyl-2-propen-1-one. Other related compounds include, 1-(anth­rac­en-9-yl)-2-meth­ylprop-2-en-1-one (Agrahari et al., 2015[Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357-359.]) and 9-anthroylacetone (Cicogna et al., 2004[Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959-11968.]).

8. Synthesis and crystallization

A mixture of 9-acetyl­anthracene (0.5 mmol) and 9-anthracenecarboxaldehyde (0.5 mmol) was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5-6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone solution as yellow blocks. The single crystal (Fig. S4) used for data collection was obtained by the slow-evaporation technique using acetone as the solvent.

9. Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H =0.93 Å) and refined using riding model with Uiso(H)=1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C31H20O
Mr 408.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.8310 (17), 10.7521 (18), 11.3029 (19)
α, β, γ (°) 67.146 (2), 73.586 (2), 78.768 (2)
V3) 1051.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.45 × 0.38 × 0.26
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 42832, 6216, 2792
Rint 0.047
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.187, 1.00
No. of reflections 6216
No. of parameters 289
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1,3-Bis(anthracen-9-yl)prop-2-en-1-one top
Crystal data top
C31H20OZ = 2
Mr = 408.47F(000) = 428
Triclinic, P1Dx = 1.290 Mg m3
a = 9.8310 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7521 (18) ÅCell parameters from 3766 reflections
c = 11.3029 (19) Åθ = 2.3–22.1°
α = 67.146 (2)°µ = 0.08 mm1
β = 73.586 (2)°T = 296 K
γ = 78.768 (2)°Block, yellow
V = 1051.2 (3) Å30.45 × 0.38 × 0.26 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2792 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
φ and ω scansθmax = 30.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
k = 1515
42832 measured reflectionsl = 1515
6216 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.1037P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6216 reflectionsΔρmax = 0.20 e Å3
289 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44003 (14)0.39564 (13)0.83904 (17)0.0974 (5)
C10.18125 (17)0.58896 (16)0.72383 (17)0.0557 (4)
C20.2456 (2)0.55577 (19)0.6096 (2)0.0745 (5)
H2A0.33980.51840.59770.089*
C30.1725 (3)0.5774 (2)0.5176 (2)0.0895 (6)
H3A0.21740.55600.44280.107*
C40.0287 (3)0.6321 (2)0.5335 (2)0.0848 (6)
H4A0.02020.64720.46900.102*
C50.0372 (2)0.66204 (17)0.6411 (2)0.0702 (5)
H5A0.13250.69620.65130.084*
C60.03472 (17)0.64307 (16)0.74020 (18)0.0564 (4)
C70.03088 (16)0.67773 (16)0.84986 (18)0.0589 (4)
H7A0.12700.70930.86210.071*
C80.04251 (16)0.66686 (15)0.94246 (17)0.0551 (4)
C90.0227 (2)0.70868 (18)1.05166 (19)0.0707 (5)
H9A0.11890.73971.06510.085*
C100.0525 (3)0.7042 (2)1.1362 (2)0.0834 (6)
H10A0.00830.73351.20650.100*
C110.1973 (2)0.6556 (2)1.1191 (2)0.0776 (5)
H11A0.24870.65441.17720.093*
C120.26246 (19)0.61070 (18)1.01937 (18)0.0659 (5)
H12A0.35770.57621.01150.079*
C130.18947 (16)0.61474 (15)0.92571 (16)0.0529 (4)
C140.25475 (16)0.57424 (15)0.81840 (16)0.0528 (4)
C150.40796 (17)0.51694 (18)0.80046 (18)0.0633 (5)
C160.51726 (17)0.61184 (17)0.73382 (18)0.0666 (5)
H16A0.61190.57560.72130.080*
C170.49221 (16)0.74227 (16)0.69108 (16)0.0564 (4)
H17A0.39720.77750.70320.068*
C180.59990 (15)0.84051 (15)0.62495 (16)0.0510 (4)
C190.65765 (16)0.87661 (16)0.48951 (17)0.0547 (4)
C200.6174 (2)0.82323 (19)0.40902 (19)0.0701 (5)
H20A0.54990.76060.44730.084*
C210.6744 (2)0.8611 (2)0.2788 (2)0.0881 (6)
H21A0.64590.82470.22820.106*
C220.7768 (3)0.9552 (2)0.2183 (2)0.0955 (7)
H22A0.81550.98070.12800.115*
C230.8190 (2)1.0082 (2)0.2896 (2)0.0830 (6)
H23A0.88751.06970.24800.100*
C240.76171 (18)0.97267 (17)0.42761 (18)0.0634 (5)
C250.80165 (19)1.02850 (18)0.5019 (2)0.0720 (5)
H25A0.86871.09140.46050.086*
C260.74538 (19)0.99421 (17)0.6362 (2)0.0658 (5)
C270.7864 (3)1.0506 (2)0.7140 (3)0.0899 (7)
H27A0.85241.11460.67400.108*
C280.7316 (3)1.0133 (2)0.8443 (3)0.0980 (7)
H28A0.76051.05130.89330.118*
C290.6313 (2)0.9178 (2)0.9075 (2)0.0841 (6)
H29A0.59460.89250.99810.101*
C300.58805 (19)0.86234 (18)0.83782 (19)0.0676 (5)
H30A0.52110.79940.88120.081*
C310.64201 (16)0.89751 (15)0.70003 (17)0.0555 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0731 (9)0.0536 (8)0.1465 (14)0.0020 (6)0.0287 (9)0.0149 (8)
C10.0544 (9)0.0476 (9)0.0641 (11)0.0107 (7)0.0152 (8)0.0149 (8)
C20.0757 (12)0.0749 (13)0.0775 (13)0.0077 (10)0.0177 (10)0.0317 (11)
C30.1108 (18)0.0908 (16)0.0807 (15)0.0134 (13)0.0278 (13)0.0390 (12)
C40.1070 (17)0.0767 (14)0.0872 (16)0.0140 (12)0.0502 (14)0.0245 (12)
C50.0702 (11)0.0582 (11)0.0882 (14)0.0115 (8)0.0370 (11)0.0167 (10)
C60.0543 (9)0.0445 (9)0.0702 (11)0.0120 (7)0.0225 (8)0.0109 (8)
C70.0435 (8)0.0515 (9)0.0758 (12)0.0082 (7)0.0146 (8)0.0140 (8)
C80.0526 (9)0.0454 (9)0.0602 (10)0.0105 (7)0.0106 (8)0.0099 (7)
C90.0670 (11)0.0653 (12)0.0684 (12)0.0033 (9)0.0078 (10)0.0186 (9)
C100.1013 (16)0.0763 (14)0.0656 (13)0.0026 (12)0.0139 (12)0.0242 (10)
C110.0948 (15)0.0772 (13)0.0635 (12)0.0098 (11)0.0296 (11)0.0190 (10)
C120.0628 (10)0.0655 (11)0.0650 (12)0.0092 (8)0.0222 (9)0.0118 (9)
C130.0485 (8)0.0464 (9)0.0583 (10)0.0116 (7)0.0135 (7)0.0086 (7)
C140.0454 (8)0.0484 (9)0.0593 (10)0.0095 (6)0.0121 (7)0.0111 (8)
C150.0544 (9)0.0546 (10)0.0756 (12)0.0044 (8)0.0167 (8)0.0166 (9)
C160.0412 (8)0.0584 (11)0.0867 (13)0.0004 (7)0.0092 (8)0.0175 (9)
C170.0419 (8)0.0567 (10)0.0652 (11)0.0010 (7)0.0133 (7)0.0171 (8)
C180.0399 (7)0.0478 (9)0.0582 (10)0.0023 (6)0.0125 (7)0.0134 (7)
C190.0481 (8)0.0498 (9)0.0575 (10)0.0041 (7)0.0113 (7)0.0144 (8)
C200.0672 (11)0.0724 (12)0.0659 (12)0.0017 (9)0.0162 (9)0.0228 (10)
C210.0967 (16)0.0941 (16)0.0701 (14)0.0103 (13)0.0219 (12)0.0325 (12)
C220.1056 (18)0.0903 (16)0.0582 (13)0.0117 (13)0.0007 (12)0.0146 (12)
C230.0759 (13)0.0669 (13)0.0733 (14)0.0007 (10)0.0034 (11)0.0072 (11)
C240.0568 (10)0.0500 (10)0.0634 (11)0.0030 (8)0.0074 (8)0.0071 (8)
C250.0629 (11)0.0528 (10)0.0829 (14)0.0129 (8)0.0105 (10)0.0064 (10)
C260.0638 (10)0.0507 (10)0.0796 (13)0.0066 (8)0.0209 (10)0.0160 (9)
C270.1027 (16)0.0627 (13)0.1131 (19)0.0197 (11)0.0405 (15)0.0240 (13)
C280.126 (2)0.0814 (15)0.109 (2)0.0107 (14)0.0510 (17)0.0402 (14)
C290.0993 (16)0.0847 (15)0.0747 (14)0.0017 (12)0.0278 (12)0.0343 (12)
C300.0658 (11)0.0691 (12)0.0658 (12)0.0019 (9)0.0154 (9)0.0235 (9)
C310.0509 (9)0.0493 (9)0.0624 (11)0.0010 (7)0.0161 (8)0.0162 (8)
Geometric parameters (Å, º) top
O1—C151.2109 (19)C16—H16A0.9300
C1—C141.397 (2)C17—C181.473 (2)
C1—C21.416 (3)C17—H17A0.9300
C1—C61.433 (2)C18—C191.396 (2)
C2—C31.349 (3)C18—C311.403 (2)
C2—H2A0.9300C19—C201.418 (3)
C3—C41.411 (3)C19—C241.431 (2)
C3—H3A0.9300C20—C211.343 (3)
C4—C51.333 (3)C20—H20A0.9300
C4—H4A0.9300C21—C221.406 (3)
C5—C61.418 (2)C21—H21A0.9300
C5—H5A0.9300C22—C231.335 (3)
C6—C71.380 (2)C22—H22A0.9300
C7—C81.389 (2)C23—C241.422 (3)
C7—H7A0.9300C23—H23A0.9300
C8—C91.417 (2)C24—C251.374 (3)
C8—C131.432 (2)C25—C261.385 (3)
C9—C101.346 (3)C25—H25A0.9300
C9—H9A0.9300C26—C271.419 (3)
C10—C111.404 (3)C26—C311.431 (2)
C10—H10A0.9300C27—C281.340 (3)
C11—C121.344 (3)C27—H27A0.9300
C11—H11A0.9300C28—C291.401 (3)
C12—C131.421 (2)C28—H28A0.9300
C12—H12A0.9300C29—C301.345 (3)
C13—C141.391 (2)C29—H29A0.9300
C14—C151.501 (2)C30—C311.416 (2)
C15—C161.461 (2)C30—H30A0.9300
C16—C171.291 (2)
C14—C1—C2123.06 (16)C15—C16—H16A117.6
C14—C1—C6119.19 (16)C16—C17—C18126.16 (14)
C2—C1—C6117.74 (16)C16—C17—H17A116.9
C3—C2—C1121.13 (19)C18—C17—H17A116.9
C3—C2—H2A119.4C19—C18—C31120.92 (15)
C1—C2—H2A119.4C19—C18—C17120.16 (15)
C2—C3—C4120.9 (2)C31—C18—C17118.92 (15)
C2—C3—H3A119.6C18—C19—C20123.09 (16)
C4—C3—H3A119.6C18—C19—C24119.04 (16)
C5—C4—C3120.04 (19)C20—C19—C24117.87 (16)
C5—C4—H4A120.0C21—C20—C19121.5 (2)
C3—C4—H4A120.0C21—C20—H20A119.3
C4—C5—C6121.60 (19)C19—C20—H20A119.3
C4—C5—H5A119.2C20—C21—C22120.5 (2)
C6—C5—H5A119.2C20—C21—H21A119.7
C7—C6—C5122.16 (16)C22—C21—H21A119.7
C7—C6—C1119.23 (15)C23—C22—C21120.5 (2)
C5—C6—C1118.59 (18)C23—C22—H22A119.8
C6—C7—C8121.90 (15)C21—C22—H22A119.8
C6—C7—H7A119.0C22—C23—C24121.5 (2)
C8—C7—H7A119.0C22—C23—H23A119.2
C7—C8—C9122.02 (16)C24—C23—H23A119.2
C7—C8—C13119.12 (16)C25—C24—C23122.26 (19)
C9—C8—C13118.85 (16)C25—C24—C19119.60 (17)
C10—C9—C8121.02 (18)C23—C24—C19118.14 (19)
C10—C9—H9A119.5C24—C25—C26122.21 (17)
C8—C9—H9A119.5C24—C25—H25A118.9
C9—C10—C11120.5 (2)C26—C25—H25A118.9
C9—C10—H10A119.8C25—C26—C27122.71 (19)
C11—C10—H10A119.8C25—C26—C31118.98 (17)
C12—C11—C10120.56 (19)C27—C26—C31118.31 (19)
C12—C11—H11A119.7C28—C27—C26121.1 (2)
C10—C11—H11A119.7C28—C27—H27A119.4
C11—C12—C13121.64 (18)C26—C27—H27A119.4
C11—C12—H12A119.2C27—C28—C29120.8 (2)
C13—C12—H12A119.2C27—C28—H28A119.6
C14—C13—C12123.25 (15)C29—C28—H28A119.6
C14—C13—C8119.31 (15)C30—C29—C28120.3 (2)
C12—C13—C8117.42 (16)C30—C29—H29A119.9
C13—C14—C1121.16 (15)C28—C29—H29A119.9
C13—C14—C15120.13 (15)C29—C30—C31121.57 (19)
C1—C14—C15118.69 (15)C29—C30—H30A119.2
O1—C15—C16120.98 (16)C31—C30—H30A119.2
O1—C15—C14120.98 (15)C18—C31—C30122.86 (15)
C16—C15—C14118.03 (14)C18—C31—C26119.26 (16)
C17—C16—C15124.87 (15)C30—C31—C26117.88 (16)
C17—C16—H16A117.6
C14—C1—C2—C3176.92 (17)C14—C15—C16—C171.4 (3)
C6—C1—C2—C31.6 (3)C15—C16—C17—C18179.28 (17)
C1—C2—C3—C40.9 (3)C16—C17—C18—C1984.0 (2)
C2—C3—C4—C50.6 (3)C16—C17—C18—C3196.6 (2)
C3—C4—C5—C61.4 (3)C31—C18—C19—C20179.19 (14)
C4—C5—C6—C7177.88 (16)C17—C18—C19—C200.3 (2)
C4—C5—C6—C10.7 (3)C31—C18—C19—C240.3 (2)
C14—C1—C6—C70.8 (2)C17—C18—C19—C24179.77 (14)
C2—C1—C6—C7179.38 (14)C18—C19—C20—C21179.48 (16)
C14—C1—C6—C5177.76 (14)C24—C19—C20—C210.0 (3)
C2—C1—C6—C50.8 (2)C19—C20—C21—C220.2 (3)
C5—C6—C7—C8175.90 (14)C20—C21—C22—C230.1 (3)
C1—C6—C7—C82.6 (2)C21—C22—C23—C240.5 (3)
C6—C7—C8—C9176.81 (14)C22—C23—C24—C25178.53 (18)
C6—C7—C8—C131.7 (2)C22—C23—C24—C190.7 (3)
C7—C8—C9—C10176.32 (16)C18—C19—C24—C250.7 (2)
C13—C8—C9—C102.2 (3)C20—C19—C24—C25178.85 (15)
C8—C9—C10—C111.1 (3)C18—C19—C24—C23179.92 (15)
C9—C10—C11—C121.1 (3)C20—C19—C24—C230.4 (2)
C10—C11—C12—C132.1 (3)C23—C24—C25—C26179.77 (16)
C11—C12—C13—C14177.40 (16)C19—C24—C25—C260.6 (3)
C11—C12—C13—C80.9 (2)C24—C25—C26—C27179.65 (17)
C7—C8—C13—C141.0 (2)C24—C25—C26—C310.1 (3)
C9—C8—C13—C14179.59 (14)C25—C26—C27—C28178.81 (19)
C7—C8—C13—C12177.34 (14)C31—C26—C27—C280.9 (3)
C9—C8—C13—C121.2 (2)C26—C27—C28—C290.3 (4)
C12—C13—C14—C1175.44 (14)C27—C28—C29—C300.3 (3)
C8—C13—C14—C12.8 (2)C28—C29—C30—C310.4 (3)
C12—C13—C14—C152.9 (2)C19—C18—C31—C30178.97 (14)
C8—C13—C14—C15178.87 (14)C17—C18—C31—C301.6 (2)
C2—C1—C14—C13176.59 (14)C19—C18—C31—C260.2 (2)
C6—C1—C14—C131.9 (2)C17—C18—C31—C26179.29 (14)
C2—C1—C14—C151.8 (2)C29—C30—C31—C18179.39 (16)
C6—C1—C14—C15179.75 (14)C29—C30—C31—C260.2 (3)
C13—C14—C15—O195.9 (2)C25—C26—C31—C180.3 (2)
C1—C14—C15—O185.7 (2)C27—C26—C31—C18179.96 (15)
C13—C14—C15—C1684.7 (2)C25—C26—C31—C30178.88 (15)
C1—C14—C15—C1693.65 (19)C27—C26—C31—C300.9 (2)
O1—C15—C16—C17179.19 (19)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg6 are the centroids of the C18/C19/C24–C26/C31 and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg4i0.932.753.511 (2)140
C7—H7A···Cg6i0.932.913.672 (2)140
Symmetry code: (i) x1, y, z.
Comparison of experimental and calculated molecular geometry parameters (Å, °) top
ParametersExpDFT
C15—O11.21 (19)1.22
C1—C141.40 (2)1.40
C1—C21.42 (3)1.42
C2—C31.35 (3)1.35
C3—C41.41 (3)1.41
C4—C51.33 (3)1.33
C5—C61.42 (2)1.42
C6—C71.380 (2)1.38
C7—C81.39 (2)1.39
C8—C91.42 (2)1.42
C9—C101.35 (3)1.35
C10—C111.40 (3)1.40
C11—C121.34 (3)1.34
C12—C131.42 (2)1.42
C13—C141.39 (2)1.39
C14—C151.50 (2)1.52
C15—C161.46 (2)1.48
C16—C171.29 (2)1.35
C17—C181.47 (2)1.47
C18—C191.40 (2)1.40
C19—C201.42 (3)1.42
C20—C211.34 (3)1.34
C21—C221.41 (3)1.41
C22—C231.34 (3)1.34
C23—C241.42 (3)1.42
C24—C251.37 (3)1.37
C25—C261.39 (3)1.38
C26—C271.42 (3)1.42
C27—C281.34 (3)1.34
C28—C291.40 (3)1.40
C29—C301.35 (3)1.35
C30—C311.42 (2)1.42
C31—C181.40 (2)1.40
C14—C15—C16118.03 (14)119.35
O1—C15—C14120.98 (15)120.25
O1—C15—C16120.98 (16)120.40
C15—C16—C17124.87 (15)123.93
C16—C17—C18126.16 (14)127.15

Funding information

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711572 and for Short Term Grant Scheme (304/PFIZIK/6313336) to conduct this work. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

References

First citationAbdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.  Web of Science CSD CrossRef CAS Google Scholar
First citationD'silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5362–5369.  CAS Google Scholar
First citationFrisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGirisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationKosar, B. & Albayrak, C. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 78, 160–167.  Web of Science CrossRef Google Scholar
First citationMontalti, M., Prodi, L. & Zaccheroni, N. (2000). J. Fluoresence, 10, 71–76.  Web of Science CrossRef CAS Google Scholar
First citationNietfeld, J. P., Schwiderski, R. L., Gonnella, T. P. & Rasmussen, S. C. (2011). J. Org. Chem. 76, 6383–6388.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.  Web of Science CrossRef CAS Google Scholar
First citationRamya, T., Gunasekaran, S. & Ramkumaar, G. R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 149, 132–142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds