research communications
catena-poly[[diiodidomercury(II)]-μ-2,2′-dithiobis(pyridine N-oxide)-κ2O:O′]1
ofaLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany, and bInstitut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: Ruediger.Seidel@rub.de
The title compound, [HgI2(C10H8N2O2S2)]n, a one-dimensional coordination polymer with HgI2 units and 2,2′-dithiobis(pyridine N-oxide) spacer ligands in an alternating fashion, forms helical chains running along the b axis in the crystal. Within a single coordination polymer strand, the axially chiral 2,2′-dithiobis(pyridine N-oxide) ligands are homochiral, but the enantiomeric conformation is present in adjacent strands. Within a coordination polymer strand, the iodido ligands point towards the centroids of the aromatic rings of the pyridine N-oxide moieties in the coordination sphere of HgII. Moreover, intra-strand C—H⋯O and C—H⋯I interactions, and inter-strand short S⋯I and S⋯O contacts are observed.
Keywords: crystal structure; one-dimensional coordination polymer; 2,2′-dithiobis(pyridine N-oxide); HgII complex; disulfide compound.
CCDC reference: 1825194
1. Chemical context
Research into one-dimensional coordination polymers has been an active field of research, not only due to the usually easy and straightforward synthesis, but also due to interesting structural features and introduction of these compounds as new materials such as coordination polymeric gels, fibres and nanostructures (Leong & Vittal, 2011). In the context of our structural studies on coordination polymers and discrete metallosupramolecular assemblies containing disulfide-based bridging (spacer) ligands (Seidel et al., 2013), 2,2′-dithiobis(pyridine N-oxide) has attracted our interest. Recently, we reported one-dimensional coordination polymers from 2,2′-dithiobis(pyridine N-oxide), and ZnII and CdII halides (Seidel et al., 2017), which represented the first structurally characterised coordination polymers containing 2,2′-dithiobis(pyridine N-oxide) as a spacer ligand (i.e. involving both pyridine N-oxide moieties as coordinating groups). As a continuation of this work, we herein report the of a one-dimensional coordination polymer formed from 2,2′-dithiobis(pyridine N-oxide) and HgI2.
2. Structural commentary
The title compound, (I), is a one-dimensional coordination polymer consisting of HgI2 units joined by 2,2′-dithiobis(pyridine N-oxide) as bridging ligands in a μ-κ2O:O′ coordination mode. Fig. 1 depicts the repeat unit of the coordination polymer and the coordination sphere of the HgII ion. The HgII ion is tetracoordinated by two iodide ligands and two O atoms of the bridging ligands, with a coordination sphere that is best described as a severely distorted tetrahedron or a seesaw form (Yang et al., 2007). The C2—S1—S2—C7 torsion angle is 77.2 (2)°, which corresponds to the P form of the axially chiral gauche conformation of the disulfide-based ligand in the chosen The dihedral angle between the planes of the aromatic N1/C2–C6 and N2/C7–C11 rings is 71.8 (2)°.
The strand of the coordination polymer propagates along a 21-screw axis parallel to the b axis (Fig. 2). Within a single strand, 2,2′-dithiobis(pyridine N-oxide) exhibits exclusively either the right-handed P or the left-handed M conformation, i.e. the bridging ligands in each coordination polymer chain are homochiral. The centrosymmetric (space group P21/n) features, however, both enantiomeric conformations in adjacent strands, as shown in Fig. 2.
3. Supramolecular features
In a single strand, the iodide ligands point towards the centroids of the aromatic rings of the pyridine N-oxide moieties in the coordination sphere of HgII, but I⋯π interactions are not observed. The I⋯Cg distances are long [I1⋯Cg1 = 3.940 (2) Å and I2⋯Cg2ii = 4.205 (2) Å] and the Hg—I⋯Cg angles are acute [Hg1—I1⋯Cg1 = 77.94 (3)° and Hg1—I2⋯Cg2ii = 68.79 (3)°] [Cg1 and Cg2 are the centroids of the N1/C2–C6 and N2/C7–C11 rings, respectively; symmetry code: (ii) −x + , y − , −z + ]. In the chain, potentially structure-influencing C—H⋯O and C—H⋯I interactions can be identified (Table 1). The disulfide moiety is involved in two inter-strand contacts that are shorter than the sum of the van der Waals radii (Bondi, 1964); the short contacts [S1⋯I1iii = 3.5983 (13) Å and S2⋯O2iv = 3.263 (4) Å; symmetry codes: (iii) x + , −y + , z + ; (iv) −x + 2, −y + 1, −z + 2], connect adjacent chains into a layer structure parallel to (01).
4. Database survey
A search for structures containing 2,2′-dithiobis(pyridine N-oxide) in the Cambridge Structural Database (CSD; Groom et al., 2016) via the WebCSD interface (Thomas et al., 2010) in February 2018 revealed the aforementioned one-dimensional coordination polymers containing ZnII and CdII halide units (Seidel et al., 2017). In addition, there is an NaI coordination polymer, wherein the NaI ions are bridged via only one pyridine N-oxide moiety of the ligand in a μ-κ2O:O coordination mode (Ravindran Durai Nayagam, 2010). The crystal structures of the free, unsolvated 2,2′-dithiobis(pyridine N-oxide) (CSD refcode RIRPEN; Bodige et al., 1997) and some cocrystals (Bodige et al., 1997; Bond & Jones, 2000a,b) have also been reported.
The isomorphous series of one-dimensional ZnII coordination polymers, [ZnX2(C10H8N2O2S2)]n [X = Cl, Br, I; C10H8N2O2S2 is 2,2′-dithiobis(pyridine N-oxide)] (Seidel et al., 2017) and (I) are topologically related but not isostructural. The Hg—I and Hg—O bond lengths in (I) are longer by ca 0.09 and 0.48 Å, respectively, than the corresponding Zn—I and Zn—O bond lengths in [ZnI2(C10H8N2O2S2)]n (CSD refcode XAMNUX; Seidel et al., 2017). The deviations of the I—Hg—I and O—Hg—O angles from the ideal tetrahedral angle of 109.5° are considerably larger in (I) than those of the corresponding I—Zn—I and O—Zn—O angles in XAMNUX. In (2,2′-bipyridine N,N′-dioxide)diiodidomercury(II) (CSD refcode FAYKEW; Tedmann et al., 2005), so far the only HgII complex with two pyridine N-oxide and two iodide ligands in the CSD, the I—Hg—I angle is 158.54 (4)°, which is similar to that of 155.113 (16)° observed in (I). The C2—S1—S2—C7 torsion angle in (I) [77.2 (2)°] is markedly smaller than that in RIRPEN, which is very close to the preferred value of 90° [89.89 (9)°], indicating some torsional strain in (I).
5. Synthesis and crystallization
A solution of 20 mg (0.044 mmol) HgI2 in 2 ml of methanol was mixed with a solution of 12 mg (0.048 mmol) 2,2′-dithiobis(pyridine N-oxide) (Acros Organics) in 8 ml of methanol. The reaction mixture was left at room temperature and the solvent was allowed to evaporate slowly. Colourless crystals of (I) suitable for single-crystal X-ray analysis were obtained after ca four weeks.
After prolonged standing, colourless crystals of a second product appeared in the crystallization vessel, which were identified as [Hg2I2(C5H4NOS)2] (C5H4NOS− is pyrithionate) in a preliminary X-ray analysis.
6. Refinement
Crystal data, data collection and structure . H-atom positions were calculated geometrically and refined using a riding model, with Uiso(H) = 1.2Ueq(C). The C—H bond lengths were set at 0.95 Å.
details are summarized in Table 2Supporting information
CCDC reference: 1825194
https://doi.org/10.1107/S2056989018003055/is5492sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003055/is5492Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: enCIFer (Allen et al., 2004).[HgI2(C10H8N2O2S2)] | F(000) = 1264 |
Mr = 706.69 | Dx = 2.948 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4207 (3) Å | Cell parameters from 4297 reflections |
b = 18.7599 (7) Å | θ = 3.6–32.1° |
c = 11.6463 (4) Å | µ = 13.81 mm−1 |
β = 100.887 (4)° | T = 108 K |
V = 1592.13 (10) Å3 | Plate, colourless |
Z = 4 | 0.16 × 0.10 × 0.04 mm |
Oxford Diffraction Xcalibur2 diffractometer | 6430 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4209 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 8.4171 pixels mm-1 | θmax = 36.8°, θmin = 3.6° |
ω scans | h = −11→10 |
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2009) | k = −26→31 |
Tmin = 0.614, Tmax = 0.885 | l = −15→18 |
21770 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0045P)2] where P = (Fo2 + 2Fc2)/3 |
6430 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 1.64 e Å−3 |
0 restraints | Δρmin = −1.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.64620 (3) | 0.14596 (2) | 0.76452 (2) | 0.01829 (5) | |
I1 | 0.38759 (5) | 0.22283 (2) | 0.63732 (3) | 0.01977 (9) | |
I2 | 0.80134 (6) | 0.07571 (2) | 0.95050 (3) | 0.02410 (9) | |
S1 | 0.9109 (2) | 0.33156 (8) | 0.84420 (11) | 0.0169 (3) | |
S2 | 0.89904 (19) | 0.43914 (8) | 0.87677 (12) | 0.0182 (3) | |
O1 | 0.9177 (5) | 0.2100 (2) | 0.7332 (3) | 0.0175 (8) | |
O2 | 0.7700 (5) | 0.5690 (2) | 0.8952 (3) | 0.0183 (8) | |
N1 | 0.8795 (6) | 0.2607 (3) | 0.6515 (4) | 0.0162 (10) | |
N2 | 0.6271 (6) | 0.5263 (2) | 0.8586 (4) | 0.0178 (10) | |
C2 | 0.8761 (7) | 0.3286 (3) | 0.6896 (4) | 0.0135 (11) | |
C3 | 0.8382 (8) | 0.3838 (3) | 0.6102 (4) | 0.0199 (13) | |
H3 | 0.839772 | 0.431876 | 0.636054 | 0.024* | |
C4 | 0.7978 (7) | 0.3676 (3) | 0.4917 (5) | 0.0218 (13) | |
H4 | 0.773405 | 0.404774 | 0.435526 | 0.026* | |
C5 | 0.7931 (8) | 0.2981 (3) | 0.4560 (5) | 0.0233 (14) | |
H5 | 0.760912 | 0.287104 | 0.375152 | 0.028* | |
C6 | 0.8351 (8) | 0.2437 (3) | 0.5370 (5) | 0.0204 (13) | |
H6 | 0.832653 | 0.195319 | 0.512429 | 0.024* | |
C7 | 0.6611 (7) | 0.4561 (3) | 0.8435 (4) | 0.0156 (11) | |
C8 | 0.5189 (8) | 0.4097 (3) | 0.8070 (5) | 0.0207 (13) | |
H8 | 0.542666 | 0.360651 | 0.796344 | 0.025* | |
C9 | 0.3408 (8) | 0.4351 (3) | 0.7860 (5) | 0.0261 (14) | |
H9 | 0.240770 | 0.403667 | 0.760625 | 0.031* | |
C10 | 0.3099 (8) | 0.5073 (3) | 0.8024 (5) | 0.0264 (14) | |
H10 | 0.188027 | 0.525256 | 0.788713 | 0.032* | |
C11 | 0.4533 (8) | 0.5521 (3) | 0.8379 (5) | 0.0231 (13) | |
H11 | 0.431858 | 0.601379 | 0.848200 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.01884 (11) | 0.01544 (11) | 0.02109 (11) | 0.00085 (10) | 0.00505 (8) | 0.00204 (9) |
I1 | 0.0205 (2) | 0.0230 (2) | 0.01644 (18) | 0.00366 (16) | 0.00510 (14) | 0.00259 (15) |
I2 | 0.0291 (2) | 0.0186 (2) | 0.02230 (19) | 0.00029 (17) | −0.00105 (16) | 0.00206 (16) |
S1 | 0.0211 (8) | 0.0141 (7) | 0.0146 (7) | 0.0020 (5) | 0.0016 (5) | 0.0001 (5) |
S2 | 0.0179 (7) | 0.0155 (7) | 0.0204 (7) | −0.0002 (6) | 0.0017 (6) | −0.0037 (6) |
O1 | 0.020 (2) | 0.014 (2) | 0.019 (2) | 0.0012 (16) | 0.0052 (16) | 0.0031 (16) |
O2 | 0.019 (2) | 0.014 (2) | 0.021 (2) | −0.0039 (16) | 0.0034 (16) | −0.0005 (16) |
N1 | 0.019 (3) | 0.017 (3) | 0.014 (2) | 0.001 (2) | 0.0071 (18) | 0.0011 (19) |
N2 | 0.022 (3) | 0.014 (3) | 0.018 (2) | −0.003 (2) | 0.0044 (19) | 0.0054 (19) |
C2 | 0.011 (3) | 0.016 (3) | 0.014 (3) | −0.001 (2) | 0.003 (2) | −0.002 (2) |
C3 | 0.025 (3) | 0.020 (3) | 0.015 (3) | 0.000 (2) | 0.005 (2) | 0.000 (2) |
C4 | 0.019 (3) | 0.026 (4) | 0.021 (3) | 0.000 (3) | 0.007 (2) | 0.007 (2) |
C5 | 0.020 (3) | 0.036 (4) | 0.014 (3) | −0.006 (3) | 0.006 (2) | −0.003 (3) |
C6 | 0.020 (3) | 0.025 (3) | 0.019 (3) | −0.002 (2) | 0.010 (2) | −0.007 (2) |
C7 | 0.016 (3) | 0.013 (3) | 0.017 (3) | 0.001 (2) | 0.003 (2) | 0.002 (2) |
C8 | 0.020 (3) | 0.017 (3) | 0.025 (3) | −0.004 (2) | 0.005 (2) | −0.004 (2) |
C9 | 0.018 (3) | 0.024 (4) | 0.038 (4) | −0.008 (3) | 0.010 (3) | −0.004 (3) |
C10 | 0.016 (3) | 0.024 (4) | 0.041 (4) | −0.001 (3) | 0.009 (3) | 0.006 (3) |
C11 | 0.023 (3) | 0.012 (3) | 0.033 (3) | 0.002 (2) | 0.004 (3) | 0.004 (2) |
Hg1—O1 | 2.432 (4) | C3—H3 | 0.9500 |
Hg1—O2i | 2.524 (4) | C4—C5 | 1.366 (8) |
Hg1—I2 | 2.6100 (4) | C4—H4 | 0.9500 |
Hg1—I1 | 2.6236 (4) | C5—C6 | 1.385 (8) |
S1—C2 | 1.771 (5) | C5—H5 | 0.9500 |
S1—S2 | 2.058 (2) | C6—H6 | 0.9500 |
S2—C7 | 1.764 (6) | C7—C8 | 1.372 (7) |
O1—N1 | 1.336 (5) | C8—C9 | 1.383 (8) |
O2—N2 | 1.333 (5) | C8—H8 | 0.9500 |
N1—C6 | 1.351 (6) | C9—C10 | 1.393 (8) |
N1—C2 | 1.352 (7) | C9—H9 | 0.9500 |
N2—C11 | 1.356 (7) | C10—C11 | 1.357 (8) |
N2—C7 | 1.358 (7) | C10—H10 | 0.9500 |
C2—C3 | 1.381 (7) | C11—H11 | 0.9500 |
C3—C4 | 1.389 (7) | ||
O1—Hg1—O2i | 81.13 (12) | C5—C4—H4 | 120.0 |
O1—Hg1—I2 | 97.24 (8) | C3—C4—H4 | 120.0 |
O2i—Hg1—I2 | 101.01 (8) | C4—C5—C6 | 120.5 (5) |
O1—Hg1—I1 | 100.48 (8) | C4—C5—H5 | 119.8 |
O2i—Hg1—I1 | 98.87 (8) | C6—C5—H5 | 119.8 |
I2—Hg1—I1 | 155.113 (16) | N1—C6—C5 | 118.6 (5) |
C2—S1—S2 | 102.39 (19) | N1—C6—H6 | 120.7 |
C7—S2—S1 | 102.3 (2) | C5—C6—H6 | 120.7 |
N1—O1—Hg1 | 112.8 (3) | N2—C7—C8 | 120.3 (5) |
N2—O2—Hg1ii | 113.6 (3) | N2—C7—S2 | 110.4 (4) |
O1—N1—C6 | 120.9 (5) | C8—C7—S2 | 129.3 (5) |
O1—N1—C2 | 116.9 (4) | C7—C8—C9 | 119.4 (6) |
C6—N1—C2 | 122.1 (5) | C7—C8—H8 | 120.3 |
O2—N2—C11 | 121.0 (5) | C9—C8—H8 | 120.3 |
O2—N2—C7 | 117.9 (5) | C8—C9—C10 | 119.1 (6) |
C11—N2—C7 | 121.1 (5) | C8—C9—H9 | 120.4 |
N1—C2—C3 | 120.1 (5) | C10—C9—H9 | 120.4 |
N1—C2—S1 | 110.8 (4) | C11—C10—C9 | 120.3 (6) |
C3—C2—S1 | 129.0 (4) | C11—C10—H10 | 119.9 |
C2—C3—C4 | 118.6 (5) | C9—C10—H10 | 119.9 |
C2—C3—H3 | 120.7 | N2—C11—C10 | 119.9 (6) |
C4—C3—H3 | 120.7 | N2—C11—H11 | 120.1 |
C5—C4—C3 | 119.9 (5) | C10—C11—H11 | 120.1 |
Hg1—O1—N1—C6 | −73.6 (5) | C2—N1—C6—C5 | 3.1 (8) |
Hg1—O1—N1—C2 | 102.2 (4) | C4—C5—C6—N1 | 0.4 (9) |
Hg1ii—O2—N2—C11 | −76.5 (5) | O2—N2—C7—C8 | 179.4 (5) |
Hg1ii—O2—N2—C7 | 103.9 (4) | C11—N2—C7—C8 | −0.2 (8) |
O1—N1—C2—C3 | 179.8 (5) | O2—N2—C7—S2 | −0.6 (6) |
C6—N1—C2—C3 | −4.4 (8) | C11—N2—C7—S2 | 179.8 (4) |
O1—N1—C2—S1 | −3.7 (6) | S1—S2—C7—N2 | −179.1 (3) |
C6—N1—C2—S1 | 172.1 (4) | S1—S2—C7—C8 | 0.9 (6) |
S2—S1—C2—N1 | −180.0 (3) | N2—C7—C8—C9 | −0.1 (8) |
S2—S1—C2—C3 | −3.9 (6) | S2—C7—C8—C9 | 179.9 (4) |
N1—C2—C3—C4 | 2.3 (8) | C7—C8—C9—C10 | 0.0 (9) |
S1—C2—C3—C4 | −173.6 (4) | C8—C9—C10—C11 | 0.4 (9) |
C2—C3—C4—C5 | 1.1 (9) | O2—N2—C11—C10 | −179.0 (5) |
C3—C4—C5—C6 | −2.4 (9) | C7—N2—C11—C10 | 0.6 (8) |
O1—N1—C6—C5 | 178.7 (5) | C9—C10—C11—N2 | −0.7 (9) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···I2ii | 0.95 | 3.00 | 3.776 (6) | 140 |
C11—H11···O1ii | 0.95 | 2.59 | 3.268 (7) | 129 |
Symmetry code: (ii) −x+3/2, y+1/2, −z+3/2. |
Footnotes
1Dedicated to Professor Peter Imming on the occasion of his 60th birthday.
Acknowledgements
RWS would like to thank Dr Richard Goddard for helpful discussions. Financial support from Bayer MaterialScience (now Covestro) and the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bodige, S. G., Rogers, R. D. & Blackstock, S. C. (1997). Chem. Commun. pp. 1669–1670. CSD CrossRef Web of Science Google Scholar
Bond, A. & Jones, W. (2000a). Acta Cryst. C56, 436–437. CSD CrossRef CAS IUCr Journals Google Scholar
Bond, A. D. & Jones, W. (2000b). J. Phys. Org. Chem. 13, 395–404. Web of Science CSD CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed Google Scholar
Ravindran Durai Nayagam, B., Jebas, S. R., Devadasan, J. J., Murugesan, R. & Schollmeyer, D. (2010). Acta Cryst. E66, m142–m143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffaction, Yarnton, Oxfordshire, England. Google Scholar
Seidel, R. W., Goddard, R. & Oppel, I. M. (2013). Polymers, 5, 527–575. Web of Science CrossRef CAS Google Scholar
Seidel, R. W., Schulze, A. C. & Oppel, I. M. (2017). Z. Anorg. Allg. Chem. 643, 317–324. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tedmann, O. M., Zavalij, P. Y., Madan, S. K. & Oliver, S. R. J. (2005). Acta Cryst. E61, m214–m216. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thomas, I. R., Bruno, I. J., Cole, J. C., Macrae, C. F., Pidcock, E. & Wood, P. A. (2010). J. Appl. Cryst. 43, 362–366. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.