research communications
Nectandra leucantha Nees and Mart (Lauraceae)
of Dehydrodieugenol B methyl ether, a neolignan fromaInstitute of Food Chemistry, Technical University of Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany, bCenter of Natural Sciences and Humanities, Federal University of ABC, 09210-580, Santo André, Brazil, and cInstitute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C21H24O4 (systematic name: 4,5′-diallyl-2,2′,3′-trimethoxydiphenyl ether), the aromatic rings lie almost perpendicular to each other [dihedral angle = 85.96 (2)°]. The allyl side chains show similar configurations, with Car—C—C=C (ar = aromatic) torsion angles of −123.62 (12) and −115.54 (12)°. A possible weak intramolecular C—H⋯O interaction is observed. In the crystal, molecules are connected by two C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the bc plane. Weak C—H⋯π and π–π stacking interactions also occur.
Keywords: crystal structure; neolignan; eugenol.
CCDC reference: 1827281
1. Chemical context
Nectandra leucantha belongs to the Lauraceae family, which has a worldwide economic importance (Marques, 2001). Gottlieb (1972) described the chemosystematics of the Lauraceae family, highlighting the occurrence of arylpropanoids, benzoic esthers, benzophenones, mono and sesquiterpenes. The Nectandra genus accumulates and lignoids as major (Grecco et al., 2016). Recent studies from our group describe the antiparasitical (against Leishmania donovani and Trypanosoma cruzi) and cytotoxic activities of N. leucantha and its isolated metabolites. In terms of chemical composition, and sesquiterpenes were the major compounds from extracts and essential oils, respectively (da Costa-Silva et al., 2015; Grecco et al., 2015, 2017; de Sousa et al., 2017). These studies allowed the isolation of C—C- and C—O—C-linked including the known isomers dehydrodieugenol and dehydrodieugenol B, and of the novel compound dehydrodieugenol B methyl ether, the object of the present study. In order to confirm the constitution of the title compound, its was determined and is reported here.
2. Structural commentary
The molecule of the title compound is shown in Fig. 1 and selected geometrical data are given in Table 1. The aromatic rings subtend an interplanar angle of 85.96 (2)°; the corresponding torsion angles are C1—C6—O1—C11 = −176.28 (8) and C6—O1—C11—C12 = 94.29 (10)°. The allyl side chains show similar configurations, with C4—C7—C8—C9 = −123.62 (12) and C14—C17—C18—C19 = −115.54 (12)°. For the disubstituted (C1–C6) ring, one of the C atoms of the methoxy groups (C21) almost lies in the plane of the ring [deviation = 0.064 (1) Å] whereas the other (C20) is significantly displaced [–1.185 (1)Å]. In the other (C11–C16) ring, the methoxy carbon atom (C22) lies close to the plane of the ring [deviation = −0.075 (1) Å]. The intramolecular C20—H20A⋯O3 contact with H⋯O = 2.66 Å and an angle of 111°, seems to be at best a borderline interaction, but it may influence the angle C1—O2—C20, which at 113.39 (7)° is significantly narrower that the other C—O—C angles.
|
3. Supramolecular features
The two weak C—H⋯O hydrogen bonds (Table 2) link the molecules to form undulating layers parallel to the bc plane (Fig. 2). Additionally, the contacts C19—H19A⋯Cg(C1–C6) = 2.84 and C17—H17A⋯Cg(C11-C16) = 2.78 Å (Cg = centroid) may represent significant C—H⋯π interactions, and the contact of 3.85 Å between centroids of adjacent rings C1–C6 (related by 1 − x, 1 − y, 1 − z) may be a borderline aromatic π–π stacking interaction.
4. Database survey
The Cambridge Database (Version 5.38; Groom et al., 2016) contains no examples of 3,4′-diallyldiphenyl and related natural products are often isolated as oils, so that analyses are rare. In the field of phenylpropanoids and eugenyl derivatives the following structures are relevant: Apiculin A and B (BATKAL, BATKEP; Fernandes et al., 2017); various asarones (AZIQUX01, JAHMUD, JAHNAK, JAHNEO; Qin et al., 2017); schibitubin A (QANNOL; Liu et al., 2017); a natural phenylpropanoid (MIJCAL; Yu et al., 2013); and several related synthetic compounds (WALSUX, WALTAE, WALTEI, WALTIM; Stomberg et al., 1993).
5. Isolation and crystallization
Nectandra leucantha (Nees & Mart) (Lauraceae) leaves were collected in March 2014, at the Parque Ecologico do Pereque, situated at Cubatão City, State of São Paulo, Brazil. A voucher specimen (EM357) was deposited at the herbarium of the Institute of Biosciences, University of São Paulo, SP, Brazil.
2.5 kg of dried and milled leaves were exhaustively extracted with n-hexane, affording 55 g of lipophilic extract after vacuum evaporation of the solvent. In order to increase the content of the neolignan target compounds, the n-hexane extract was subjected to a liquid–liquid partition process, using equal parts of n-hexane and acetonitrile. The neolignan-enriched fraction (NEF – 31.6 g) was obtained from the acetonitrile phase after evaporation. A representative amount of 500 mg NEF was subjected to high-performance countercurrent (HPCCC) fractionation (Ito, 2005) using a semi-preparative instrument (Spectrum, Dynamic Extractions Ltd, Gwent, UK), a J-type centrifuge equipped with two coil bobbins (PTFE tubing, ID 1.6 mm, column volume 125 ml) operated with the biphasic solvent system n-hexane–ethyl acetate–methanol–water (HEMWat 7:3:7:3, v/v/v/v) as described by Grecco et al. (2017). The evaluation of biphasic solvent systems was guided by LC–ESI–MS analysis of the respective phase layers to detect a suitable distribution of The rotation velocity of the HPCCC centrifuge was set to 1600 rpm (240 G field), and the flow rate of the aqueous mobile phase (5.0 ml min−1), and reversed phase operation mode (head-to-tail) resulted in a retention of 82.0% after system equilibration. For metabolite profiling and target isolation of aliquots of the recovered HPCCC fractions were injected in sequence into an ESI-ion trap MS/MS (HCT Ultra ETD II, Bruker Daltonics, Bremen, Germany) in a standard protocol described by Jerz et al. (2014). This procedure afforded C—C- and C—O—C-linked including dehydrodieugenol B methyl ether, which was detected in the ESI–MS positive ionization mode with quasimolecular ion signals [M + H]+ m/z 341, [M + Na]+ m/z 363, and [2M + Na]+ at m/z 703 in fractions 51–59 (extrusion mode – volume: 255–295 mL; KD: 2.04–2.36). The ESI–MS/MS of m/z 341 resulted in fragment ions at m/z and ion intensity [%]: 325.9 (2.3), 299.0 (31.7), 270.9 (34.3), 192.8 (100), 164.8 (52.0), 162.9 (86.9), 149.9 (19.6), 133.0 (47.7) (ESI–MS–parameter: HV capillary – 3500 V, HV end plate offset – 500, dry gas N2 10.0 l min−1, nebulizer 60 psi, trap drive 55.6, target mass 500, compound stability 80%, ICC target 100000, ICC on). One-dimensional and two-dimensional NMR data were recorded and compared with those reported previously (Costa-Silva et al., 2015), confirming the structure as dehydrodieugenol B methyl ether. The use of semi-preparative HPCCC, as an all-liquid technique resulted in a single process step to pure dehydrodieugenol B methyl ether. The compound crystallized from the immiscible solvent system by slow evaporation to yield 89 mg. An appropriate colourless block was chosen for X-ray analysis.
6. Refinement
Crystal data, data collection and structure . NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid groups with C—H 0.98 Å, H—C—H 109.5° (AFIX 137 command). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic and C—Hvinyl = 0.95, C—Hmethylene = 0.99, C—Hmethine = 1.00 Å) with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1827281
https://doi.org/10.1107/S2056989018003717/hb7741sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003717/hb7741Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003717/hb7741Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C21H24O4 | F(000) = 728 |
Mr = 340.40 | Dx = 1.258 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.4644 (4) Å | Cell parameters from 13140 reflections |
b = 18.1145 (4) Å | θ = 2.8–30.7° |
c = 8.2720 (3) Å | µ = 0.09 mm−1 |
β = 105.835 (3)° | T = 100 K |
V = 1796.82 (10) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.40 × 0.25 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 4749 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.028 |
Detector resolution: 16.1419 pixels mm-1 | θmax = 31.0°, θmin = 2.3° |
ω scan | h = −17→17 |
46861 measured reflections | k = −25→25 |
5394 independent reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.6675P] where P = (Fo2 + 2Fc2)/3 |
5394 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.31969 (7) | 0.48305 (5) | 0.61877 (11) | 0.01242 (16) | |
C2 | 0.39767 (7) | 0.54031 (5) | 0.66026 (11) | 0.01353 (17) | |
C3 | 0.42548 (8) | 0.58054 (5) | 0.53374 (11) | 0.01474 (17) | |
H3 | 0.477724 | 0.619848 | 0.562029 | 0.018* | |
C4 | 0.37653 (8) | 0.56300 (5) | 0.36575 (11) | 0.01354 (17) | |
C5 | 0.29811 (7) | 0.50652 (5) | 0.32350 (11) | 0.01337 (17) | |
H5 | 0.263797 | 0.495178 | 0.208904 | 0.016* | |
C6 | 0.27031 (7) | 0.46674 (5) | 0.45055 (11) | 0.01225 (16) | |
C7 | 0.40926 (8) | 0.60579 (5) | 0.22916 (12) | 0.01611 (18) | |
H7A | 0.490201 | 0.616399 | 0.266379 | 0.019* | |
H7B | 0.394974 | 0.574881 | 0.126786 | 0.019* | |
C8 | 0.34694 (10) | 0.67679 (6) | 0.18696 (15) | 0.0254 (2) | |
H8 | 0.351201 | 0.710939 | 0.275650 | 0.031* | |
C9 | 0.28622 (12) | 0.69551 (9) | 0.03483 (19) | 0.0417 (3) | |
H9A | 0.280058 | 0.662727 | −0.056904 | 0.050* | |
H9B | 0.248804 | 0.741721 | 0.017374 | 0.050* | |
C11 | 0.14573 (8) | 0.38762 (5) | 0.25820 (11) | 0.01383 (17) | |
C12 | 0.19333 (7) | 0.32850 (5) | 0.19326 (11) | 0.01273 (17) | |
C13 | 0.13745 (8) | 0.29999 (5) | 0.03591 (11) | 0.01344 (17) | |
H13 | 0.168944 | 0.259885 | −0.009373 | 0.016* | |
C14 | 0.03563 (8) | 0.32995 (5) | −0.05550 (11) | 0.01455 (17) | |
C15 | −0.00827 (8) | 0.39029 (5) | 0.00937 (12) | 0.01768 (18) | |
H15 | −0.076237 | 0.411947 | −0.053674 | 0.021* | |
C16 | 0.04695 (8) | 0.41898 (5) | 0.16599 (12) | 0.01738 (18) | |
H16 | 0.016701 | 0.460156 | 0.209547 | 0.021* | |
C17 | −0.02679 (8) | 0.29803 (5) | −0.22437 (12) | 0.01738 (18) | |
H17A | 0.000598 | 0.247391 | −0.234350 | 0.021* | |
H17B | −0.107102 | 0.294761 | −0.230608 | 0.021* | |
C18 | −0.01256 (9) | 0.34388 (6) | −0.36835 (12) | 0.01971 (19) | |
H18 | 0.060227 | 0.347660 | −0.383003 | 0.024* | |
C19 | −0.09401 (11) | 0.37929 (7) | −0.47598 (15) | 0.0310 (3) | |
H19A | −0.167876 | 0.376757 | −0.465183 | 0.037* | |
H19B | −0.078789 | 0.407319 | −0.564243 | 0.037* | |
C20 | 0.21477 (9) | 0.47287 (6) | 0.81429 (13) | 0.0207 (2) | |
H20A | 0.240600 | 0.521609 | 0.860138 | 0.031* | |
H20B | 0.203875 | 0.441120 | 0.904430 | 0.031* | |
H20C | 0.144028 | 0.478054 | 0.726983 | 0.031* | |
C21 | 0.52459 (8) | 0.60736 (6) | 0.87749 (12) | 0.01920 (19) | |
H21A | 0.583203 | 0.600002 | 0.820618 | 0.029* | |
H21B | 0.557367 | 0.605531 | 0.999413 | 0.029* | |
H21C | 0.489348 | 0.655567 | 0.846148 | 0.029* | |
C22 | 0.33781 (9) | 0.23855 (6) | 0.23543 (13) | 0.0216 (2) | |
H22A | 0.286150 | 0.196974 | 0.225908 | 0.032* | |
H22B | 0.409272 | 0.226083 | 0.315373 | 0.032* | |
H22C | 0.349503 | 0.248886 | 0.125186 | 0.032* | |
O1 | 0.19375 (6) | 0.41001 (4) | 0.42283 (8) | 0.01578 (14) | |
O2 | 0.29616 (6) | 0.44052 (4) | 0.74330 (8) | 0.01493 (14) | |
O3 | 0.44286 (6) | 0.55060 (4) | 0.82841 (8) | 0.01778 (15) | |
O4 | 0.29183 (6) | 0.30235 (4) | 0.29352 (8) | 0.01611 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0147 (4) | 0.0123 (4) | 0.0112 (4) | 0.0010 (3) | 0.0052 (3) | 0.0016 (3) |
C2 | 0.0140 (4) | 0.0152 (4) | 0.0111 (4) | 0.0007 (3) | 0.0031 (3) | −0.0005 (3) |
C3 | 0.0159 (4) | 0.0144 (4) | 0.0142 (4) | −0.0019 (3) | 0.0046 (3) | 0.0003 (3) |
C4 | 0.0148 (4) | 0.0140 (4) | 0.0130 (4) | 0.0015 (3) | 0.0059 (3) | 0.0018 (3) |
C5 | 0.0152 (4) | 0.0148 (4) | 0.0106 (4) | 0.0008 (3) | 0.0044 (3) | −0.0003 (3) |
C6 | 0.0132 (4) | 0.0108 (4) | 0.0134 (4) | −0.0001 (3) | 0.0048 (3) | −0.0011 (3) |
C7 | 0.0185 (4) | 0.0170 (4) | 0.0148 (4) | −0.0007 (3) | 0.0078 (3) | 0.0023 (3) |
C8 | 0.0328 (6) | 0.0199 (5) | 0.0300 (5) | 0.0048 (4) | 0.0193 (5) | 0.0087 (4) |
C9 | 0.0348 (7) | 0.0478 (8) | 0.0461 (8) | 0.0139 (6) | 0.0169 (6) | 0.0296 (6) |
C11 | 0.0170 (4) | 0.0135 (4) | 0.0117 (4) | −0.0037 (3) | 0.0053 (3) | −0.0020 (3) |
C12 | 0.0136 (4) | 0.0122 (4) | 0.0128 (4) | −0.0012 (3) | 0.0042 (3) | 0.0017 (3) |
C13 | 0.0160 (4) | 0.0122 (4) | 0.0133 (4) | −0.0012 (3) | 0.0060 (3) | −0.0004 (3) |
C14 | 0.0157 (4) | 0.0150 (4) | 0.0131 (4) | −0.0024 (3) | 0.0042 (3) | 0.0000 (3) |
C15 | 0.0158 (4) | 0.0184 (4) | 0.0180 (4) | 0.0014 (3) | 0.0032 (3) | 0.0000 (3) |
C16 | 0.0186 (4) | 0.0154 (4) | 0.0192 (4) | 0.0012 (3) | 0.0069 (4) | −0.0027 (3) |
C17 | 0.0183 (4) | 0.0190 (4) | 0.0138 (4) | −0.0020 (3) | 0.0027 (3) | −0.0019 (3) |
C18 | 0.0239 (5) | 0.0202 (5) | 0.0162 (4) | 0.0025 (4) | 0.0074 (4) | −0.0011 (3) |
C19 | 0.0387 (7) | 0.0305 (6) | 0.0229 (5) | 0.0107 (5) | 0.0069 (5) | 0.0061 (4) |
C20 | 0.0256 (5) | 0.0204 (5) | 0.0212 (5) | −0.0012 (4) | 0.0149 (4) | 0.0001 (4) |
C21 | 0.0182 (4) | 0.0236 (5) | 0.0157 (4) | −0.0072 (4) | 0.0046 (3) | −0.0041 (4) |
C22 | 0.0222 (5) | 0.0168 (4) | 0.0241 (5) | 0.0055 (4) | 0.0034 (4) | −0.0007 (4) |
O1 | 0.0210 (3) | 0.0155 (3) | 0.0116 (3) | −0.0062 (2) | 0.0057 (2) | −0.0028 (2) |
O2 | 0.0198 (3) | 0.0139 (3) | 0.0127 (3) | 0.0008 (2) | 0.0072 (2) | 0.0030 (2) |
O3 | 0.0199 (3) | 0.0222 (3) | 0.0105 (3) | −0.0071 (3) | 0.0027 (3) | −0.0013 (2) |
O4 | 0.0162 (3) | 0.0158 (3) | 0.0150 (3) | 0.0026 (2) | 0.0020 (2) | −0.0002 (2) |
C1—O2 | 1.3804 (10) | C13—H13 | 0.9500 |
C1—C6 | 1.3911 (12) | C14—C15 | 1.3938 (13) |
C1—C2 | 1.3987 (12) | C14—C17 | 1.5158 (13) |
C2—O3 | 1.3635 (11) | C15—C16 | 1.3913 (13) |
C2—C3 | 1.3945 (12) | C15—H15 | 0.9500 |
C3—C4 | 1.3934 (12) | C16—H16 | 0.9500 |
C3—H3 | 0.9500 | C17—C18 | 1.5017 (14) |
C4—C5 | 1.3919 (13) | C17—H17A | 0.9900 |
C4—C7 | 1.5151 (12) | C17—H17B | 0.9900 |
C5—C6 | 1.3938 (12) | C18—C19 | 1.3197 (15) |
C5—H5 | 0.9500 | C18—H18 | 0.9500 |
C6—O1 | 1.3783 (11) | C19—H19A | 0.9500 |
C7—C8 | 1.4937 (14) | C19—H19B | 0.9500 |
C7—H7A | 0.9900 | C20—O2 | 1.4292 (12) |
C7—H7B | 0.9900 | C20—H20A | 0.9800 |
C8—C9 | 1.3235 (18) | C20—H20B | 0.9800 |
C8—H8 | 0.9500 | C20—H20C | 0.9800 |
C9—H9A | 0.9500 | C21—O3 | 1.4263 (11) |
C9—H9B | 0.9500 | C21—H21A | 0.9800 |
C11—C16 | 1.3813 (13) | C21—H21B | 0.9800 |
C11—O1 | 1.3902 (11) | C21—H21C | 0.9800 |
C11—C12 | 1.4005 (13) | C22—O4 | 1.4301 (12) |
C12—O4 | 1.3652 (11) | C22—H22A | 0.9800 |
C12—C13 | 1.3969 (12) | C22—H22B | 0.9800 |
C13—C14 | 1.3975 (13) | C22—H22C | 0.9800 |
O2—C1—C6 | 120.12 (8) | C13—C14—C17 | 120.83 (8) |
O2—C1—C2 | 120.38 (8) | C16—C15—C14 | 120.33 (9) |
C6—C1—C2 | 119.41 (8) | C16—C15—H15 | 119.8 |
O3—C2—C3 | 125.18 (8) | C14—C15—H15 | 119.8 |
O3—C2—C1 | 114.68 (8) | C11—C16—C15 | 120.04 (9) |
C3—C2—C1 | 120.12 (8) | C11—C16—H16 | 120.0 |
C4—C3—C2 | 119.89 (8) | C15—C16—H16 | 120.0 |
C4—C3—H3 | 120.1 | C18—C17—C14 | 112.21 (8) |
C2—C3—H3 | 120.1 | C18—C17—H17A | 109.2 |
C5—C4—C3 | 120.30 (8) | C14—C17—H17A | 109.2 |
C5—C4—C7 | 120.15 (8) | C18—C17—H17B | 109.2 |
C3—C4—C7 | 119.55 (8) | C14—C17—H17B | 109.2 |
C4—C5—C6 | 119.52 (8) | H17A—C17—H17B | 107.9 |
C4—C5—H5 | 120.2 | C19—C18—C17 | 124.63 (10) |
C6—C5—H5 | 120.2 | C19—C18—H18 | 117.7 |
O1—C6—C1 | 114.97 (8) | C17—C18—H18 | 117.7 |
O1—C6—C5 | 124.29 (8) | C18—C19—H19A | 120.0 |
C1—C6—C5 | 120.75 (8) | C18—C19—H19B | 120.0 |
C8—C7—C4 | 112.72 (8) | H19A—C19—H19B | 120.0 |
C8—C7—H7A | 109.0 | O2—C20—H20A | 109.5 |
C4—C7—H7A | 109.0 | O2—C20—H20B | 109.5 |
C8—C7—H7B | 109.0 | H20A—C20—H20B | 109.5 |
C4—C7—H7B | 109.0 | O2—C20—H20C | 109.5 |
H7A—C7—H7B | 107.8 | H20A—C20—H20C | 109.5 |
C9—C8—C7 | 124.67 (12) | H20B—C20—H20C | 109.5 |
C9—C8—H8 | 117.7 | O3—C21—H21A | 109.5 |
C7—C8—H8 | 117.7 | O3—C21—H21B | 109.5 |
C8—C9—H9A | 120.0 | H21A—C21—H21B | 109.5 |
C8—C9—H9B | 120.0 | O3—C21—H21C | 109.5 |
H9A—C9—H9B | 120.0 | H21A—C21—H21C | 109.5 |
C16—C11—O1 | 120.11 (8) | H21B—C21—H21C | 109.5 |
C16—C11—C12 | 120.65 (8) | O4—C22—H22A | 109.5 |
O1—C11—C12 | 118.99 (8) | O4—C22—H22B | 109.5 |
O4—C12—C13 | 125.09 (8) | H22A—C22—H22B | 109.5 |
O4—C12—C11 | 115.92 (8) | O4—C22—H22C | 109.5 |
C13—C12—C11 | 118.97 (8) | H22A—C22—H22C | 109.5 |
C12—C13—C14 | 120.59 (8) | H22B—C22—H22C | 109.5 |
C12—C13—H13 | 119.7 | C6—O1—C11 | 118.29 (7) |
C14—C13—H13 | 119.7 | C1—O2—C20 | 113.39 (7) |
C15—C14—C13 | 119.35 (8) | C2—O3—C21 | 116.94 (7) |
C15—C14—C17 | 119.82 (8) | C12—O4—C22 | 116.91 (7) |
O2—C1—C2—O3 | −1.95 (12) | O4—C12—C13—C14 | 178.72 (8) |
C6—C1—C2—O3 | −178.56 (8) | C11—C12—C13—C14 | 0.02 (13) |
O2—C1—C2—C3 | 176.58 (8) | C12—C13—C14—C15 | 2.04 (14) |
C6—C1—C2—C3 | −0.03 (13) | C12—C13—C14—C17 | −178.48 (8) |
O3—C2—C3—C4 | 177.54 (9) | C13—C14—C15—C16 | −2.02 (14) |
C1—C2—C3—C4 | −0.83 (14) | C17—C14—C15—C16 | 178.49 (9) |
C2—C3—C4—C5 | 1.41 (14) | O1—C11—C16—C15 | −171.93 (9) |
C2—C3—C4—C7 | −178.55 (8) | C12—C11—C16—C15 | 2.18 (14) |
C3—C4—C5—C6 | −1.12 (13) | C14—C15—C16—C11 | −0.08 (15) |
C7—C4—C5—C6 | 178.84 (8) | C15—C14—C17—C18 | 77.59 (11) |
O2—C1—C6—O1 | 4.08 (12) | C13—C14—C17—C18 | −101.89 (10) |
C2—C1—C6—O1 | −179.29 (8) | C14—C17—C18—C19 | −115.54 (12) |
O2—C1—C6—C5 | −176.30 (8) | C1—C6—O1—C11 | −176.28 (8) |
C2—C1—C6—C5 | 0.32 (13) | C5—C6—O1—C11 | 4.12 (13) |
C4—C5—C6—O1 | 179.83 (8) | C16—C11—O1—C6 | −91.49 (11) |
C4—C5—C6—C1 | 0.25 (13) | C12—C11—O1—C6 | 94.29 (10) |
C5—C4—C7—C8 | 96.87 (11) | C6—C1—O2—C20 | −99.35 (10) |
C3—C4—C7—C8 | −83.17 (11) | C2—C1—O2—C20 | 84.06 (10) |
C4—C7—C8—C9 | −123.62 (12) | C3—C2—O3—C21 | 0.31 (14) |
C16—C11—C12—O4 | 179.03 (8) | C1—C2—O3—C21 | 178.76 (8) |
O1—C11—C12—O4 | −6.79 (12) | C13—C12—O4—C22 | −3.25 (13) |
C16—C11—C12—C13 | −2.15 (13) | C11—C12—O4—C22 | 175.49 (8) |
O1—C11—C12—C13 | 172.03 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20A···O3 | 0.98 | 2.66 | 3.1461 (13) | 111 |
C21—H21B···O2i | 0.98 | 2.54 | 3.4292 (12) | 151 |
C22—H22A···O2ii | 0.98 | 2.50 | 3.2885 (12) | 138 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z−1/2. |
Footnotes
‡On leave from the Biotechnology and Innovation in Health Postgraduate Program, Anhanguera University of São Paulo, 05145-200, São Paulo, Brazil.
Funding information
The authors are grateful for the financial support of Coordination for the Improvement of Higher Education Personnel (CAPES) through a PDSE grant for SSG (99999.003062/2014–07). JHGL is thankful for financial support and fellowships provided by the National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP − 2015/11193–2). This study is an activity within the Research Network Natural Products against Neglected Diseases (ResNetNPND: https://www.resnetnpnd.org/).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Costa-Silva, T. A. da, Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R. & Tempone, A. G. (2015). J. Nat. Prod. 78, 653–657. Google Scholar
Fernandes, T. S., Copetti, D., do Carmo, G., Neto, A. T., Pedroso, M., Silva, U. F., Mostardeiro, M. A., Burrow, R., Dalcol, I. I. & Morel, A. F. (2017). Phytochemistry, 141, 131–139. Web of Science CSD CrossRef CAS Google Scholar
Gottlieb, O. R. (1972). Phytochemistry, 11, 1537–1570. CrossRef CAS Web of Science Google Scholar
Grecco, S. S., Costa-Silva, T. A., Jerz, G., de Sousa, F. S., Alves Conserva, G. A., Mesquita, J. T., Galuppo, M. K., Tempone, A. G., Neves, B. J., Andrade, C. H., Cunha, R. O. L., Uemi, M., Sartorelli, P. & Lago, J. H. G. (2017). Phytomedicine, 24, 62–67. Web of Science CrossRef CAS Google Scholar
Grecco, S. S., Lorenzi, H., Tempone, A. G. & Lago, J. H. G. (2016). Tetrahedron Asymmetry, 27, 793–810. Web of Science CrossRef CAS Google Scholar
Grecco, S. dos S., Martins, E. G. A., Girola, N., de Figueiredo, C. R., Matsuo, A. L., Soares, M. G., Bertoldo, B. de C., Sartorelli, P. & Lago, J. H. G. (2015). Pharm. Biol. 53, 133–137. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ito, Y. (2005). J. Chromatogr. A, 1065, 145–168. Web of Science CrossRef PubMed CAS Google Scholar
Jerz, G., Elnakady, Y. A., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17–29. Web of Science CrossRef CAS Google Scholar
Liu, Y., Yu, H.-Y., Wang, Y.-M., Tian, T., Wu, W.-M., Zhou, M., Meng, X.-G. & Ruan, H.-L. (2017). J. Nat. Prod. 80, 1117–1124. Web of Science CSD CrossRef CAS Google Scholar
Marques, C. A. (2001). Floresta e Ambiente, 8, 195–206. Google Scholar
Qin, D.-P., Feng, X.-L., Zhang, W.-Y., Gao, H., Cheng, X.-R., Zhou, W.-X., Yu, Y. & Yao, X.-S. (2017). RSC Adv. 7, 8512–8520. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Sousa, F. S. de, Grecco, S. S., Girola, N., Azevedo, R. A., Figueiredo, C. R. & Lago, J. H. G. (2017). Phytochemistry, 140, 108–117. Google Scholar
Stomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317–331. CSD CrossRef CAS Web of Science Google Scholar
Yu, Y., Lu, X., Wu, W., Wu, Y. & Liu, B. (2013). Chin. J. Chem. 31, 1336–1340. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.