research communications
R,7R,8S,9R,10S)-8-methyl-7-[(5R)-3-methyl-2-oxooxolan-3-en-5-yl]-1-aza-6-oxatricyclo[8.3.0.05,9]tridecan-13-one monohydrate
of (−)-(5aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan
*Correspondence e-mail: oec@keio.jp
The title compound, C17H23NO4·H2O, is an epimer of the natural tetracyclic alkaloid isosaxorumamide which consists of a fused 5–7–5 tricyclic core and a dihydrofuranone substituent. The terminal dihydrofuran ring is essentially planar with a maximum deviation of 0.0273 (14) Å from the mean plane and oxolane, azepane and pyrrolidine rings in the tricyclic ring system adopt twist, twist-chair and envelope forms, respectively. In the crystal, the amide and water molecules are linked by O—H⋯O hydrogen bonds, forming a tape structure running along the b-axis direction. The tapes are further connected by C—H⋯O interactions into a three-dimensional architecture.
Keywords: crystal structure; isosaxorumamide; tetracyclic compound; fused tricyclic core; oxolane; azepane; pyrrolidine; hydrogen bond.
CCDC reference: 1830268
1. Chemical context
Saxorumamide and isosaxorumamide are natural Stemona isolated from the root of Stemona Saxorum (Wang et al., 2007). They are a pair of diastereomer (12-epimer of each other) which consist of a fused octahydrofuro[3,2-c]pyrrolo[1,2-a]azepane nucleus with a dihydrofuranone substituent (Fig. 1). The Stemona have been isolated from various Stemonaceae species, and over 150 metabolites have been elucidated (Pilli et al., 2000, 2010). Extracts of Stemonaceae plants have been traditionally used for folk medicines as antitussive and anthelmintic agents in the wide regions of East Asia and Southeast Asia (Greger, 2006). Stemona Saxorum has also been utilized for endemic disease in Vietnam. The title compound is an 11-epimer of isosaxorumamide afforded in a synthetic study of stemoamide-type (Yoritate et al., 2017).
2. Structural commentary
The . The terminal 3-methyloxolan-3-en-2-one unit (C16/O17/C18–C20/O21/C22) is essentially planar with a maximum deviation of 0.0383 (16) Å at atom O17. The oxolane ring (C5/O6/C7–C9) in the fused tricyclic ring system adopts a with puckering parameters of Q(2) = 0.350 (3) Å and φ(2) = 271.0 (4)°. Atoms C8 and C9 deviate from the plane through the other three atoms by 0.309 (6) and −0.271 (6) Å, respectively. The central seven-membered azepane ring (N1/C2–C5/C9/C10), which is trans-fused to the oxolane ring, adopts a twist-chair form with puckering parameters of Q = 0.796 (2), Q(2) = 0.472 (2) Å, φ(2) = 195.0 (3)°, Q(3) = 0.641 (2) Å and φ(3) = 246.7 (2)°. The pyrrolidine ring (N1/C10–C13) fused to the azepane ring adopts an envelope form with puckering parameters of Q(2) = 0.300 (3) Å and φ(2) = 251.1 (5)°. The flap atom C11 deviates from the mean plane through the other four atoms by 0.473 (4) Å. The amide moiety (N1/C2/C10/C13/O14) is planar, and atoms N1 and O14 deviate from the mean plane through the other three atoms by 0.028 (2) and −0.035 (4) Å, respectively.
of the title compound is shown in Fig. 23. Supramolecular features
The crystal packing is stabilized by O—H⋯O hydrogen bonds (O1W—H1WA⋯O14i and O1W—H1WB⋯O14ii; symmetry codes as in Table 1) between the water molecule and the amide O atom (Fig. 3). The amide and water molecules are linked alternately into a tape with a C21(4) graph-set motif running along the b-axis direction. A C—H⋯O interaction (C7—H7⋯O21iii; Table 1) supports the tape structure, generating a C(6) graph-set motif. Furthermore, a weak C—H⋯O interaction (C22—H22C⋯O21iv; Table 1) links the tape structures, extending them into a three-dimensional network (Fig. 4).
4. Database survey
In the Cambridge Structural Database (CSD, Version 5.39, Nov. 2017; Groom et al., 2016), 19 structures are registered which contain an 8-methyl-1-aza-6-oxatricyclo[8.3.0.05,9]tridecane skeleton, (a), i.e. the fused tricyclic core related to the title compound (Fig. 5). These include four structures of its -13-one derivatives, (b), with CSD refcodes VATJAC (Kakuta et al., 2003), KEGYIF (Olivo et al., 2006), XATFOP (Bates & Sridhar, 2011) and YAHMIF (Zhang et al., 2011), and three structures of its 7-(3-methyl-2-oxooxolan-3-en-5-ylidene) derivatives, (c), with refcodes PROTMI (Ishizuka et al., 1972), PROTOS10 (Irie et al., 1973) and OJIRII (Kaltenegger et al., 2003). For the former four structures, the stereochemical and conformational properties, as trans-fused furoazepane, relative stereochemistry and conformation of nitrogen-containing rings, are almost coincident with those of the title compound. On the other hand, the oxolane ring shows an envelope form in these four structures rather than a as in the title compound. KEGYIF (space group P21) is the natural alkaloid (–)-stemoamide, which is a -7,13-dione derivative of (a), and XATFOP (space group P21/n) is its racemate.
5. Synthesis and crystallization
The title compound was afforded in a synthetic study of saxorumamide and isosaxorumamide, from ethyl 4-bromobutanoate and a siloxypyrrole analogue (Yoritate et al., 2017). The stereochemistry was controlled at the first step of the synthesis by enantioselective alkynylation according to the reported conditions (Trost et al., 2006, 2012), and confirmed with HPLC analysis (>98% ee). The (–)-stemoamide was provided as a tricyclic core intermediate, and its structure and relative and absolute configurations were identical with those reported (Lin et al., 1992). Purification was carried out by silica gel and pale-yellow crystals were obtained from an EtOAc/hexane mixed solvent (9:1) under a hexane-saturated atmosphere by slow evaporation at ambient temperature, m.p. 466–467 K. [α]D23 – 37.9 (c 0.100, CHCl3). HRMS (ESI) m/z calculated for C17H24NO4+ [M + H]+: 306.1705; found: 306.1703.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Water H atoms were located in a difference-Fourier map, and then refined freely with Uiso(H) = 1.5Ueq(O), and with distance restraints of O—H = 0.84 (2) Å and H⋯H = 1.33 (4) Å.
details are summarized in Table 2Supporting information
CCDC reference: 1830268
https://doi.org/10.1107/S2056989018004425/is5494sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018004425/is5494Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).C17H23NO4·H2O | Dx = 1.312 Mg m−3 |
Mr = 323.38 | Melting point = 466–467 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6180 (3) Å | Cell parameters from 9946 reflections |
b = 7.1197 (3) Å | θ = 2.4–25.1° |
c = 34.7351 (15) Å | µ = 0.10 mm−1 |
V = 1636.65 (12) Å3 | T = 90 K |
Z = 4 | Prism, pale yellow |
F(000) = 696 | 0.23 × 0.20 × 0.18 mm |
Bruker D8 Venture diffractometer | 2879 independent reflections |
Radiation source: fine-focus sealed tube | 2759 reflections with I > 2σ(I) |
Multilayered confocal mirror monochromator | Rint = 0.047 |
Detector resolution: 7.4074 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
φ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −8→8 |
Tmin = 0.98, Tmax = 0.98 | l = −41→41 |
29644 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + 1.385P] where P = (Fo2 + 2Fc2)/3 |
2879 reflections | (Δ/σ)max < 0.001 |
216 parameters | Δρmax = 0.21 e Å−3 |
3 restraints | Δρmin = −0.19 e Å−3 |
Experimental. IR (film): 2925, 2855, 1756, 1667, 1455, 1261, 1083, 802 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 6.97 (dq, J = 1.7, 1.4 Hz, 1H; H20), 4.89–4.86 (m, 1H; H16), 4.22 (dd, J = 8.3, 0.9 Hz, 1H; H7), 4.07–4.01 (m, 1H; H2B), 3.92 (ddd, J = 10.9, 6.9, 6.3 Hz, 1H; H10), 3.73 (ddd, J = 10.2, 9.7, 2.9 Hz, 1H; H5), 2.72–2.65 (m, 1H; H2A), 2.59–2.51 (m, 1H; H8), 2.47 (ddd, J = 12.0, 9.7, 6.9 Hz, 1H; H9), 2.42–2.31 (m, 2H; H12AB), 2.00–1.92 (m, 2H; H4A & H11A), 1.95 (dd, J = 1.7, 1.4 Hz, 3H; H22ABC), 1.74–1.59 (m, 2H; H3B & H11B), 1.45–1.28 (m, 2H; H3A & H4B), 1.24 (d, J = 6.6 Hz, 3H; H15ABC) 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 174.7 (C; C18), 174.1 (C; C13), 146.7 (CH; C19), 131.1 (C; C20), 80.6, 80.3, 80.0 (CH x3; C16, C7 & C5), 56.3 (CH; C10), 51.3 (CH; C9), 40.5 (CH2; C2), 38.5 (CH; C8), 35.1 (CH2; C12), 31.0 (CH2; C11), 25.9 (CH2; C4), 22.1 (CH2; C3), 13.1 (CH3; C22), 10.9 (CH3; C15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 1.0068 (3) | 0.5967 (3) | 0.18662 (5) | 0.0148 (4) | |
C2 | 1.0057 (4) | 0.4003 (3) | 0.17441 (6) | 0.0163 (5) | |
H2A | 0.8647 | 0.3539 | 0.1739 | 0.02* | |
H2B | 1.0817 | 0.3241 | 0.1933 | 0.02* | |
C3 | 1.0999 (4) | 0.3752 (4) | 0.13469 (7) | 0.0174 (5) | |
H3A | 1.2346 | 0.4357 | 0.1346 | 0.021* | |
H3B | 1.1204 | 0.2393 | 0.13 | 0.021* | |
C4 | 0.9764 (4) | 0.4558 (3) | 0.10156 (7) | 0.0160 (5) | |
H4A | 1.0537 | 0.4403 | 0.0774 | 0.019* | |
H4B | 0.8499 | 0.3825 | 0.099 | 0.019* | |
C5 | 0.9231 (4) | 0.6613 (3) | 0.10638 (6) | 0.0138 (5) | |
H5 | 1.0485 | 0.7338 | 0.1126 | 0.017* | |
O6 | 0.8410 (3) | 0.7277 (2) | 0.07027 (4) | 0.0169 (4) | |
C7 | 0.6625 (4) | 0.8368 (3) | 0.07655 (7) | 0.0165 (5) | |
H7 | 0.678 | 0.9594 | 0.0628 | 0.02* | |
C8 | 0.6556 (4) | 0.8755 (3) | 0.11996 (7) | 0.0156 (5) | |
H8 | 0.7432 | 0.9872 | 0.1251 | 0.019* | |
C9 | 0.7626 (4) | 0.7031 (3) | 0.13668 (6) | 0.0129 (5) | |
H9 | 0.6641 | 0.5966 | 0.1368 | 0.015* | |
C10 | 0.8418 (4) | 0.7289 (3) | 0.17783 (6) | 0.0144 (5) | |
H10 | 0.7283 | 0.7068 | 0.1963 | 0.017* | |
C11 | 0.9401 (4) | 0.9177 (3) | 0.18706 (7) | 0.0171 (5) | |
H11A | 0.8389 | 1.0086 | 0.1967 | 0.021* | |
H11B | 1.0069 | 0.9711 | 0.164 | 0.021* | |
C12 | 1.0951 (4) | 0.8701 (4) | 0.21821 (7) | 0.0186 (6) | |
H12A | 1.2148 | 0.9531 | 0.2164 | 0.022* | |
H12B | 1.0354 | 0.8817 | 0.2442 | 0.022* | |
C13 | 1.1500 (4) | 0.6692 (3) | 0.20942 (7) | 0.0165 (5) | |
O14 | 1.2991 (3) | 0.5844 (3) | 0.22177 (5) | 0.0233 (4) | |
C15 | 0.4482 (4) | 0.9164 (4) | 0.13680 (7) | 0.0218 (6) | |
H15A | 0.382 | 1.0147 | 0.1216 | 0.033* | |
H15B | 0.4629 | 0.9589 | 0.1635 | 0.033* | |
H15C | 0.366 | 0.802 | 0.1362 | 0.033* | |
C16 | 0.4817 (4) | 0.7338 (3) | 0.05958 (6) | 0.0180 (5) | |
H16 | 0.3564 | 0.8095 | 0.0639 | 0.022* | |
O17 | 0.4601 (3) | 0.5530 (2) | 0.07769 (5) | 0.0184 (4) | |
C18 | 0.4827 (4) | 0.4170 (4) | 0.05060 (7) | 0.0196 (5) | |
C19 | 0.5050 (4) | 0.5060 (4) | 0.01261 (7) | 0.0207 (6) | |
C20 | 0.5018 (4) | 0.6892 (4) | 0.01778 (7) | 0.0203 (6) | |
H20 | 0.5109 | 0.7799 | −0.0022 | 0.024* | |
O21 | 0.4813 (3) | 0.2530 (3) | 0.05902 (5) | 0.0289 (5) | |
C22 | 0.5281 (4) | 0.3907 (4) | −0.02303 (7) | 0.0292 (7) | |
H22A | 0.5321 | 0.4736 | −0.0455 | 0.044* | |
H22B | 0.4134 | 0.3044 | −0.0253 | 0.044* | |
H22C | 0.654 | 0.3185 | −0.0216 | 0.044* | |
O1W | 0.5010 (4) | 0.2300 (3) | 0.21248 (6) | 0.0424 (6) | |
H1WA | 0.440 (5) | 0.334 (4) | 0.2174 (10) | 0.064* | |
H1WB | 0.549 (6) | 0.198 (5) | 0.2345 (7) | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0184 (10) | 0.0129 (10) | 0.0131 (9) | 0.0011 (10) | −0.0012 (9) | 0.0001 (8) |
C2 | 0.0202 (12) | 0.0116 (11) | 0.0170 (11) | −0.0013 (12) | −0.0012 (11) | 0.0025 (9) |
C3 | 0.0188 (13) | 0.0137 (12) | 0.0197 (13) | 0.0027 (11) | −0.0005 (11) | −0.0013 (10) |
C4 | 0.0149 (13) | 0.0179 (13) | 0.0152 (11) | 0.0027 (11) | 0.0027 (11) | −0.0030 (10) |
C5 | 0.0147 (12) | 0.0168 (12) | 0.0098 (11) | −0.0005 (10) | −0.0003 (10) | 0.0009 (9) |
O6 | 0.0151 (9) | 0.0225 (9) | 0.0133 (8) | 0.0052 (8) | 0.0010 (7) | 0.0030 (7) |
C7 | 0.0147 (12) | 0.0161 (12) | 0.0186 (12) | 0.0030 (11) | 0.0018 (10) | 0.0049 (10) |
C8 | 0.0164 (12) | 0.0120 (12) | 0.0184 (12) | 0.0001 (11) | −0.0021 (10) | 0.0000 (10) |
C9 | 0.0123 (11) | 0.0130 (12) | 0.0134 (11) | 0.0000 (10) | 0.0018 (10) | −0.0001 (10) |
C10 | 0.0157 (12) | 0.0146 (12) | 0.0130 (11) | 0.0009 (11) | 0.0038 (10) | 0.0002 (10) |
C11 | 0.0204 (13) | 0.0133 (12) | 0.0177 (12) | 0.0015 (11) | 0.0027 (10) | −0.0031 (10) |
C12 | 0.0230 (13) | 0.0186 (13) | 0.0141 (12) | −0.0010 (11) | 0.0010 (11) | −0.0045 (10) |
C13 | 0.0220 (14) | 0.0183 (13) | 0.0092 (11) | −0.0005 (12) | 0.0011 (10) | 0.0023 (10) |
O14 | 0.0257 (10) | 0.0215 (9) | 0.0227 (9) | 0.0035 (9) | −0.0099 (8) | −0.0002 (8) |
C15 | 0.0203 (13) | 0.0235 (13) | 0.0217 (13) | 0.0057 (12) | −0.0004 (11) | −0.0050 (11) |
C16 | 0.0171 (13) | 0.0193 (12) | 0.0177 (11) | 0.0038 (11) | 0.0002 (11) | 0.0030 (10) |
O17 | 0.0194 (9) | 0.0202 (9) | 0.0157 (8) | −0.0035 (8) | −0.0002 (7) | 0.0015 (7) |
C18 | 0.0139 (12) | 0.0230 (14) | 0.0220 (13) | 0.0017 (12) | −0.0053 (11) | −0.0009 (11) |
C19 | 0.0133 (12) | 0.0297 (14) | 0.0190 (12) | 0.0060 (13) | −0.0038 (11) | −0.0020 (11) |
C20 | 0.0143 (13) | 0.0297 (14) | 0.0169 (12) | 0.0007 (13) | −0.0022 (11) | 0.0058 (10) |
O21 | 0.0334 (11) | 0.0210 (10) | 0.0324 (10) | 0.0006 (10) | −0.0099 (10) | 0.0010 (8) |
C22 | 0.0267 (15) | 0.0374 (16) | 0.0234 (14) | 0.0100 (15) | −0.0053 (12) | −0.0085 (12) |
O1W | 0.0562 (15) | 0.0365 (12) | 0.0345 (11) | 0.0201 (13) | −0.0228 (12) | −0.0136 (10) |
N1—C13 | 1.338 (3) | C10—H10 | 1.0 |
N1—C2 | 1.461 (3) | C11—C12 | 1.529 (3) |
N1—C10 | 1.474 (3) | C11—H11A | 0.99 |
C2—C3 | 1.525 (3) | C11—H11B | 0.99 |
C2—H2A | 0.99 | C12—C13 | 1.507 (3) |
C2—H2B | 0.99 | C12—H12A | 0.99 |
C3—C4 | 1.524 (3) | C12—H12B | 0.99 |
C3—H3A | 0.99 | C13—O14 | 1.234 (3) |
C3—H3B | 0.99 | C15—H15A | 0.98 |
C4—C5 | 1.515 (3) | C15—H15B | 0.98 |
C4—H4A | 0.99 | C15—H15C | 0.98 |
C4—H4B | 0.99 | C16—O17 | 1.440 (3) |
C5—O6 | 1.446 (3) | C16—C20 | 1.492 (3) |
C5—C9 | 1.525 (3) | C16—H16 | 1.0 |
C5—H5 | 1.0 | O17—C18 | 1.359 (3) |
O6—C7 | 1.431 (3) | C18—O21 | 1.204 (3) |
C7—C16 | 1.522 (4) | C18—C19 | 1.471 (3) |
C7—C8 | 1.534 (3) | C19—C20 | 1.317 (4) |
C7—H7 | 1.0 | C19—C22 | 1.493 (3) |
C8—C15 | 1.521 (3) | C20—H20 | 0.95 |
C8—C9 | 1.531 (3) | C22—H22A | 0.98 |
C8—H8 | 1.0 | C22—H22B | 0.98 |
C9—C10 | 1.533 (3) | C22—H22C | 0.98 |
C9—H9 | 1.0 | O1W—H1WA | 0.86 (2) |
C10—C11 | 1.528 (3) | O1W—H1WB | 0.86 (2) |
C13—N1—C2 | 123.0 (2) | C11—C10—C9 | 116.5 (2) |
C13—N1—C10 | 113.62 (19) | N1—C10—H10 | 108.9 |
C2—N1—C10 | 123.2 (2) | C11—C10—H10 | 108.9 |
N1—C2—C3 | 111.90 (19) | C9—C10—H10 | 108.9 |
N1—C2—H2A | 109.2 | C10—C11—C12 | 103.9 (2) |
C3—C2—H2A | 109.2 | C10—C11—H11A | 111.0 |
N1—C2—H2B | 109.2 | C12—C11—H11A | 111.0 |
C3—C2—H2B | 109.2 | C10—C11—H11B | 111.0 |
H2A—C2—H2B | 107.9 | C12—C11—H11B | 111.0 |
C4—C3—C2 | 114.8 (2) | H11A—C11—H11B | 109.0 |
C4—C3—H3A | 108.6 | C13—C12—C11 | 103.2 (2) |
C2—C3—H3A | 108.6 | C13—C12—H12A | 111.1 |
C4—C3—H3B | 108.6 | C11—C12—H12A | 111.1 |
C2—C3—H3B | 108.6 | C13—C12—H12B | 111.1 |
H3A—C3—H3B | 107.5 | C11—C12—H12B | 111.1 |
C5—C4—C3 | 113.9 (2) | H12A—C12—H12B | 109.1 |
C5—C4—H4A | 108.8 | O14—C13—N1 | 125.7 (2) |
C3—C4—H4A | 108.8 | O14—C13—C12 | 125.9 (2) |
C5—C4—H4B | 108.8 | N1—C13—C12 | 108.4 (2) |
C3—C4—H4B | 108.8 | C8—C15—H15A | 109.5 |
H4A—C4—H4B | 107.7 | C8—C15—H15B | 109.5 |
O6—C5—C4 | 107.90 (18) | H15A—C15—H15B | 109.5 |
O6—C5—C9 | 105.84 (19) | C8—C15—H15C | 109.5 |
C4—C5—C9 | 115.3 (2) | H15A—C15—H15C | 109.5 |
O6—C5—H5 | 109.2 | H15B—C15—H15C | 109.5 |
C4—C5—H5 | 109.2 | O17—C16—C20 | 104.1 (2) |
C9—C5—H5 | 109.2 | O17—C16—C7 | 109.86 (19) |
C7—O6—C5 | 110.83 (17) | C20—C16—C7 | 114.2 (2) |
O6—C7—C16 | 109.18 (19) | O17—C16—H16 | 109.5 |
O6—C7—C8 | 105.77 (19) | C20—C16—H16 | 109.5 |
C16—C7—C8 | 116.4 (2) | C7—C16—H16 | 109.5 |
O6—C7—H7 | 108.4 | C18—O17—C16 | 108.90 (17) |
C16—C7—H7 | 108.4 | O21—C18—O17 | 121.5 (2) |
C8—C7—H7 | 108.4 | O21—C18—C19 | 129.5 (2) |
C15—C8—C9 | 115.1 (2) | O17—C18—C19 | 109.0 (2) |
C15—C8—C7 | 116.1 (2) | C20—C19—C18 | 107.6 (2) |
C9—C8—C7 | 102.43 (19) | C20—C19—C22 | 131.2 (2) |
C15—C8—H8 | 107.6 | C18—C19—C22 | 121.2 (2) |
C9—C8—H8 | 107.6 | C19—C20—C16 | 110.2 (2) |
C7—C8—H8 | 107.6 | C19—C20—H20 | 124.9 |
C5—C9—C8 | 102.52 (19) | C16—C20—H20 | 124.9 |
C5—C9—C10 | 115.4 (2) | C19—C22—H22A | 109.5 |
C8—C9—C10 | 114.6 (2) | C19—C22—H22B | 109.5 |
C5—C9—H9 | 108.0 | H22A—C22—H22B | 109.5 |
C8—C9—H9 | 108.0 | C19—C22—H22C | 109.5 |
C10—C9—H9 | 108.0 | H22A—C22—H22C | 109.5 |
N1—C10—C11 | 101.69 (19) | H22B—C22—H22C | 109.5 |
N1—C10—C9 | 111.73 (18) | H1WA—O1W—H1WB | 103 (3) |
C13—N1—C2—C3 | −96.5 (3) | C5—C9—C10—C11 | 77.7 (3) |
C10—N1—C2—C3 | 89.0 (3) | C8—C9—C10—C11 | −41.0 (3) |
N1—C2—C3—C4 | −69.5 (3) | N1—C10—C11—C12 | −28.7 (2) |
C2—C3—C4—C5 | 54.7 (3) | C9—C10—C11—C12 | −150.4 (2) |
C3—C4—C5—O6 | 169.37 (19) | C10—C11—C12—C13 | 28.6 (2) |
C3—C4—C5—C9 | −72.6 (3) | C2—N1—C13—O14 | 2.5 (4) |
C4—C5—O6—C7 | 134.6 (2) | C10—N1—C13—O14 | 177.4 (2) |
C9—C5—O6—C7 | 10.7 (3) | C2—N1—C13—C12 | −176.1 (2) |
C5—O6—C7—C16 | −113.8 (2) | C10—N1—C13—C12 | −1.1 (3) |
C5—O6—C7—C8 | 12.1 (3) | C11—C12—C13—O14 | 163.8 (2) |
O6—C7—C8—C15 | −155.9 (2) | C11—C12—C13—N1 | −17.7 (2) |
C16—C7—C8—C15 | −34.4 (3) | O6—C7—C16—O17 | 59.7 (2) |
O6—C7—C8—C9 | −29.6 (2) | C8—C7—C16—O17 | −59.9 (3) |
C16—C7—C8—C9 | 91.8 (2) | O6—C7—C16—C20 | −56.8 (3) |
O6—C5—C9—C8 | −28.7 (2) | C8—C7—C16—C20 | −176.4 (2) |
C4—C5—C9—C8 | −147.9 (2) | C20—C16—O17—C18 | 4.8 (3) |
O6—C5—C9—C10 | −153.92 (19) | C7—C16—O17—C18 | −117.8 (2) |
C4—C5—C9—C10 | 86.9 (3) | C16—O17—C18—O21 | 176.1 (3) |
C15—C8—C9—C5 | 161.9 (2) | C16—O17—C18—C19 | −4.3 (3) |
C7—C8—C9—C5 | 35.0 (2) | O21—C18—C19—C20 | −178.6 (3) |
C15—C8—C9—C10 | −72.4 (3) | O17—C18—C19—C20 | 1.9 (3) |
C7—C8—C9—C10 | 160.7 (2) | O21—C18—C19—C22 | 0.8 (4) |
C13—N1—C10—C11 | 19.3 (2) | O17—C18—C19—C22 | −178.7 (2) |
C2—N1—C10—C11 | −165.7 (2) | C18—C19—C20—C16 | 1.2 (3) |
C13—N1—C10—C9 | 144.3 (2) | C22—C19—C20—C16 | −178.1 (3) |
C2—N1—C10—C9 | −40.7 (3) | O17—C16—C20—C19 | −3.7 (3) |
C5—C9—C10—N1 | −38.5 (3) | C7—C16—C20—C19 | 116.1 (3) |
C8—C9—C10—N1 | −157.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O14i | 0.86 (2) | 2.02 (2) | 2.874 (3) | 173 (3) |
O1W—H1WB···O14ii | 0.86 (2) | 1.99 (2) | 2.835 (3) | 167 (3) |
C7—H7···O21iii | 1.00 | 2.47 | 3.254 (3) | 135 |
C22—H22C···O21iv | 0.98 | 2.58 | 3.407 (3) | 142 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) x+1/2, −y+1/2, −z. |
Acknowledgements
This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his fruitful advice.
References
Bates, R. & Sridhar, S. (2011). CSD Comm. (Private Communication). Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Greger, H. (2006). Planta Med. 72, 99–113. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Irie, H., Ohno, K., Osaki, K., Taga, T. & Uyeo, S. (1973). Chem. Pharm. Bull. 21, 451–452. CrossRef Google Scholar
Ishizuka, K., Ohno, K., Taga, T. & Masaki, N. (1972). Acta Cryst. A28, S20. Google Scholar
Kakuta, D., Hitotsuyanagi, Y., Matsuura, N., Fukaya, H. & Takeya, K. (2003). Tetrahedron, 59, 7779–7786. CrossRef Google Scholar
Kaltenegger, E., Brem, B., Mereiter, K., Kalchhauser, H., Kählig, H., Hofer, O., Vajrodaya, S. & Greger, H. (2003). Phytochemistry, 63, 803–816. CrossRef Google Scholar
Lin, W.-H., Ye, Y. & Xu, R.-S. (1992). J. Nat. Prod. 55, 571–576. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Olivo, H. F., Tovar-Miranda, R. & Barragán, E. (2006). J. Org. Chem. 71, 3287–3290. CrossRef Google Scholar
Pilli, R. A. & de Oliveira, M. da C. F. (2000). Nat. Prod. Rep. 17, 117–127. CrossRef Google Scholar
Pilli, R. A., Rosso, G. B. & de Oliveira, M. da C. F. (2010). Nat. Prod. Rep. 27, 1908–1937. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trost, B. M. & Quintard, A. (2012). Angew. Chem. Int. Ed. 51, 6704–6708. CrossRef Google Scholar
Trost, B. M., Weiss, A. H. & von Wangelin, A. J. (2006). J. Am. Chem. Soc. 128, 8–9. CrossRef Google Scholar
Wang, Y.-Z., Tang, C.-P., Dien, P.-H. & Ye, Y. (2007). J. Nat. Prod. 70, 1356–1359. CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoritate, M., Takahashi, Y., Tajima, H., Ogihara, C., Yokoyama, T., Soda, Y., Oishi, T., Sato, T. & Chida, N. (2017). J. Am. Chem. Soc. 139, 18386–18391. CrossRef Google Scholar
Zhang, R.-R., Ma, Z.-G., Li, G.-Q., But, P. P.-H. & Jiang, R.-W. (2011). Acta Cryst. E67, o3056. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.