research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (−)-(5R,7R,8S,9R,10S)-8-methyl-7-[(5R)-3-methyl-2-oxooxolan-3-en-5-yl]-1-aza-6-oxatri­cyclo­[8.3.0.05,9]tridecan-13-one monohydrate

aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp

Edited by H. Ishida, Okayama University, Japan (Received 12 March 2018; accepted 16 March 2018; online 27 March 2018)

The title compound, C17H23NO4·H2O, is an epimer of the natural tetra­cyclic alkaloid isosaxorumamide which consists of a fused 5–7–5 tricyclic core and a di­hydro­furan­one substituent. The terminal di­hydro­furan ring is essentially planar with a maximum deviation of 0.0273 (14) Å from the mean plane and oxolane, azepane and pyrrolidine rings in the tricyclic ring system adopt twist, twist-chair and envelope forms, respectively. In the crystal, the amide and water mol­ecules are linked by O—H⋯O hydrogen bonds, forming a tape structure running along the b-axis direction. The tapes are further connected by C—H⋯O inter­actions into a three-dimensional architecture.

1. Chemical context

Saxorumamide and isosaxorumamide are natural Stemona alkaloids isolated from the root of Stemona Saxorum (Wang et al., 2007[Wang, Y.-Z., Tang, C.-P., Dien, P.-H. & Ye, Y. (2007). J. Nat. Prod. 70, 1356-1359.]). They are a pair of diastereomer (12-epimer of each other) which consist of a fused octa­hydro­furo[3,2-c]pyrrolo[1,2-a]azepane nucleus with a di­hydro­furan­one substituent (Fig. 1[link]). The Stemona alkaloids have been isolated from various Stemonaceae species, and over 150 metabolites have been elucidated (Pilli et al., 2000[Pilli, R. A. & de Oliveira, M. da C. F. (2000). Nat. Prod. Rep. 17, 117-127.], 2010[Pilli, R. A., Rosso, G. B. & de Oliveira, M. da C. F. (2010). Nat. Prod. Rep. 27, 1908-1937.]). Extracts of Stemonaceae plants have been traditionally used for folk medicines as anti­tussive and anthelmintic agents in the wide regions of East Asia and Southeast Asia (Greger, 2006[Greger, H. (2006). Planta Med. 72, 99-113.]). Stemona Saxorum has also been utilized for endemic disease in Vietnam. The title compound is an 11-epimer of isosaxorumamide afforded in a synthetic study of stemo­amide-type alkaloids (Yoritate et al., 2017[Yoritate, M., Takahashi, Y., Tajima, H., Ogihara, C., Yokoyama, T., Soda, Y., Oishi, T., Sato, T. & Chida, N. (2017). J. Am. Chem. Soc. 139, 18386-18391.]).

[Scheme 1]
[Figure 1]
Figure 1
Structures of two natural products, saxorumamide and isosaxorumamide, and the title compound. Differences in the relative stereochemistries of these three diastereomers are shown in red.

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 2[link]. The terminal 3-methyl­oxolan-3-en-2-one unit (C16/O17/C18–C20/O21/C22) is essentially planar with a maximum deviation of 0.0383 (16) Å at atom O17. The oxolane ring (C5/O6/C7–C9) in the fused tricyclic ring system adopts a twist form with puckering parameters of Q(2) = 0.350 (3) Å and φ(2) = 271.0 (4)°. Atoms C8 and C9 deviate from the plane through the other three atoms by 0.309 (6) and −0.271 (6) Å, respectively. The central seven-membered azepane ring (N1/C2–C5/C9/C10), which is trans-fused to the oxolane ring, adopts a twist-chair form with puckering parameters of Q = 0.796 (2), Q(2) = 0.472 (2) Å, φ(2) = 195.0 (3)°, Q(3) = 0.641 (2) Å and φ(3) = 246.7 (2)°. The pyrrolidine ring (N1/C10–C13) fused to the azepane ring adopts an envelope form with puckering parameters of Q(2) = 0.300 (3) Å and φ(2) = 251.1 (5)°. The flap atom C11 deviates from the mean plane through the other four atoms by 0.473 (4) Å. The amide moiety (N1/C2/C10/C13/O14) is planar, and atoms N1 and O14 deviate from the mean plane through the other three atoms by 0.028 (2) and −0.035 (4) Å, respectively.

[Figure 2]
Figure 2
The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only H atoms connected to O and chiral C atoms are shown for clarity.

3. Supra­molecular features

The crystal packing is stabilized by O—H⋯O hydrogen bonds (O1W—H1WA⋯O14i and O1W—H1WB⋯O14ii; symmetry codes as in Table 1[link]) between the water mol­ecule and the amide O atom (Fig. 3[link]). The amide and water mol­ecules are linked alternately into a tape with a C21(4) graph-set motif running along the b-axis direction. A C—H⋯O inter­action (C7—H7⋯O21iii; Table 1[link]) supports the tape structure, generating a C(6) graph-set motif. Furthermore, a weak C—H⋯O inter­action (C22—H22C⋯O21iv; Table 1[link]) links the tape structures, extending them into a three-dimensional network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O14i 0.86 (2) 2.02 (2) 2.874 (3) 173 (3)
O1W—H1WB⋯O14ii 0.86 (2) 1.99 (2) 2.835 (3) 167 (3)
C7—H7⋯O21iii 1.00 2.47 3.254 (3) 135
C22—H22C⋯O21iv 0.98 2.58 3.407 (3) 142
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
A partial packing diagram viewed down the a axis, showing the tape structure running along the b-axis direction. Yellow lines indicate the O—H⋯O hydrogen bonds. Black dashed lines indicate C—H⋯O inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) x − 1, y, z; (ii) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]; (v) x − 1, y + 1, z.]
[Figure 4]
Figure 4
The crystal packing of the title compound, viewed down the b axis, showing wavy architectures which consist of the tape structures running along the b-axis direction. Yellow lines indicate the O—H⋯O hydrogen bonds. Black dashed lines indicate C—H⋯O inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry code: (iv) x + [{1\over 2}], −y + [{1\over 2}], −z.]

4. Database survey

In the Cambridge Structural Database (CSD, Version 5.39, Nov. 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 19 structures are registered which contain an 8-methyl-1-aza-6-oxatri­cyclo­[8.3.0.05,9]tridecane skeleton, (a), i.e. the fused tricyclic core related to the title compound (Fig. 5[link]). These include four structures of its -13-one derivatives, (b), with CSD refcodes VATJAC (Kakuta et al., 2003[Kakuta, D., Hitotsuyanagi, Y., Matsuura, N., Fukaya, H. & Takeya, K. (2003). Tetrahedron, 59, 7779-7786.]), KEGYIF (Olivo et al., 2006[Olivo, H. F., Tovar-Miranda, R. & Barragán, E. (2006). J. Org. Chem. 71, 3287-3290.]), XATFOP (Bates & Sridhar, 2011[Bates, R. & Sridhar, S. (2011). CSD Comm. (Private Communication).]) and YAHMIF (Zhang et al., 2011[Zhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, o3056.]), and three structures of its 7-(3-methyl-2-oxooxolan-3-en-5-yl­idene) derivatives, (c), with refcodes PROTMI (Ishizuka et al., 1972[Ishizuka, K., Ohno, K., Taga, T. & Masaki, N. (1972). Acta Cryst. A28, S20.]), PROTOS10 (Irie et al., 1973[Irie, H., Ohno, K., Osaki, K., Taga, T. & Uyeo, S. (1973). Chem. Pharm. Bull. 21, 451-452.]) and OJIRII (Kaltenegger et al., 2003[Kaltenegger, E., Brem, B., Mereiter, K., Kalchhauser, H., Kählig, H., Hofer, O., Vajrodaya, S. & Greger, H. (2003). Phytochemistry, 63, 803-816.]). For the former four structures, the stereochemical and conformational properties, as trans-fused furoazepane, relative stereochemistry and conformation of nitro­gen-containing rings, are almost coincident with those of the title compound. On the other hand, the oxolane ring shows an envelope form in these four structures rather than a twist form as in the title compound. KEGYIF (space group P21) is the natural alkaloid (–)-stemo­amide, which is a -7,13-dione derivative of (a), and XATFOP (space group P21/n) is its racemate.

[Figure 5]
Figure 5
The core structures for database survey; (a) 8-methyl-1-aza-6-oxatri­cyclo­[8.3.0.05,9]tridecane, and its (b) −13-one and (c) 7-(3-methyl-2-oxo-oxolan-3-en-5-yl­idene) derivatives. Structures of the title compound and (–)-stemo­amide are also shown for comparison.

5. Synthesis and crystallization

The title compound was afforded in a synthetic study of saxorumamide and isosaxorumamide, from ethyl 4-bromo­butano­ate and a siloxypyrrole analogue (Yoritate et al., 2017[Yoritate, M., Takahashi, Y., Tajima, H., Ogihara, C., Yokoyama, T., Soda, Y., Oishi, T., Sato, T. & Chida, N. (2017). J. Am. Chem. Soc. 139, 18386-18391.]). The stereochemistry was controlled at the first step of the synthesis by enanti­oselective alkynylation according to the reported conditions (Trost et al., 2006[Trost, B. M., Weiss, A. H. & von Wangelin, A. J. (2006). J. Am. Chem. Soc. 128, 8-9.], 2012[Trost, B. M. & Quintard, A. (2012). Angew. Chem. Int. Ed. 51, 6704-6708.]), and confirmed with HPLC analysis (>98% ee). The (–)-stemo­amide was provided as a tricyclic core inter­mediate, and its structure and relative and absolute configurations were identical with those reported (Lin et al., 1992[Lin, W.-H., Ye, Y. & Xu, R.-S. (1992). J. Nat. Prod. 55, 571-576.]). Purification was carried out by silica gel column chromatography, and pale-yellow crystals were obtained from an EtOAc/hexane mixed solvent (9:1) under a hexane-saturated atmosphere by slow evaporation at ambient temperature, m.p. 466–467 K. [α]D23 – 37.9 (c 0.100, CHCl3). HRMS (ESI) m/z calculated for C17H24NO4+ [M + H]+: 306.1705; found: 306.1703.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Water H atoms were located in a difference-Fourier map, and then refined freely with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å and H⋯H = 1.33 (4) Å.

Table 2
Experimental details

Crystal data
Chemical formula C17H23NO4·H2O
Mr 323.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 90
a, b, c (Å) 6.6180 (3), 7.1197 (3), 34.7351 (15)
V3) 1636.65 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.23 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.98, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 29644, 2879, 2759
Rint 0.047
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.00
No. of reflections 2879
No. of parameters 216
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

(-)-(5R,7R,8S,9R,10S)-8-Methyl-7-[(5R)-3-methyl-2-oxooxolan-3-en-5-yl]-1-aza-6-oxatricyclo[8.3.0.05,9]tridecan-13-one monohydrate top
Crystal data top
C17H23NO4·H2ODx = 1.312 Mg m3
Mr = 323.38Melting point = 466–467 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 6.6180 (3) ÅCell parameters from 9946 reflections
b = 7.1197 (3) Åθ = 2.4–25.1°
c = 34.7351 (15) ŵ = 0.10 mm1
V = 1636.65 (12) Å3T = 90 K
Z = 4Prism, pale yellow
F(000) = 6960.23 × 0.20 × 0.18 mm
Data collection top
Bruker D8 Venture
diffractometer
2879 independent reflections
Radiation source: fine-focus sealed tube2759 reflections with I > 2σ(I)
Multilayered confocal mirror monochromatorRint = 0.047
Detector resolution: 7.4074 pixels mm-1θmax = 25.0°, θmin = 2.4°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 88
Tmin = 0.98, Tmax = 0.98l = 4141
29644 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + 1.385P]
where P = (Fo2 + 2Fc2)/3
2879 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.21 e Å3
3 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. IR (film): 2925, 2855, 1756, 1667, 1455, 1261, 1083, 802 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 6.97 (dq, J = 1.7, 1.4 Hz, 1H; H20), 4.89–4.86 (m, 1H; H16), 4.22 (dd, J = 8.3, 0.9 Hz, 1H; H7), 4.07–4.01 (m, 1H; H2B), 3.92 (ddd, J = 10.9, 6.9, 6.3 Hz, 1H; H10), 3.73 (ddd, J = 10.2, 9.7, 2.9 Hz, 1H; H5), 2.72–2.65 (m, 1H; H2A), 2.59–2.51 (m, 1H; H8), 2.47 (ddd, J = 12.0, 9.7, 6.9 Hz, 1H; H9), 2.42–2.31 (m, 2H; H12AB), 2.00–1.92 (m, 2H; H4A & H11A), 1.95 (dd, J = 1.7, 1.4 Hz, 3H; H22ABC), 1.74–1.59 (m, 2H; H3B & H11B), 1.45–1.28 (m, 2H; H3A & H4B), 1.24 (d, J = 6.6 Hz, 3H; H15ABC) 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 174.7 (C; C18), 174.1 (C; C13), 146.7 (CH; C19), 131.1 (C; C20), 80.6, 80.3, 80.0 (CH x3; C16, C7 & C5), 56.3 (CH; C10), 51.3 (CH; C9), 40.5 (CH2; C2), 38.5 (CH; C8), 35.1 (CH2; C12), 31.0 (CH2; C11), 25.9 (CH2; C4), 22.1 (CH2; C3), 13.1 (CH3; C22), 10.9 (CH3; C15)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0068 (3)0.5967 (3)0.18662 (5)0.0148 (4)
C21.0057 (4)0.4003 (3)0.17441 (6)0.0163 (5)
H2A0.86470.35390.17390.02*
H2B1.08170.32410.19330.02*
C31.0999 (4)0.3752 (4)0.13469 (7)0.0174 (5)
H3A1.23460.43570.13460.021*
H3B1.12040.23930.130.021*
C40.9764 (4)0.4558 (3)0.10156 (7)0.0160 (5)
H4A1.05370.44030.07740.019*
H4B0.84990.38250.0990.019*
C50.9231 (4)0.6613 (3)0.10638 (6)0.0138 (5)
H51.04850.73380.11260.017*
O60.8410 (3)0.7277 (2)0.07027 (4)0.0169 (4)
C70.6625 (4)0.8368 (3)0.07655 (7)0.0165 (5)
H70.6780.95940.06280.02*
C80.6556 (4)0.8755 (3)0.11996 (7)0.0156 (5)
H80.74320.98720.12510.019*
C90.7626 (4)0.7031 (3)0.13668 (6)0.0129 (5)
H90.66410.59660.13680.015*
C100.8418 (4)0.7289 (3)0.17783 (6)0.0144 (5)
H100.72830.70680.19630.017*
C110.9401 (4)0.9177 (3)0.18706 (7)0.0171 (5)
H11A0.83891.00860.19670.021*
H11B1.00690.97110.1640.021*
C121.0951 (4)0.8701 (4)0.21821 (7)0.0186 (6)
H12A1.21480.95310.21640.022*
H12B1.03540.88170.24420.022*
C131.1500 (4)0.6692 (3)0.20942 (7)0.0165 (5)
O141.2991 (3)0.5844 (3)0.22177 (5)0.0233 (4)
C150.4482 (4)0.9164 (4)0.13680 (7)0.0218 (6)
H15A0.3821.01470.12160.033*
H15B0.46290.95890.16350.033*
H15C0.3660.8020.13620.033*
C160.4817 (4)0.7338 (3)0.05958 (6)0.0180 (5)
H160.35640.80950.06390.022*
O170.4601 (3)0.5530 (2)0.07769 (5)0.0184 (4)
C180.4827 (4)0.4170 (4)0.05060 (7)0.0196 (5)
C190.5050 (4)0.5060 (4)0.01261 (7)0.0207 (6)
C200.5018 (4)0.6892 (4)0.01778 (7)0.0203 (6)
H200.51090.77990.00220.024*
O210.4813 (3)0.2530 (3)0.05902 (5)0.0289 (5)
C220.5281 (4)0.3907 (4)0.02303 (7)0.0292 (7)
H22A0.53210.47360.04550.044*
H22B0.41340.30440.02530.044*
H22C0.6540.31850.02160.044*
O1W0.5010 (4)0.2300 (3)0.21248 (6)0.0424 (6)
H1WA0.440 (5)0.334 (4)0.2174 (10)0.064*
H1WB0.549 (6)0.198 (5)0.2345 (7)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0184 (10)0.0129 (10)0.0131 (9)0.0011 (10)0.0012 (9)0.0001 (8)
C20.0202 (12)0.0116 (11)0.0170 (11)0.0013 (12)0.0012 (11)0.0025 (9)
C30.0188 (13)0.0137 (12)0.0197 (13)0.0027 (11)0.0005 (11)0.0013 (10)
C40.0149 (13)0.0179 (13)0.0152 (11)0.0027 (11)0.0027 (11)0.0030 (10)
C50.0147 (12)0.0168 (12)0.0098 (11)0.0005 (10)0.0003 (10)0.0009 (9)
O60.0151 (9)0.0225 (9)0.0133 (8)0.0052 (8)0.0010 (7)0.0030 (7)
C70.0147 (12)0.0161 (12)0.0186 (12)0.0030 (11)0.0018 (10)0.0049 (10)
C80.0164 (12)0.0120 (12)0.0184 (12)0.0001 (11)0.0021 (10)0.0000 (10)
C90.0123 (11)0.0130 (12)0.0134 (11)0.0000 (10)0.0018 (10)0.0001 (10)
C100.0157 (12)0.0146 (12)0.0130 (11)0.0009 (11)0.0038 (10)0.0002 (10)
C110.0204 (13)0.0133 (12)0.0177 (12)0.0015 (11)0.0027 (10)0.0031 (10)
C120.0230 (13)0.0186 (13)0.0141 (12)0.0010 (11)0.0010 (11)0.0045 (10)
C130.0220 (14)0.0183 (13)0.0092 (11)0.0005 (12)0.0011 (10)0.0023 (10)
O140.0257 (10)0.0215 (9)0.0227 (9)0.0035 (9)0.0099 (8)0.0002 (8)
C150.0203 (13)0.0235 (13)0.0217 (13)0.0057 (12)0.0004 (11)0.0050 (11)
C160.0171 (13)0.0193 (12)0.0177 (11)0.0038 (11)0.0002 (11)0.0030 (10)
O170.0194 (9)0.0202 (9)0.0157 (8)0.0035 (8)0.0002 (7)0.0015 (7)
C180.0139 (12)0.0230 (14)0.0220 (13)0.0017 (12)0.0053 (11)0.0009 (11)
C190.0133 (12)0.0297 (14)0.0190 (12)0.0060 (13)0.0038 (11)0.0020 (11)
C200.0143 (13)0.0297 (14)0.0169 (12)0.0007 (13)0.0022 (11)0.0058 (10)
O210.0334 (11)0.0210 (10)0.0324 (10)0.0006 (10)0.0099 (10)0.0010 (8)
C220.0267 (15)0.0374 (16)0.0234 (14)0.0100 (15)0.0053 (12)0.0085 (12)
O1W0.0562 (15)0.0365 (12)0.0345 (11)0.0201 (13)0.0228 (12)0.0136 (10)
Geometric parameters (Å, º) top
N1—C131.338 (3)C10—H101.0
N1—C21.461 (3)C11—C121.529 (3)
N1—C101.474 (3)C11—H11A0.99
C2—C31.525 (3)C11—H11B0.99
C2—H2A0.99C12—C131.507 (3)
C2—H2B0.99C12—H12A0.99
C3—C41.524 (3)C12—H12B0.99
C3—H3A0.99C13—O141.234 (3)
C3—H3B0.99C15—H15A0.98
C4—C51.515 (3)C15—H15B0.98
C4—H4A0.99C15—H15C0.98
C4—H4B0.99C16—O171.440 (3)
C5—O61.446 (3)C16—C201.492 (3)
C5—C91.525 (3)C16—H161.0
C5—H51.0O17—C181.359 (3)
O6—C71.431 (3)C18—O211.204 (3)
C7—C161.522 (4)C18—C191.471 (3)
C7—C81.534 (3)C19—C201.317 (4)
C7—H71.0C19—C221.493 (3)
C8—C151.521 (3)C20—H200.95
C8—C91.531 (3)C22—H22A0.98
C8—H81.0C22—H22B0.98
C9—C101.533 (3)C22—H22C0.98
C9—H91.0O1W—H1WA0.86 (2)
C10—C111.528 (3)O1W—H1WB0.86 (2)
C13—N1—C2123.0 (2)C11—C10—C9116.5 (2)
C13—N1—C10113.62 (19)N1—C10—H10108.9
C2—N1—C10123.2 (2)C11—C10—H10108.9
N1—C2—C3111.90 (19)C9—C10—H10108.9
N1—C2—H2A109.2C10—C11—C12103.9 (2)
C3—C2—H2A109.2C10—C11—H11A111.0
N1—C2—H2B109.2C12—C11—H11A111.0
C3—C2—H2B109.2C10—C11—H11B111.0
H2A—C2—H2B107.9C12—C11—H11B111.0
C4—C3—C2114.8 (2)H11A—C11—H11B109.0
C4—C3—H3A108.6C13—C12—C11103.2 (2)
C2—C3—H3A108.6C13—C12—H12A111.1
C4—C3—H3B108.6C11—C12—H12A111.1
C2—C3—H3B108.6C13—C12—H12B111.1
H3A—C3—H3B107.5C11—C12—H12B111.1
C5—C4—C3113.9 (2)H12A—C12—H12B109.1
C5—C4—H4A108.8O14—C13—N1125.7 (2)
C3—C4—H4A108.8O14—C13—C12125.9 (2)
C5—C4—H4B108.8N1—C13—C12108.4 (2)
C3—C4—H4B108.8C8—C15—H15A109.5
H4A—C4—H4B107.7C8—C15—H15B109.5
O6—C5—C4107.90 (18)H15A—C15—H15B109.5
O6—C5—C9105.84 (19)C8—C15—H15C109.5
C4—C5—C9115.3 (2)H15A—C15—H15C109.5
O6—C5—H5109.2H15B—C15—H15C109.5
C4—C5—H5109.2O17—C16—C20104.1 (2)
C9—C5—H5109.2O17—C16—C7109.86 (19)
C7—O6—C5110.83 (17)C20—C16—C7114.2 (2)
O6—C7—C16109.18 (19)O17—C16—H16109.5
O6—C7—C8105.77 (19)C20—C16—H16109.5
C16—C7—C8116.4 (2)C7—C16—H16109.5
O6—C7—H7108.4C18—O17—C16108.90 (17)
C16—C7—H7108.4O21—C18—O17121.5 (2)
C8—C7—H7108.4O21—C18—C19129.5 (2)
C15—C8—C9115.1 (2)O17—C18—C19109.0 (2)
C15—C8—C7116.1 (2)C20—C19—C18107.6 (2)
C9—C8—C7102.43 (19)C20—C19—C22131.2 (2)
C15—C8—H8107.6C18—C19—C22121.2 (2)
C9—C8—H8107.6C19—C20—C16110.2 (2)
C7—C8—H8107.6C19—C20—H20124.9
C5—C9—C8102.52 (19)C16—C20—H20124.9
C5—C9—C10115.4 (2)C19—C22—H22A109.5
C8—C9—C10114.6 (2)C19—C22—H22B109.5
C5—C9—H9108.0H22A—C22—H22B109.5
C8—C9—H9108.0C19—C22—H22C109.5
C10—C9—H9108.0H22A—C22—H22C109.5
N1—C10—C11101.69 (19)H22B—C22—H22C109.5
N1—C10—C9111.73 (18)H1WA—O1W—H1WB103 (3)
C13—N1—C2—C396.5 (3)C5—C9—C10—C1177.7 (3)
C10—N1—C2—C389.0 (3)C8—C9—C10—C1141.0 (3)
N1—C2—C3—C469.5 (3)N1—C10—C11—C1228.7 (2)
C2—C3—C4—C554.7 (3)C9—C10—C11—C12150.4 (2)
C3—C4—C5—O6169.37 (19)C10—C11—C12—C1328.6 (2)
C3—C4—C5—C972.6 (3)C2—N1—C13—O142.5 (4)
C4—C5—O6—C7134.6 (2)C10—N1—C13—O14177.4 (2)
C9—C5—O6—C710.7 (3)C2—N1—C13—C12176.1 (2)
C5—O6—C7—C16113.8 (2)C10—N1—C13—C121.1 (3)
C5—O6—C7—C812.1 (3)C11—C12—C13—O14163.8 (2)
O6—C7—C8—C15155.9 (2)C11—C12—C13—N117.7 (2)
C16—C7—C8—C1534.4 (3)O6—C7—C16—O1759.7 (2)
O6—C7—C8—C929.6 (2)C8—C7—C16—O1759.9 (3)
C16—C7—C8—C991.8 (2)O6—C7—C16—C2056.8 (3)
O6—C5—C9—C828.7 (2)C8—C7—C16—C20176.4 (2)
C4—C5—C9—C8147.9 (2)C20—C16—O17—C184.8 (3)
O6—C5—C9—C10153.92 (19)C7—C16—O17—C18117.8 (2)
C4—C5—C9—C1086.9 (3)C16—O17—C18—O21176.1 (3)
C15—C8—C9—C5161.9 (2)C16—O17—C18—C194.3 (3)
C7—C8—C9—C535.0 (2)O21—C18—C19—C20178.6 (3)
C15—C8—C9—C1072.4 (3)O17—C18—C19—C201.9 (3)
C7—C8—C9—C10160.7 (2)O21—C18—C19—C220.8 (4)
C13—N1—C10—C1119.3 (2)O17—C18—C19—C22178.7 (2)
C2—N1—C10—C11165.7 (2)C18—C19—C20—C161.2 (3)
C13—N1—C10—C9144.3 (2)C22—C19—C20—C16178.1 (3)
C2—N1—C10—C940.7 (3)O17—C16—C20—C193.7 (3)
C5—C9—C10—N138.5 (3)C7—C16—C20—C19116.1 (3)
C8—C9—C10—N1157.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O14i0.86 (2)2.02 (2)2.874 (3)173 (3)
O1W—H1WB···O14ii0.86 (2)1.99 (2)2.835 (3)167 (3)
C7—H7···O21iii1.002.473.254 (3)135
C22—H22C···O21iv0.982.583.407 (3)142
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his fruitful advice.

References

First citationBates, R. & Sridhar, S. (2011). CSD Comm. (Private Communication).  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreger, H. (2006). Planta Med. 72, 99–113.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIrie, H., Ohno, K., Osaki, K., Taga, T. & Uyeo, S. (1973). Chem. Pharm. Bull. 21, 451–452.  CrossRef Google Scholar
First citationIshizuka, K., Ohno, K., Taga, T. & Masaki, N. (1972). Acta Cryst. A28, S20.  Google Scholar
First citationKakuta, D., Hitotsuyanagi, Y., Matsuura, N., Fukaya, H. & Takeya, K. (2003). Tetrahedron, 59, 7779–7786.  CrossRef Google Scholar
First citationKaltenegger, E., Brem, B., Mereiter, K., Kalchhauser, H., Kählig, H., Hofer, O., Vajrodaya, S. & Greger, H. (2003). Phytochemistry, 63, 803–816.  CrossRef Google Scholar
First citationLin, W.-H., Ye, Y. & Xu, R.-S. (1992). J. Nat. Prod. 55, 571–576.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOlivo, H. F., Tovar-Miranda, R. & Barragán, E. (2006). J. Org. Chem. 71, 3287–3290.  CrossRef Google Scholar
First citationPilli, R. A. & de Oliveira, M. da C. F. (2000). Nat. Prod. Rep. 17, 117–127.  CrossRef Google Scholar
First citationPilli, R. A., Rosso, G. B. & de Oliveira, M. da C. F. (2010). Nat. Prod. Rep. 27, 1908–1937.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M. & Quintard, A. (2012). Angew. Chem. Int. Ed. 51, 6704–6708.  CrossRef Google Scholar
First citationTrost, B. M., Weiss, A. H. & von Wangelin, A. J. (2006). J. Am. Chem. Soc. 128, 8–9.  CrossRef Google Scholar
First citationWang, Y.-Z., Tang, C.-P., Dien, P.-H. & Ye, Y. (2007). J. Nat. Prod. 70, 1356–1359.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoritate, M., Takahashi, Y., Tajima, H., Ogihara, C., Yokoyama, T., Soda, Y., Oishi, T., Sato, T. & Chida, N. (2017). J. Am. Chem. Soc. 139, 18386–18391.  CrossRef Google Scholar
First citationZhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, o3056.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds