research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of De­hydro­dieugenol B methyl ether, a neolignan from Nectandra leucantha Nees and Mart (Lauraceae)

CROSSMARK_Color_square_no_text.svg

aInstitute of Food Chemistry, Technical University of Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany, bCenter of Natural Sciences and Humanities, Federal University of ABC, 09210-580, Santo André, Brazil, and cInstitute of Inorganic and Analytical Chemistry, Technical University of Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 February 2018; accepted 3 March 2018; online 9 March 2018)

In the title compound, C21H24O4 (systematic name: 4,5′-diallyl-2,2′,3′-tri­meth­oxy­diphenyl ether), the aromatic rings lie almost perpendicular to each other [dihedral angle = 85.96 (2)°]. The allyl side chains show similar configurations, with Car—C—C=C (ar = aromatic) torsion angles of −123.62 (12) and −115.54 (12)°. A possible weak intra­molecular C—H⋯O inter­action is observed. In the crystal, mol­ecules are connected by two C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the bc plane. Weak C—H⋯π and ππ stacking inter­actions also occur.

1. Chemical context

Nectandra leucantha belongs to the Lauraceae family, which has a worldwide economic importance (Marques, 2001[Marques, C. A. (2001). Floresta e Ambiente, 8, 195-206.]). Gottlieb (1972[Gottlieb, O. R. (1972). Phytochemistry, 11, 1537-1570.]) described the chemosystematics of the Lauraceae family, highlighting the occurrence of alkaloids, aryl­propano­ids, benzoic esthers, flavonoids, benzo­phenones, fatty acids, mono and sesquiterpenes. The Nectandra genus accumulates alkaloids and lignoids as major secondary metabolites (Grecco et al., 2016[Grecco, S. S., Lorenzi, H., Tempone, A. G. & Lago, J. H. G. (2016). Tetrahedron Asymmetry, 27, 793-810.]). Recent studies from our group describe the anti­parasitical (against Leishmania donovani and Trypanosoma cruzi) and cytotoxic activities of N. leucantha and its isolated metabolites. In terms of chemical composition, neolignans and sesquiterpenes were the major compounds from extracts and essential oils, respectively (da Costa-Silva et al., 2015[Costa-Silva, T. A. da, Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R. & Tempone, A. G. (2015). J. Nat. Prod. 78, 653-657.]; Grecco et al., 2015[Grecco, S. dos S., Martins, E. G. A., Girola, N., de Figueiredo, C. R., Matsuo, A. L., Soares, M. G., Bertoldo, B. de C., Sartorelli, P. & Lago, J. H. G. (2015). Pharm. Biol. 53, 133-137.], 2017[Grecco, S. S., Costa-Silva, T. A., Jerz, G., de Sousa, F. S., Alves Conserva, G. A., Mesquita, J. T., Galuppo, M. K., Tempone, A. G., Neves, B. J., Andrade, C. H., Cunha, R. O. L., Uemi, M., Sartorelli, P. & Lago, J. H. G. (2017). Phytomedicine, 24, 62-67.]; de Sousa et al., 2017[Sousa, F. S. de, Grecco, S. S., Girola, N., Azevedo, R. A., Figueiredo, C. R. & Lago, J. H. G. (2017). Phytochemistry, 140, 108-117.]). These studies allowed the isolation of C—C- and C—O—C-linked neolignans, including the known isomers de­hydro­dieugenol and de­hydro­dieugenol B, and of the novel compound de­hydro­dieugenol B methyl ether, the object of the present study. In order to confirm the constitution of the title compound, its crystal structure was determined and is reported here.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound is shown in Fig. 1[link] and selected geometrical data are given in Table 1[link]. The aromatic rings subtend an inter­planar angle of 85.96 (2)°; the corresponding torsion angles are C1—C6—O1—C11 = −176.28 (8) and C6—O1—C11—C12 = 94.29 (10)°. The allyl side chains show similar configurations, with C4—C7—C8—C9 = −123.62 (12) and C14—C17—C18—C19 = −115.54 (12)°. For the disubstituted (C1–C6) ring, one of the C atoms of the meth­oxy groups (C21) almost lies in the plane of the ring [deviation = 0.064 (1) Å] whereas the other (C20) is significantly displaced [–1.185 (1)Å]. In the other (C11–C16) ring, the meth­oxy carbon atom (C22) lies close to the plane of the ring [deviation = −0.075 (1) Å]. The intra­molecular C20—H20A⋯O3 contact with H⋯O = 2.66 Å and an angle of 111°, seems to be at best a borderline inter­action, but it may influence the angle C1—O2—C20, which at 113.39 (7)° is significantly narrower that the other C—O—C angles.

Table 1
Selected bond and torsion angles (°)

C6—O1—C11 118.29 (7) C2—O3—C21 116.94 (7)
C1—O2—C20 113.39 (7) C12—O4—C22 116.91 (7)
       
C4—C7—C8—C9 −123.62 (12) C1—C6—O1—C11 −176.28 (8)
C14—C17—C18—C19 −115.54 (12) C12—C11—O1—C6 94.29 (10)
[Figure 1]
Figure 1
Structure of the title compound in the crystal. Displacement ellipsoids represent 50% probability levels. One hydrogen atom is obscured at each of the atoms C17 and C19.

3. Supra­molecular features

The two weak C—H⋯O hydrogen bonds (Table 2[link]) link the mol­ecules to form undulating layers parallel to the bc plane (Fig. 2[link]). Additionally, the contacts C19—H19ACg(C1–C6) = 2.84 and C17—H17ACg(C11-C16) = 2.78 Å (Cg = centroid) may represent significant C—H⋯π inter­actions, and the contact of 3.85 Å between centroids of adjacent rings C1–C6 (related by 1 − x, 1 − y, 1 − z) may be a borderline aromatic ππ stacking inter­action.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O3 0.98 2.66 3.1461 (13) 111
C21—H21B⋯O2i 0.98 2.54 3.4292 (12) 151
C22—H22A⋯O2ii 0.98 2.50 3.2885 (12) 138
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed perpendicular to the bc plane. For clarity, the allyl side chains and all hydrogen atoms not involved in hydrogen bonding (dashed lines, see Table 2[link]) have been omitted.

4. Database survey

The Cambridge Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no examples of 3,4′-di­allyl­diphenyl ethers. Neolignans and related natural products are often isolated as oils, so that crystal structure analyses are rare. In the field of neolignans, lignans, phenyl­propano­ids and eugenyl derivatives the following structures are relevant: Apiculin A and B (BATKAL, BATKEP; Fernandes et al., 2017[Fernandes, T. S., Copetti, D., do Carmo, G., Neto, A. T., Pedroso, M., Silva, U. F., Mostardeiro, M. A., Burrow, R., Dalcol, I. I. & Morel, A. F. (2017). Phytochemistry, 141, 131-139.]); various asarones (AZIQUX01, JAHMUD, JAHNAK, JAHNEO; Qin et al., 2017[Qin, D.-P., Feng, X.-L., Zhang, W.-Y., Gao, H., Cheng, X.-R., Zhou, W.-X., Yu, Y. & Yao, X.-S. (2017). RSC Adv. 7, 8512-8520.]); schibitubin A (QANNOL; Liu et al., 2017[Liu, Y., Yu, H.-Y., Wang, Y.-M., Tian, T., Wu, W.-M., Zhou, M., Meng, X.-G. & Ruan, H.-L. (2017). J. Nat. Prod. 80, 1117-1124.]); a natural phenyl­propanoid (MIJCAL; Yu et al., 2013[Yu, Y., Lu, X., Wu, W., Wu, Y. & Liu, B. (2013). Chin. J. Chem. 31, 1336-1340.]); and several related synthetic compounds (WALSUX, WALTAE, WALTEI, WALTIM; Stomberg et al., 1993[Stomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317-331.]).

5. Isolation and crystallization

Nectandra leucantha (Nees & Mart) (Lauraceae) leaves were collected in March 2014, at the Parque Ecologico do Pereque, situated at Cubatão City, State of São Paulo, Brazil. A voucher specimen (EM357) was deposited at the herbarium of the Institute of Biosciences, University of São Paulo, SP, Brazil.

2.5 kg of dried and milled leaves were exhaustively extracted with n-hexane, affording 55 g of lipophilic extract after vacuum evaporation of the solvent. In order to increase the content of the neolignan target compounds, the n-hexane extract was subjected to a liquid–liquid partition process, using equal parts of n-hexane and aceto­nitrile. The neolignan-enrich­ed fraction (NEF – 31.6 g) was obtained from the aceto­nitrile phase after evaporation. A representative amount of 500 mg NEF was subjected to high-performance countercurrent chromatography (HPCCC) fractionation (Ito, 2005[Ito, Y. (2005). J. Chromatogr. A, 1065, 145-168.]) using a semi-preparative instrument (Spectrum, Dynamic Extractions Ltd, Gwent, UK), a J-type centrifuge equipped with two coil bobbins (PTFE tubing, ID 1.6 mm, column volume 125 ml) operated with the biphasic solvent system n-hexa­ne–ethyl acetate–methanol–water (HEMWat 7:3:7:3, v/v/v/v) as described by Grecco et al. (2017[Grecco, S. S., Costa-Silva, T. A., Jerz, G., de Sousa, F. S., Alves Conserva, G. A., Mesquita, J. T., Galuppo, M. K., Tempone, A. G., Neves, B. J., Andrade, C. H., Cunha, R. O. L., Uemi, M., Sartorelli, P. & Lago, J. H. G. (2017). Phytomedicine, 24, 62-67.]). The evaluation of biphasic solvent systems was guided by LC–ESI–MS analysis of the respective phase layers to detect a suitable distribution of neolignans. The rotation velocity of the HPCCC centrifuge was set to 1600 rpm (240 G field), and the flow rate of the aqueous mobile phase (5.0 ml min−1), and reversed phase operation mode (head-to-tail) resulted in a stationary phase retention of 82.0% after system equilibration. For metabolite profiling and target isolation of neolignans, aliquots of the recovered HPCCC fractions were injected in sequence into an ESI-ion trap MS/MS (HCT Ultra ETD II, Bruker Daltonics, Bremen, Germany) in a standard protocol described by Jerz et al. (2014[Jerz, G., Elnakady, Y. A., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17-29.]). This procedure afforded C—C- and C—O—C-linked neolignans, including de­hydro­dieugenol B methyl ether, which was detected in the ESI–MS positive ionization mode with quasimolecular ion signals [M + H]+ m/z 341, [M + Na]+ m/z 363, and [2M + Na]+ at m/z 703 in fractions 51–59 (extrusion mode – volume: 255–295 mL; distribution ratio KD: 2.04–2.36). The ESI–MS/MS of m/z 341 resulted in fragment ions at m/z and ion intensity [%]: 325.9 (2.3), 299.0 (31.7), 270.9 (34.3), 192.8 (100), 164.8 (52.0), 162.9 (86.9), 149.9 (19.6), 133.0 (47.7) (ESI–MS–parameter: HV capillary – 3500 V, HV end plate offset – 500, dry gas N2 10.0 l min−1, nebulizer 60 psi, trap drive 55.6, target mass 500, compound stability 80%, ICC target 100000, ICC on). One-dimensional and two-dimensional NMR data were recorded and compared with those reported previously (Costa-Silva et al., 2015[Costa-Silva, T. A. da, Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R. & Tempone, A. G. (2015). J. Nat. Prod. 78, 653-657.]), confirming the structure as de­hydro­dieugenol B methyl ether. The use of semi-preparative HPCCC, as an all-liquid chromatography technique resulted in a single process step to pure de­hydro­dieugenol B methyl ether. The compound crystallized from the immiscible solvent system by slow evaporation to yield 89 mg. An appropriate colourless block was chosen for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. NH hydrogen atoms were refined freely. Methyl hydrogen atoms were refined as idealized rigid groups with C—H 0.98 Å, H—C—H 109.5° (AFIX 137 command). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic and C—Hvin­yl = 0.95, C—Hmethyl­ene = 0.99, C—Hmethine = 1.00 Å) with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C21H24O4
Mr 340.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.4644 (4), 18.1145 (4), 8.2720 (3)
β (°) 105.835 (3)
V3) 1796.82 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.40 × 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
No. of measured, independent and observed [I > 2σ(I)] reflections 46861, 5394, 4749
Rint 0.028
(sin θ/λ)max−1) 0.724
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.04
No. of reflections 5394
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.24
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

1,2-Dimethoxy-3-[3-methoxy-5-(prop-2-en-1-yl)phenoxy]-5-(prop-2-en-1-yl)benzene top
Crystal data top
C21H24O4F(000) = 728
Mr = 340.40Dx = 1.258 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.4644 (4) ÅCell parameters from 13140 reflections
b = 18.1145 (4) Åθ = 2.8–30.7°
c = 8.2720 (3) ŵ = 0.09 mm1
β = 105.835 (3)°T = 100 K
V = 1796.82 (10) Å3Block, colourless
Z = 40.40 × 0.40 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4749 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.028
Detector resolution: 16.1419 pixels mm-1θmax = 31.0°, θmin = 2.3°
ω scanh = 1717
46861 measured reflectionsk = 2525
5394 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.6675P]
where P = (Fo2 + 2Fc2)/3
5394 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31969 (7)0.48305 (5)0.61877 (11)0.01242 (16)
C20.39767 (7)0.54031 (5)0.66026 (11)0.01353 (17)
C30.42548 (8)0.58054 (5)0.53374 (11)0.01474 (17)
H30.4777240.6198480.5620290.018*
C40.37653 (8)0.56300 (5)0.36575 (11)0.01354 (17)
C50.29811 (7)0.50652 (5)0.32350 (11)0.01337 (17)
H50.2637970.4951780.2089040.016*
C60.27031 (7)0.46674 (5)0.45055 (11)0.01225 (16)
C70.40926 (8)0.60579 (5)0.22916 (12)0.01611 (18)
H7A0.4902010.6163990.2663790.019*
H7B0.3949740.5748810.1267860.019*
C80.34694 (10)0.67679 (6)0.18696 (15)0.0254 (2)
H80.3512010.7109390.2756500.031*
C90.28622 (12)0.69551 (9)0.03483 (19)0.0417 (3)
H9A0.2800580.6627270.0569040.050*
H9B0.2488040.7417210.0173740.050*
C110.14573 (8)0.38762 (5)0.25820 (11)0.01383 (17)
C120.19333 (7)0.32850 (5)0.19326 (11)0.01273 (17)
C130.13745 (8)0.29999 (5)0.03591 (11)0.01344 (17)
H130.1689440.2598850.0093730.016*
C140.03563 (8)0.32995 (5)0.05550 (11)0.01455 (17)
C150.00827 (8)0.39029 (5)0.00937 (12)0.01768 (18)
H150.0762370.4119470.0536740.021*
C160.04695 (8)0.41898 (5)0.16599 (12)0.01738 (18)
H160.0167010.4601560.2095470.021*
C170.02679 (8)0.29803 (5)0.22437 (12)0.01738 (18)
H17A0.0005980.2473910.2343500.021*
H17B0.1071020.2947610.2306080.021*
C180.01256 (9)0.34388 (6)0.36835 (12)0.01971 (19)
H180.0602270.3476600.3830030.024*
C190.09401 (11)0.37929 (7)0.47598 (15)0.0310 (3)
H19A0.1678760.3767570.4651830.037*
H19B0.0787890.4073190.5642430.037*
C200.21477 (9)0.47287 (6)0.81429 (13)0.0207 (2)
H20A0.2406000.5216090.8601380.031*
H20B0.2038750.4411200.9044300.031*
H20C0.1440280.4780540.7269830.031*
C210.52459 (8)0.60736 (6)0.87749 (12)0.01920 (19)
H21A0.5832030.6000020.8206180.029*
H21B0.5573670.6055310.9994130.029*
H21C0.4893480.6555670.8461480.029*
C220.33781 (9)0.23855 (6)0.23543 (13)0.0216 (2)
H22A0.2861500.1969740.2259080.032*
H22B0.4092720.2260830.3153730.032*
H22C0.3495030.2488860.1251860.032*
O10.19375 (6)0.41001 (4)0.42283 (8)0.01578 (14)
O20.29616 (6)0.44052 (4)0.74330 (8)0.01493 (14)
O30.44286 (6)0.55060 (4)0.82841 (8)0.01778 (15)
O40.29183 (6)0.30235 (4)0.29352 (8)0.01611 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (4)0.0123 (4)0.0112 (4)0.0010 (3)0.0052 (3)0.0016 (3)
C20.0140 (4)0.0152 (4)0.0111 (4)0.0007 (3)0.0031 (3)0.0005 (3)
C30.0159 (4)0.0144 (4)0.0142 (4)0.0019 (3)0.0046 (3)0.0003 (3)
C40.0148 (4)0.0140 (4)0.0130 (4)0.0015 (3)0.0059 (3)0.0018 (3)
C50.0152 (4)0.0148 (4)0.0106 (4)0.0008 (3)0.0044 (3)0.0003 (3)
C60.0132 (4)0.0108 (4)0.0134 (4)0.0001 (3)0.0048 (3)0.0011 (3)
C70.0185 (4)0.0170 (4)0.0148 (4)0.0007 (3)0.0078 (3)0.0023 (3)
C80.0328 (6)0.0199 (5)0.0300 (5)0.0048 (4)0.0193 (5)0.0087 (4)
C90.0348 (7)0.0478 (8)0.0461 (8)0.0139 (6)0.0169 (6)0.0296 (6)
C110.0170 (4)0.0135 (4)0.0117 (4)0.0037 (3)0.0053 (3)0.0020 (3)
C120.0136 (4)0.0122 (4)0.0128 (4)0.0012 (3)0.0042 (3)0.0017 (3)
C130.0160 (4)0.0122 (4)0.0133 (4)0.0012 (3)0.0060 (3)0.0004 (3)
C140.0157 (4)0.0150 (4)0.0131 (4)0.0024 (3)0.0042 (3)0.0000 (3)
C150.0158 (4)0.0184 (4)0.0180 (4)0.0014 (3)0.0032 (3)0.0000 (3)
C160.0186 (4)0.0154 (4)0.0192 (4)0.0012 (3)0.0069 (4)0.0027 (3)
C170.0183 (4)0.0190 (4)0.0138 (4)0.0020 (3)0.0027 (3)0.0019 (3)
C180.0239 (5)0.0202 (5)0.0162 (4)0.0025 (4)0.0074 (4)0.0011 (3)
C190.0387 (7)0.0305 (6)0.0229 (5)0.0107 (5)0.0069 (5)0.0061 (4)
C200.0256 (5)0.0204 (5)0.0212 (5)0.0012 (4)0.0149 (4)0.0001 (4)
C210.0182 (4)0.0236 (5)0.0157 (4)0.0072 (4)0.0046 (3)0.0041 (4)
C220.0222 (5)0.0168 (4)0.0241 (5)0.0055 (4)0.0034 (4)0.0007 (4)
O10.0210 (3)0.0155 (3)0.0116 (3)0.0062 (2)0.0057 (2)0.0028 (2)
O20.0198 (3)0.0139 (3)0.0127 (3)0.0008 (2)0.0072 (2)0.0030 (2)
O30.0199 (3)0.0222 (3)0.0105 (3)0.0071 (3)0.0027 (3)0.0013 (2)
O40.0162 (3)0.0158 (3)0.0150 (3)0.0026 (2)0.0020 (2)0.0002 (2)
Geometric parameters (Å, º) top
C1—O21.3804 (10)C13—H130.9500
C1—C61.3911 (12)C14—C151.3938 (13)
C1—C21.3987 (12)C14—C171.5158 (13)
C2—O31.3635 (11)C15—C161.3913 (13)
C2—C31.3945 (12)C15—H150.9500
C3—C41.3934 (12)C16—H160.9500
C3—H30.9500C17—C181.5017 (14)
C4—C51.3919 (13)C17—H17A0.9900
C4—C71.5151 (12)C17—H17B0.9900
C5—C61.3938 (12)C18—C191.3197 (15)
C5—H50.9500C18—H180.9500
C6—O11.3783 (11)C19—H19A0.9500
C7—C81.4937 (14)C19—H19B0.9500
C7—H7A0.9900C20—O21.4292 (12)
C7—H7B0.9900C20—H20A0.9800
C8—C91.3235 (18)C20—H20B0.9800
C8—H80.9500C20—H20C0.9800
C9—H9A0.9500C21—O31.4263 (11)
C9—H9B0.9500C21—H21A0.9800
C11—C161.3813 (13)C21—H21B0.9800
C11—O11.3902 (11)C21—H21C0.9800
C11—C121.4005 (13)C22—O41.4301 (12)
C12—O41.3652 (11)C22—H22A0.9800
C12—C131.3969 (12)C22—H22B0.9800
C13—C141.3975 (13)C22—H22C0.9800
O2—C1—C6120.12 (8)C13—C14—C17120.83 (8)
O2—C1—C2120.38 (8)C16—C15—C14120.33 (9)
C6—C1—C2119.41 (8)C16—C15—H15119.8
O3—C2—C3125.18 (8)C14—C15—H15119.8
O3—C2—C1114.68 (8)C11—C16—C15120.04 (9)
C3—C2—C1120.12 (8)C11—C16—H16120.0
C4—C3—C2119.89 (8)C15—C16—H16120.0
C4—C3—H3120.1C18—C17—C14112.21 (8)
C2—C3—H3120.1C18—C17—H17A109.2
C5—C4—C3120.30 (8)C14—C17—H17A109.2
C5—C4—C7120.15 (8)C18—C17—H17B109.2
C3—C4—C7119.55 (8)C14—C17—H17B109.2
C4—C5—C6119.52 (8)H17A—C17—H17B107.9
C4—C5—H5120.2C19—C18—C17124.63 (10)
C6—C5—H5120.2C19—C18—H18117.7
O1—C6—C1114.97 (8)C17—C18—H18117.7
O1—C6—C5124.29 (8)C18—C19—H19A120.0
C1—C6—C5120.75 (8)C18—C19—H19B120.0
C8—C7—C4112.72 (8)H19A—C19—H19B120.0
C8—C7—H7A109.0O2—C20—H20A109.5
C4—C7—H7A109.0O2—C20—H20B109.5
C8—C7—H7B109.0H20A—C20—H20B109.5
C4—C7—H7B109.0O2—C20—H20C109.5
H7A—C7—H7B107.8H20A—C20—H20C109.5
C9—C8—C7124.67 (12)H20B—C20—H20C109.5
C9—C8—H8117.7O3—C21—H21A109.5
C7—C8—H8117.7O3—C21—H21B109.5
C8—C9—H9A120.0H21A—C21—H21B109.5
C8—C9—H9B120.0O3—C21—H21C109.5
H9A—C9—H9B120.0H21A—C21—H21C109.5
C16—C11—O1120.11 (8)H21B—C21—H21C109.5
C16—C11—C12120.65 (8)O4—C22—H22A109.5
O1—C11—C12118.99 (8)O4—C22—H22B109.5
O4—C12—C13125.09 (8)H22A—C22—H22B109.5
O4—C12—C11115.92 (8)O4—C22—H22C109.5
C13—C12—C11118.97 (8)H22A—C22—H22C109.5
C12—C13—C14120.59 (8)H22B—C22—H22C109.5
C12—C13—H13119.7C6—O1—C11118.29 (7)
C14—C13—H13119.7C1—O2—C20113.39 (7)
C15—C14—C13119.35 (8)C2—O3—C21116.94 (7)
C15—C14—C17119.82 (8)C12—O4—C22116.91 (7)
O2—C1—C2—O31.95 (12)O4—C12—C13—C14178.72 (8)
C6—C1—C2—O3178.56 (8)C11—C12—C13—C140.02 (13)
O2—C1—C2—C3176.58 (8)C12—C13—C14—C152.04 (14)
C6—C1—C2—C30.03 (13)C12—C13—C14—C17178.48 (8)
O3—C2—C3—C4177.54 (9)C13—C14—C15—C162.02 (14)
C1—C2—C3—C40.83 (14)C17—C14—C15—C16178.49 (9)
C2—C3—C4—C51.41 (14)O1—C11—C16—C15171.93 (9)
C2—C3—C4—C7178.55 (8)C12—C11—C16—C152.18 (14)
C3—C4—C5—C61.12 (13)C14—C15—C16—C110.08 (15)
C7—C4—C5—C6178.84 (8)C15—C14—C17—C1877.59 (11)
O2—C1—C6—O14.08 (12)C13—C14—C17—C18101.89 (10)
C2—C1—C6—O1179.29 (8)C14—C17—C18—C19115.54 (12)
O2—C1—C6—C5176.30 (8)C1—C6—O1—C11176.28 (8)
C2—C1—C6—C50.32 (13)C5—C6—O1—C114.12 (13)
C4—C5—C6—O1179.83 (8)C16—C11—O1—C691.49 (11)
C4—C5—C6—C10.25 (13)C12—C11—O1—C694.29 (10)
C5—C4—C7—C896.87 (11)C6—C1—O2—C2099.35 (10)
C3—C4—C7—C883.17 (11)C2—C1—O2—C2084.06 (10)
C4—C7—C8—C9123.62 (12)C3—C2—O3—C210.31 (14)
C16—C11—C12—O4179.03 (8)C1—C2—O3—C21178.76 (8)
O1—C11—C12—O46.79 (12)C13—C12—O4—C223.25 (13)
C16—C11—C12—C132.15 (13)C11—C12—O4—C22175.49 (8)
O1—C11—C12—C13172.03 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O30.982.663.1461 (13)111
C21—H21B···O2i0.982.543.4292 (12)151
C22—H22A···O2ii0.982.503.2885 (12)138
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2.
 

Footnotes

On leave from the Biotechnology and Innovation in Health Postgraduate Program, Anhanguera University of São Paulo, 05145-200, São Paulo, Brazil.

Funding information

The authors are grateful for the financial support of Coordination for the Improvement of Higher Education Personnel (CAPES) through a PDSE grant for SSG (99999.003062/2014–07). JHGL is thankful for financial support and fellowships provided by the National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP − 2015/11193–2). This study is an activity within the Research Network Natural Products against Neglected Diseases (ResNetNPND: https://www.resnetnpnd.org/).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCosta-Silva, T. A. da, Grecco, S. S., de Sousa, F. S., Lago, J. H. G., Martins, E. G., Terrazas, C. A., Varikuti, S., Owens, K. L., Beverley, S. M., Satoskar, A. R. & Tempone, A. G. (2015). J. Nat. Prod. 78, 653–657.  Google Scholar
First citationFernandes, T. S., Copetti, D., do Carmo, G., Neto, A. T., Pedroso, M., Silva, U. F., Mostardeiro, M. A., Burrow, R., Dalcol, I. I. & Morel, A. F. (2017). Phytochemistry, 141, 131–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationGottlieb, O. R. (1972). Phytochemistry, 11, 1537–1570.  CrossRef CAS Web of Science Google Scholar
First citationGrecco, S. S., Costa-Silva, T. A., Jerz, G., de Sousa, F. S., Alves Conserva, G. A., Mesquita, J. T., Galuppo, M. K., Tempone, A. G., Neves, B. J., Andrade, C. H., Cunha, R. O. L., Uemi, M., Sartorelli, P. & Lago, J. H. G. (2017). Phytomedicine, 24, 62–67.  Web of Science CrossRef CAS Google Scholar
First citationGrecco, S. S., Lorenzi, H., Tempone, A. G. & Lago, J. H. G. (2016). Tetrahedron Asymmetry, 27, 793–810.  Web of Science CrossRef CAS Google Scholar
First citationGrecco, S. dos S., Martins, E. G. A., Girola, N., de Figueiredo, C. R., Matsuo, A. L., Soares, M. G., Bertoldo, B. de C., Sartorelli, P. & Lago, J. H. G. (2015). Pharm. Biol. 53, 133–137.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIto, Y. (2005). J. Chromatogr. A, 1065, 145–168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJerz, G., Elnakady, Y. A., Braun, A., Jäckel, K., Sasse, F., Al Ghamdi, A. A., Omar, M. O. M. & Winterhalter, P. (2014). J. Chromatogr. A, 1347, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Yu, H.-Y., Wang, Y.-M., Tian, T., Wu, W.-M., Zhou, M., Meng, X.-G. & Ruan, H.-L. (2017). J. Nat. Prod. 80, 1117–1124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarques, C. A. (2001). Floresta e Ambiente, 8, 195–206.  Google Scholar
First citationQin, D.-P., Feng, X.-L., Zhang, W.-Y., Gao, H., Cheng, X.-R., Zhou, W.-X., Yu, Y. & Yao, X.-S. (2017). RSC Adv. 7, 8512–8520.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSousa, F. S. de, Grecco, S. S., Girola, N., Azevedo, R. A., Figueiredo, C. R. & Lago, J. H. G. (2017). Phytochemistry, 140, 108–117.  Google Scholar
First citationStomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317–331.  CSD CrossRef CAS Web of Science Google Scholar
First citationYu, Y., Lu, X., Wu, W., Wu, Y. & Liu, B. (2013). Chin. J. Chem. 31, 1336–1340.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds