research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Effect of counter-ion on packing and crystal density of 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­­(1H-tetra­zol-1-olate) with five different cations

CROSSMARK_Color_square_no_text.svg

aCBMSE, Code 6910, Naval Research Laboratory, Washington, DC 20375, USA, and bLawrence Livermore National Laboratory, 7000 East Ave, Mail Stop L-282, Livermore, CA 94550, USA
*Correspondence e-mail: damon.parrish@nrl.navy.mil

Edited by S. Parkin, University of Kentucky, USA (Received 27 September 2017; accepted 1 March 2018; online 9 March 2018)

In energetic materials, the crystal density is an important parameter that affects the performance of the material. When making ionic energetic materials, the choice of counter-ion can have detrimental or beneficial effects on the packing, and therefore the density, of the resulting energetic crystal. Presented herein are a series of five ionic energetic crystals, all containing the dianion 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­(1H-tetra­zol-1-olate), with the following cations: hydrazinium (1) (2N2H5+·C6N12O42−), hydroxyl­ammonium (2) 2NH4O+·C6N12O42− [Pagoria et al.. (2017). Chem. Heterocycl. Compd, 53, 760–778; included for comparison], di­methyl­ammonium (3) (2C2H8N+·C6N12O42−), 5-amino-1H-tetra­zol-4-ium (4) (2CH4N5+·C6N12O42−·4H2O), and amino­guanidinium (5) (2CH7N4+·C6N12O42−). Both the supra­molecular inter­actions and the sterics of the cation play a role in the density of the resulting crystals, which range from 1.544 to 1.873 Mg m−1. In 5, the tetra­zolate ring is disordered over two positions [occupancy ratio 0.907 (5):0.093 (5)] due to a 180° rotation in the terminal tetra­zole rings.

1. Chemical context

One of the critical parameters directly related to the performance of an energetic material, specifically its detonation velocity, is the density of the material (Ma et al., 2014[Ma, Y., Zhang, A., Zhang, C., Jiang, D., Zhu, Y. & Zhang, C. (2014). Cryst. Growth Des. 14, 4703-4713.]; Akhavan, 2011[Akhavan, J. (2011). The Chemistry of Explosives, pp. 68-69. Cambridge: RSC Publishing.]). This is an important consideration when designing energetic materials that incorporate counter-ions into their structures, since these counter-ions can, through supra­molecular inter­actions, aid or disrupt effective packing of the mol­ecule in question. Presented herein are the structures of a single energetic mol­ecule, 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­(1H-tetra­zol-1-olate), as salts of five different cations: hydrazinium (1), hydroxyl­ammonium (2) (Pagoria et al., 2017[Pagoria, P. F., Zhang, M. X., Zuckerman, N. B., DeHope, A. J. & Parrish, D. A. (2017). Chem. Heterocycl. C. 53, 760-778.], included for comparison), di­methyl­ammonium (3), 5-amino-1H-tetra­zol-4-ium (4), and amino­guanidinium (5). As a result of the variety of cation structures and inter­molecular inter­actions, each exhibits subtly different crystal packing, which affects the resulting density. The mol­ecule of inter­est, however, only exhibits minor changes in bond distances depending on the cation.

2. Structural commentary

The primary mol­ecule, 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­(1H-tetra­zol-1-olate), is comprised of four penta­nuclear rings, with two 1,2,4-oxa­diazole rings linked together through the 5-position carbon atom, and the tetra­zol-1-olate rings linked at the 5-position carbon atom to each 1,2,4-oxa­diazole ring at the 3-position carbon.

[Scheme 1]

In each structure, the oxa­diazole oxygen atoms are on opposite sides. For 1, 2, 3, and 5 (Figs. 13[link][link][link], 5[link]), the oxa­diazole rings are coplanar with one another, with the N8—C9—C9′—N8′ torsion angles constrained to 180°. Only slight deviation from coplanarity is seen in 4 (Fig. 4[link]), with the N8—C9—C11—N12 torsion angles measuring 179.34 (16)°. Coincidently, 4 is the only structure in which the primary mol­ecule does not reside on an inversion center. For all structures, except 3, the tetra­zolate ring is oriented such that the oxygen atoms of the oxa­diazole and tetra­zolate are on opposite sides, although 4 has a minor component of disorder [9.3 (4)%] in which one tetra­zolate is flipped by 180°. The N4—C5—C6—N10 torsion angles for 1 [174.25 (13)°], 4 [179.82 (16)°, N20—C16—C14—N15 angle is 176.68 (16)°], and 5 [N4A—C5A—C6—N10, 174.8 (5)°] show only slight deflections from coplanar, while in 2 [168.63 (15)°], the deflection is more pronounced. In structure 3, the N4—C5—C6—N10 dihedral angle is 2.38 (19)°, showing only a slight deviation from coplanarity, despite the proximity of the two electronegative oxygen atoms.

[Figure 1]
Figure 1
Mol­ecular structure of 1, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of 2, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of 3, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5]
Figure 5
Mol­ecular structure of the major disorder component of 5, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
Mol­ecular structure of 4, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In all five structures, the tetra­zolate C—N and N—N bond distances [ranging from 1.328 (5) to 1.351 (2) Å and 1.3170 (17) to 1.3455 (16) Å, respectively] suggest a delocalized aromatic system rather than discrete single and double bonds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). The oxa­diazole N—O, C—O, and C—N bond distances, however, suggest discrete single and double bonds. The N—O and C—O bonds range from 1.4033 (16) to 1.4115 (14) Å and 1.3391 (18) to 1.3468 (18) Å, respectively, suggesting single bonds between these atoms. The C—N bond opposite the oxygen atom ranges from 1.3671 (16) to 1.3755 (19) Å, also indicative of a single bond. The remaining C—N bonds range from 1.294 (2) to 1.309 (2) Å, typical for double bonds between these atoms. The central oxa­diazole–oxa­diazole C—C bond [ranging from 1.459 (3) to 1.465 (4) Å] and the C—C bonds linking the oxa­diazole rings to the tetra­zolate rings [ranging from 1.432 (2) to 1.447 (2) Å] are typical for C—C single bonds between non-fused heterocycles (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

Bond distances in the complex cations are typical for each. In 1, the hydrazinium N—N bond distance of 1.4476 (16) Å matches the distance of 1.45 Å seen in hydrazinium chloride (Sakurai & Tomiie, 1952[Sakurai, K. & Tomiie, Y. (1952). Acta Cryst. 5, 293-294.]). In 2, the hydroxyl­ammonium N—O bond distance of 1.4087 (16) Å matches the distance of 1.41 Å seen for hydroxyl­ammonium perchlorate (Dickens, 1969[Dickens, B. (1969). Acta Cryst. B25, 1875-1882.]). In 3, the di­methyl­ammonium C—N distances of 1.4767 (18) and 1.4780 (17) Å are consistent, albeit on the low side, with those reported for di­alkyl­ammonium ions, on average 1.494 (16) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). In 4, the bond distances of 5-amino-1H-tetra­zol-4-ium are consistent with those seen in 5-amino-1H-tetra­zol-4-ium nitrate [bond type, distances (reference distances)]: C—Namino, 1.320 (2) and 1.314 (2) Å (1.308 Å); C—Nring, 1.334 (2) to 1.338 (2) Å (1.334 to 1.342 Å); C—N(H)—N=N, 1.357 (2) to 1.366 (2) Å (1.363 to 1.366 Å); N(H)—N=N—N(H), 1.272 (2) and 1.269 (2) Å (1.268 Å; von Denffer et al., 2005[Denffer, M. von, Klapötke, T. M., Kramer, G., Spiess, G., Welch, J. M. & Heeb, G. (2005). Propellants, Explosives, Pyrotech. 30, 191-195.]). In 5, the bond distances seen for the amino­guanidinium cation are consistent with those seen in amino­guandinium nitrate and are as follows [bond type, distances (reference distances)]: C—NH2, 1.309 (3) and 1.320 (3) Å (1.312 and 1.320 Å); C—N(H)(NH2), 1.337 (3) Å (1.328 Å); and N(H)—NH2, 1.420 (3) Å (1.399 Å; Akella & Keszler, 1994[Akella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974-1976.]).

3. Supra­molecular features

Packing of the energetic mol­ecules will be described in four terms, following the example in Ma et al. (2014[Ma, Y., Zhang, A., Zhang, C., Jiang, D., Zhu, Y. & Zhang, C. (2014). Cryst. Growth Des. 14, 4703-4713.]): sheet-like (with all mol­ecules parallel to one another), wavelike (with two mol­ecular planes that are not parallel to one another, but without inter­molecular crossing), crossing (same as wavelike but with inter­molecular crossing), and mixing (with mol­ecular planes that do not fit in the prior three categories).

Structure 1, space group P21/c, packs in a wavelike pattern consisting of alternating columns of 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­(1H-tetra­zol-1-olate) (dianion) with the N2—N3 bond of one dianion over the tetra­zolate ring of the dianion in the neighboring column (Fig. 6[link]a). Hydrazinium ions occupy the gaps between neighboring coplanar dianions along the b-axis, above the plane of the mol­ecules. One hydrazinium forms a hydrogen-bonded network linking the neighboring intra­sheet dianions through the tetra­zolate oxygen, tetra­zolate N4 atom, and the NH3 portion of hydrazinium. Additionally, hydrogen bonds form between the NH2 portion of hydrazin­ium, the tetra­zolate oxygen atom, and the tetra­zolate N3 atom of neighboring dianions. An additional hydrogen bond connects the NH3 of one hydrazinium with the NH2 portion of the symmetry-related hydrazinium ion (Fig. 6[link]b, Table 1[link]). Inter­molecular ππ stacking is limited in this structure, with tetra­zolate–oxa­diazole centroidN1–N4/C5–centroidC6/O7/N8/C9/N10 distances of 4.06 (2) and 4.01 (2) Å. The tetra­zolate oxygen atom forms an anion–π inter­action with the oxa­diazole ring of a neighboring dianion, with an O1-to-centroidC6/O7/N8/C9/N10 close contact of 2.98 (2) Å at an O1–centroidC6/O7/N8/C9/N10–O7 angle of 92.3 (2)° (Schottel, et al., 2008[Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68-83.]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1S—H1SA⋯N2Si 0.939 (17) 2.015 (18) 2.9353 (16) 166.1 (14)
N1S—H1SB⋯O1ii 0.904 (18) 2.007 (17) 2.7679 (15) 141.0 (14)
N1S—H1SC⋯N4iii 0.930 (18) 2.018 (18) 2.8778 (17) 153.0 (14)
N2S—H2SA⋯N3iv 0.883 (18) 2.227 (18) 3.0778 (17) 161.6 (15)
N2S—H2SB⋯O1v 0.882 (18) 2.071 (18) 2.8752 (15) 151.2 (15)
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
(a) Wavelike packing of 1 as seen down the a-axis, showing the opposing columns of the dianion with hydrazinium occupying gaps between the columns, and (b) view highlighting the hydrogen-bonding network (inter­molecular contacts) between the dianions and hydrazinium cations, and between the two hydrazinium cations. [Symmetry codes: (i) x, −y + [{5\over 2}], z + [{1\over 2}]; (ii) −x + 2, −y + 2, −z + 1; (iii) −x + 1, −y + 2, −z + 1; (iv) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (v) −x + 2, y + [{1\over 2}], −z + [{3\over 2}].]

Structure 2, space group P21/c, packs in a similar wavelike pattern as 1; however, the N2—N3 bond of one dianion does not inter­act with the ring of neighboring dianions (Fig. 7[link]a). Additionally, the opposing columns are staggered with respect to one another. The hydroxyl­ammonium cations occupy the space formed where three dianion columns meet, above the dianion planes. The arrangement of the dianions in the peaks and troughs of the packing is dictated by the hydrogen bonds between the hydroxyl­ammonium hydroxyl group and the tetra­zolate oxygen atom, and those between the hydroxyl­ammonium NH3 group and O1, N2, and N4 of three symmetry-related dianions (Fig. 7[link]b, Table 2[link]). Unlike 1, there is a strong ππ [centroidC6/O7/N8/C9/N10–centroidN1–N4/C5 distance 3.36 (2) Å, centroidN1–N4/C5–centroidC6/O7/N8/C9/N10–O7 angle, 80 (2)°] inter­action between the tetra­zolate and oxa­diazole rings. Additionally, the tetra­zolate oxygen atom does not participate in an anion–π inter­action with the oxa­diazole ring due to the stronger ππ inter­action. The oxa­diazole rings of neighboring dianions are far apart, at a centroidC6/O7/N8/C9/N10–centroidC6/O7/N8/C9/N10 distance of 4.26 (2) Å and a centroidC6/O7/N8/C9/N10–centroidC6/O7/N8/C9/N10–N10 angle of 50 (2)°, suggesting minimal ππ inter­action.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O1 0.90 (2) 1.70 (2) 2.5880 (15) 169 (2)
N1S—H1SA⋯O1i 0.89 2.02 2.8234 (17) 149
N1S—H1SB⋯N2ii 0.89 2.35 2.9713 (19) 127
N1S—H1SC⋯N4iii 0.89 2.10 2.9425 (19) 157
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1.
[Figure 7]
Figure 7
(a) Wavelike packing of 2 as seen down the c-axis, showing the opposing columns of dianion with hydroxyl­ammonium occupying the space between the columns, and (b) view highlighting the hydrogen-bonding network (inter­molecular contacts) between hydroxyl­ammonium cation and the dianions. [Symmetry codes: (i) x − 1, y, z; (ii) x − 1, −y + [{3\over 2}], z + [{1\over 2}]; (iii) x, y, z + 1.]

Structure 3, space group P[\overline{1}], packs in a sheet-like pattern (Fig. 8[link]a), with the dianion stacked in a staggered arrangement, with the tetra­zolate ring of one dianion over the central oxa­diazole–oxa­diazole C—C bond of the dianions above and below. The oxa­diazole ring resides over the tetra­zolate–oxa­diazole C—C bond in the dianions above and below. The void space between the dianion columns is occupied by di­methyl­ammonium ions, located within the plane of the mol­ecules in an up–down arrangement. Two di­methyl­ammonium ions are positioned between the sheets, forming hydrogen bonds between the NH2 group and the tetra­zolate oxygen atoms of dianions in neighboring sheets (Fig. 8[link]b, Table 3[link]). The tetra­zolate ring engages in a staggered ππ inter­action with the oxa­diazole rings of the neighboring dianion, at centroidC6/O7/N8/C9/N10–centroidN1–N4/C5 distances of 3.51 (2) and 3.99 (2) Å (the latter distance to the inversion-related oxa­diazole of the same dianion).

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1S—H1SA⋯O11i 0.91 2.01 2.8118 (14) 146
N1S—H1SB⋯O11ii 0.91 1.85 2.7524 (14) 169
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1.
[Figure 8]
Figure 8
(a) Sheet-like packing of 3 as viewed approximately perpendicular to the (0[\overline{2}]1) plane, showing the layers of dianion and associated di­methyl­ammonium cations, and (b) view highlighting the hydrogen-boning network (inter­molecular contacts) between di­methyl­ammonium cations and the dianions. [Symmetry codes: (i) x, y, z − 1; (ii) −x + 1, −y, −z + 1; (iii) 1 − x, −y, −z.]

Structure 4, space group P21/c, packs in the sheet-like pattern consisting of extended sheets containing the dianion, cations, and incorporated water (Fig. 9[link]a). The 5-amino-1H-tetra­zol-4-ium cations and water mol­ecules surround each dianion, isolating the dianion from other dianions within the sheets. Between the sheets, the dianion only inter­acts with another dianion via one terminal tetra­zolate ring, with the oxygen atom of the tetra­zolate over the C—C bond between the tetra­zolate and oxa­diazole rings. Within each sheet, there is extensive hydrogen bonding between the dianions, 5-amino-1H-tetra­zol-4-ium, and incorporated water mol­ecules, isolating the dianions from one another in the sheet plane (Fig. 9[link]b, Table 4[link]). The N1-tetra­zolate inter­acts with the symmetry-related N1-tetra­zolate of a neighboring mol­ecule through a ππ inter­action, with a centroidN1–N4/C5–centroidN1–N4/C5 distance of 3.69 (2) Å [N–-centroidN1–N4/C5–centroidN1–N4/C5 angle 62.0 (2)°]. The C11-oxa­diazole engages in a ππ inter­action with its symmetry equivalent as well, at a centroidC11/N12/O13/C14/N15–centroidC11/N12/O13/C14/N15 distance of 3.93 (2) Å [centroidC11/N12/O13/C14/N15–centroidC11/N12/O13/C14/N15–O13 angle 57.6 (2)°, second centroid and O13 of the same dianion]. A ππ inter­action is also seen between the N30-tetra­zolium ring and its symmetry equivalent, at a centroidC29/N30–N33–centroidC29/N30–N33 distance of 3.69 (2) Å [centroidC29/N30–N33–centroidC29/N30–N33–N31 angle 57.3 (2)°, second centroid and N31 of the same cation]. Additionally, there are two anion–π inter­actions, the first between O21 and the N1-tetra­zolate of a neighboring dianion, and the second between O21 and the C6-oxa­diazole, with an O21–centroidN1–N4/C5 distance of 3.33 (2) Å [O21–centroidN1–N4/C5–N2 angle 95.8 (2)°] and O21–centroidC6/O7/N8/C9/N10 3.02 (2) Å [O21–centroidC6/O7/N8/C9/N10–C6 angle 76.3 (2)°].

Table 4
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N24—H24⋯O1S 0.88 1.76 2.6267 (18) 169
N27—H27⋯O3S 0.88 1.74 2.6241 (19) 177
N28—H28A⋯N19 0.88 2.18 3.054 (2) 176
N28—H28B⋯O22i 0.88 1.99 2.8656 (19) 172
N30—H30⋯O4Sii 0.88 1.75 2.605 (2) 165
N33—H33⋯O2S 0.88 1.78 2.6544 (19) 173
N34—H34A⋯N3 0.88 2.20 3.080 (2) 174
N34—H34B⋯O21iii 0.88 2.01 2.8882 (19) 175
O1S—H1SA⋯N20iv 0.83 (3) 1.99 (3) 2.8030 (19) 170 (2)
O1S—H1SB⋯N18 0.87 (2) 1.94 (2) 2.7758 (19) 160 (2)
O2S—H2SA⋯N12iii 0.81 (2) 2.39 (2) 3.0906 (18) 144 (2)
O2S—H2SB⋯N10iii 0.81 (3) 2.19 (2) 2.9038 (18) 148 (2)
O3S—H3SA⋯N8i 0.81 (2) 2.33 (2) 3.0397 (19) 147 (2)
O3S—H3SB⋯N15i 0.82 (3) 2.21 (3) 2.8915 (19) 141 (2)
O4S—H4SA⋯N4 0.79 (3) 2.03 (3) 2.817 (2) 177 (3)
O4S—H4SB⋯N2iii 0.81 (3) 2.02 (3) 2.789 (2) 157 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 9]
Figure 9
(a) Sheet-like packing of 4 as seen down the b-axis, showing the extended sheets containing both the dianion and the associated coplanar cations and solvent water, and (b) view highlighting the extensive in-plane hydrogen-bonding network between 5-amino­tetra­zolium, the surrounding dianions, and incorporated water mol­ecules (inter­molecular contacts). [Symmetry codes: (i) −x, y + [{1\over 2}], −z − [{1\over 2}]; (ii) −x, y − [{1\over 2}], −z − [{1\over 2}]; (iii) x − 1, y, z − 2.]

Structure 5, space group P21/n, packs in a mixing pattern, with columns containing stacked sheets consisting of the dianion coplanar with two amino­guanidinium cations (Fig. 10[link]a). Neighboring columns of sheets are rotated by 67° with respect to one another as a result of the hydrogen bonding of the amino group of the cation with the oxygen atom of a neighboring oxa­diazole ring. In fact, it is the hydrogen-bonding inter­action between the amino group of the amino­guanidinium cation and the oxygen atom of the oxa­diazole that directs the mixing-type packing seen in the crystal structure. The planar portion of the amino­guanidinium cation inter­acts via hydrogen bonds from the unsubstituted guanidinium amines to the tetra­zolate oxygen atom, oxa­diazole N8, and symmetry-related oxa­diazole N10 atoms of one dianion, and to the tetra­zolate N2 atom of a neighboring dianion (Fig. 10[link]b, Table 5[link]). Additionally, the substituted guanidinium amine and its amine group inter­act with neighboring dianions through the tetra­zolate N3 atoms, causing the deviation from sheet-like packing. There is limited ππ inter­action between the oxa­diazole and tetra­zolate rings of neighboring dianions, with a centroidC6/O7/N8/C9/N10–centroidN1A–N4A/C5A distance of 3.59 (2) Å [centroidC6/O7/N8/C9/N10–centroidN1A–N4A/C5A–N1A angle 65.4 (2)°].

Table 5
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12B⋯N4Ai 0.88 (1) 2.50 (1) 3.314 (4) 155 (3)
N13—H13⋯N3Aii 0.88 2.08 2.870 (3) 149
N13—H13⋯N4Aii 0.88 2.65 3.405 (4) 144
N15—H15A⋯O11Aiii 0.88 2.19 2.954 (3) 145
N15—H15B⋯N2Aiv 0.88 2.24 3.112 (4) 170
N16—H16A⋯O11Aiii 0.88 2.18 2.949 (2) 146
N16—H16A⋯N10iii 0.88 2.29 2.926 (2) 129
N16—H16B⋯N8v 0.88 2.32 3.079 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) x-1, y-1, z; (v) x, y+1, z.
[Figure 10]
Figure 10
(a) Mixing-type packing of 5 as viewed approximately perpendicular to the ([\overline{1}]10) plane, and (b) view highlighting the hydrogen bonding between the dianions and amino­guanidinium cations (inter­molecular contacts, major dianion disorder component shown). [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, −y + 1, −z + 2; (iv) x − 1, y − 1, z; (v) x, y + 1, z.]

As demonstrated above, it is the hydrogen-bonding networks that establish the crystal packing exhibited in each example, with ππ and anion–π inter­actions occurring if packing allows. As shown in Table 6[link], the densities of the crystals increase in the order 3 < 6 < 1 < 5 < 2. Unsurprisingly, the di­methyl­ammonium, with minimal hydrogen bonding, non-inter­acting substituents, and a poor steric match for the dianion, is the least dense of the structures shown. Amino­guandinium, despite significant hydrogen bonding, exhibits a lower density as well, likely due to the directionality of the hydrogen-bond donors, which directs packing of the dianions into less efficient arrangements. Hydrazinium benefits from extensive hydrogen bonding, but the orientation of the hydrazinium directs the dianions into slightly less efficient packing than the hydroxyl­ammonium cation, preventing the staggering of the columns that allows for improved space occupation. The 5-amino-1H-tetra­zol-4-ium cation, with the second-highest density, packs very efficiently, in extended sheets with extensive hydrogen bonding, losing out to the hydroxyl­ammonium cation likely only due to the included water mol­ecules needed to fill in gaps between the dianions and cations. Hydroxyl­ammonium exhibits the most efficient, highest-density packing due to the directing influence and strong hydrogen-bond donating ability of the hydroxyl group, which forms a short hydrogen bond and directs the columns into a staggered arrangement, fitting the dianions slightly closer together at the point where neighboring columns meet. The range of densities, from 1.544 to 1.873 g cm−1, shows the significant effect that matching the hydrogen-bonding abilities and sterics of the counter-ion to the primary energetic ion has on efficient packing and, by extension, the expected performance of these ionic energetics.

Table 6
Crystal densities of each structure

Structure ID Cation Density (g cm−1)
1 hydrazinium 1.694
2 hydroxyl­ammonium 1.873
3 di­methyl­ammonium 1.544
4 5-amino-1H-tetra­zol-4-ium 1.701
5 amino­guanidinium 1.673

4. Database survey

A search of the CSD (Version 5.38 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yields no results for structures containing 5,5′-(3,3′-bi[1,2,4-oxa­diazole]-5,5′-di­yl)bis­(1H-tetra­zol-1-olate). A search using 5-[3-(1,2,4-oxa­diazole)]-1H-tetra­zolate also yields no results. Searching for the ring fragments separately yielded 443 structures for 1,2,4-oxa­diazole and 127 structures for tetra­zol-1-olate. The closest structures to those presented herein are dimers between similar ring fragments. A search for each of the cations yields the following results: 196 structures containing hydrazinium, 99 structures containing hydroxyl­ammonium, 1,583 structures containing di­methyl­ammonium, 2,230 structures containing ammonium, 17 structures containing 5-amino-1H-tetra­zol-4-ium, and 130 structures containing amino­guanidinium.

5. Synthesis and crystallization

The synthesis pathway is illustrated in Fig. 11[link]. The synthesis and crystallization of compound 2, and the precursors 3,3′-bis­(1,2,4-oxa­diazole)-5,5′-di­chloroxime (6) and 5,5′-(3,3′-bis­(1,2,4-oxa­diazole)-5,5′-di­yl)bis­(1-hy­droxy­tetra­zole) (7), have been described previously (Pagoria et al., 2017[Pagoria, P. F., Zhang, M. X., Zuckerman, N. B., DeHope, A. J. & Parrish, D. A. (2017). Chem. Heterocycl. C. 53, 760-778.]).

[Figure 11]
Figure 11
Scheme depicting synthesis pathways for the included structures.

Compound 1: Dihydrate 8 (0.15 g, 0.44 mmol) was added to a 20 ml vial with water (1.5 ml) and a stir bar. Hydrazine hydrate (45 ml, 0.93 mmol) was added to the reaction mixture and heated until dissolved. Stirring was discontinued, the stir bar was removed, and the solution was allowed to cool slowly providing crystals of 1.

Compound 3: In a round-bottom flask, fitted with a drying tube, was suspended chloroxime 6 (967 mg, 3.3 mmol) in di­methyl­formamide (DMF) (10 ml, anhydrous), which was then cooled in an ice–water bath. Sodium azide (472 mg, 7.26 mmol) was added in portions with stirring, and the reaction was allowed to warm to room temperature. Additional DMF (10 ml) was added to the creamy mixture, and after 1.5 h, the solids went into solution. At this point, complete formation of the di­azidoxime was assumed, and cyclization to 1 proceeded as follows. A 1:1 mixture of diethyl ether/dioxane was added to the reaction mixture (100 ml total volume, anhydrous), and the solution was cooled to 273 K with an ice bath. HBr or Cl2 gas was bubbled into the reaction at which time the temperature increased to 298 K. Gas was added until the reaction temperature returned to approximately 278 K, and the vessel was then stoppered and allowed to stir for 22 h. The voluminous, white precipitate that formed (hygroscopic di­methyl­amonium bromide) was separated by vacuum filtration, and the filtrate was allowed to evaporate from a crystallizing dish. Upon evaporation, a white solid (3) in a yellow oil remained. The solid was separated from the oil by vacuum filtration (535 mg). 3 was crystallized by heating in minimal water and slow cooling.

Compound 4: Dihydrate 7 (0.15 g, 0.44 mmol) was added to a 20 ml vial with water (1.5 ml) and a stir bar. 5-Amino­tetra­zole (0.10 g, 1.2 mmol) was added to the mixture, which was then heated with stirring until dissolved. Stirring was discontinued, the stir bar was removed, and the solution was allowed to cool slowly providing crystals of 4.

Compound 5: Dihydrate 7 (0.15 g, 0.44 mmol) was added to a 20 ml vial with water (1.5 ml) and a stir bar. Amino­guanidinium H2CO3 (0.24 g, 1.8 mmol) was added to the mixture, which was then heated with stirring until dissolved. During dissolution, gas evolved, the solution became clear, followed by the formation of a tan precipitate. Heating was continued until complete dissolution, followed the removal of the stir bar, and slow cooling to provide crystals of 5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. In 5, the tetra­zolate ring (N1, N2, N3, N4, C5, O1) is disordered over two positons (A and B) due to a 180° rotation in the terminal tetra­zole rings. The disorder has the relative ratio of 90.7 (5):9.3 (5). CCDC deposition numbers are as follows: 1, CCDC 1567779; 2, CCDC 1567780; 3, CCDC 1567783; 4, CCDC 1567784; 5, CCDC 1567804.

Table 7
Experimental details

  1 2 3
Crystal data
Chemical formula 2N2H5+·C6N12O42− 2NH4O+·C6N12O42− 2C2H8N+·C6N12O42−
Mr 370.30 372.26 396.37
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 150 296 150
a, b, c (Å) 7.7660 (7), 13.6716 (13), 6.8655 (7) 5.1011 (9), 18.494 (3), 7.0044 (13) 6.0946 (6), 8.5197 (8), 9.2814 (9)
α, β, γ (°) 90, 95.237 (3), 90 90, 92.624 (2), 90 68.259 (3), 75.957 (3), 74.816 (3)
V3) 725.89 (12) 660.1 (2) 426.28 (7)
Z 2 2 1
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.14 0.17 0.12
Crystal size (mm) 0.16 × 0.15 × 0.02 0.33 × 0.19 × 0.02 0.18 × 0.12 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.978, 0.997 0.948, 0.997 0.978, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 6871, 1487, 1305 5834, 1358, 1152 4131, 1737, 1490
Rint 0.021 0.027 0.018
(sin θ/λ)max−1) 0.628 0.628 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.04 0.034, 0.096, 1.08 0.032, 0.085, 1.04
No. of reflections 1487 1358 1737
No. of parameters 133 122 129
No. of restraints 0 0 0
H-atom treatment Only H-atom coordinates refined H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.22 0.23, −0.26 0.27, −0.24
  4 5
Crystal data
Chemical formula 2CH4N5+·C6N12O42−·4H2O 2CH7N4+·C6N12O42−
Mr 548.36 454.39
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 150 150
a, b, c (Å) 24.783 (2), 12.7081 (11), 6.8396 (6) 7.9458 (4), 5.5586 (2), 20.6066 (9)
α, β, γ (°) 90, 96.289 (1), 90 90, 97.647 (2), 90
V3) 2141.1 (3) 902.05 (7)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.15 0.14
Crystal size (mm) 0.28 × 0.04 × 0.04 0.42 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.960, 0.994 0.944, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 18508, 4274, 3489 7786, 1844, 1633
Rint 0.027 0.020
(sin θ/λ)max−1) 0.621 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.126, 1.14 0.045, 0.134, 1.06
No. of reflections 4274 1844
No. of parameters 367 206
No. of restraints 0 63
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.32 0.74, −0.24
Computer programs: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2014[Bruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010); data reduction: SAINT (Bruker, 2014) and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(hydrazinium) 5,5'-(3,3'-bi[1,2,4-oxadiazole]-5,5'-diyl)bis(1H-tetrazol-1-olate) (1) top
Crystal data top
2N2H5+·C6N12O42F(000) = 380
Mr = 370.30Dx = 1.694 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7660 (7) ÅCell parameters from 2894 reflections
b = 13.6716 (13) Åθ = 5.3–52.6°
c = 6.8655 (7) ŵ = 0.14 mm1
β = 95.237 (3)°T = 150 K
V = 725.89 (12) Å3Plate, colorless
Z = 20.16 × 0.15 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1305 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.021
ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.978, Tmax = 0.997k = 1714
6871 measured reflectionsl = 88
1487 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Only H-atom coordinates refined
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.3165P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1487 reflectionsΔρmax = 0.32 e Å3
133 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.91941 (14)0.84680 (8)0.62466 (16)0.0184 (2)
O11.08551 (12)0.84622 (8)0.62286 (14)0.0241 (2)
N20.83787 (15)0.80806 (9)0.77124 (16)0.0235 (3)
N30.67149 (15)0.82236 (9)0.72476 (17)0.0255 (3)
N40.64295 (15)0.86940 (9)0.55408 (17)0.0226 (3)
C50.79919 (17)0.88419 (9)0.49298 (18)0.0180 (3)
C60.83669 (16)0.92874 (9)0.31140 (18)0.0180 (3)
O70.70233 (12)0.96564 (7)0.19724 (13)0.0226 (2)
N80.77323 (15)1.00423 (9)0.03192 (16)0.0221 (3)
C90.93752 (17)0.98533 (9)0.06782 (18)0.0177 (3)
N100.98504 (14)0.93766 (8)0.24049 (15)0.0179 (2)
N1S0.68154 (15)1.18606 (9)0.65235 (17)0.0205 (3)
H1SA0.683 (2)1.1856 (11)0.789 (3)0.025*
H1SB0.782 (2)1.1628 (12)0.614 (2)0.025*
H1SC0.591 (2)1.1482 (12)0.596 (2)0.025*
N2S0.65948 (15)1.28374 (9)0.57262 (16)0.0200 (3)
H2SA0.560 (2)1.3046 (12)0.609 (2)0.024*
H2SB0.740 (2)1.3199 (12)0.636 (2)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0201 (5)0.0188 (6)0.0166 (5)0.0012 (4)0.0029 (4)0.0017 (4)
O10.0168 (5)0.0353 (6)0.0202 (5)0.0052 (4)0.0013 (4)0.0017 (4)
N20.0282 (6)0.0246 (6)0.0182 (6)0.0028 (5)0.0046 (5)0.0026 (5)
N30.0232 (6)0.0308 (7)0.0230 (6)0.0048 (5)0.0045 (5)0.0024 (5)
N40.0212 (6)0.0251 (6)0.0217 (6)0.0040 (5)0.0033 (4)0.0012 (5)
C50.0194 (6)0.0159 (6)0.0186 (6)0.0012 (5)0.0014 (5)0.0015 (5)
C60.0186 (6)0.0159 (6)0.0191 (6)0.0001 (5)0.0007 (5)0.0009 (5)
O70.0184 (5)0.0280 (5)0.0215 (5)0.0003 (4)0.0016 (4)0.0060 (4)
N80.0228 (6)0.0236 (6)0.0200 (6)0.0005 (5)0.0021 (4)0.0049 (5)
C90.0208 (6)0.0142 (6)0.0178 (6)0.0002 (5)0.0001 (5)0.0005 (5)
N100.0196 (5)0.0169 (5)0.0172 (5)0.0004 (4)0.0016 (4)0.0014 (4)
N1S0.0172 (6)0.0265 (6)0.0177 (6)0.0001 (5)0.0013 (4)0.0002 (5)
N2S0.0178 (6)0.0233 (6)0.0188 (5)0.0007 (5)0.0015 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—O11.2912 (14)N8—C91.3031 (18)
N1—C51.3402 (17)C9—N101.3735 (16)
N1—N21.3455 (16)C9—C9i1.461 (3)
N2—N31.3170 (17)N1S—N2S1.4476 (16)
N3—N41.3373 (17)N1S—H1SA0.939 (17)
N4—C51.3349 (17)N1S—H1SB0.904 (18)
C5—C61.4409 (18)N1S—H1SC0.930 (18)
C6—N101.2968 (17)N2S—H2SA0.883 (18)
C6—O71.3447 (16)N2S—H2SB0.882 (18)
O7—N81.4085 (14)
O1—N1—C5129.12 (11)N8—C9—N10116.02 (12)
O1—N1—N2122.92 (11)N8—C9—C9i121.39 (14)
C5—N1—N2107.96 (11)N10—C9—C9i122.59 (15)
N3—N2—N1106.18 (11)C6—N10—C9100.99 (11)
N2—N3—N4111.36 (11)N2S—N1S—H1SA112.1 (10)
C5—N4—N3105.40 (11)N2S—N1S—H1SB106.9 (11)
N4—C5—N1109.11 (11)H1SA—N1S—H1SB110.7 (15)
N4—C5—C6126.67 (12)N2S—N1S—H1SC107.3 (10)
N1—C5—C6124.16 (12)H1SA—N1S—H1SC110.6 (14)
N10—C6—O7114.49 (11)H1SB—N1S—H1SC109.1 (14)
N10—C6—C5128.41 (12)N1S—N2S—H2SA105.6 (11)
O7—C6—C5117.10 (11)N1S—N2S—H2SB106.0 (11)
C6—O7—N8105.70 (10)H2SA—N2S—H2SB106.4 (15)
C9—N8—O7102.79 (10)
O1—N1—N2—N3179.57 (11)N4—C5—C6—O75.1 (2)
C5—N1—N2—N30.31 (14)N1—C5—C6—O7177.99 (12)
N1—N2—N3—N40.35 (15)N10—C6—O7—N80.61 (15)
N2—N3—N4—C50.26 (15)C5—C6—O7—N8179.95 (11)
N3—N4—C5—N10.06 (15)C6—O7—N8—C90.25 (13)
N3—N4—C5—C6177.23 (13)O7—N8—C9—N100.14 (15)
O1—N1—C5—N4179.36 (12)O7—N8—C9—C9i179.12 (15)
N2—N1—C5—N40.16 (15)O7—C6—N10—C90.65 (14)
O1—N1—C5—C63.3 (2)C5—C6—N10—C9179.98 (13)
N2—N1—C5—C6177.52 (12)N8—C9—N10—C60.48 (15)
N4—C5—C6—N10174.25 (13)C9i—C9—N10—C6178.77 (15)
N1—C5—C6—N102.6 (2)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1S—H1SA···N2Sii0.939 (17)2.015 (18)2.9353 (16)166.1 (14)
N1S—H1SB···O1iii0.904 (18)2.007 (17)2.7679 (15)141.0 (14)
N1S—H1SC···N4iv0.930 (18)2.018 (18)2.8778 (17)153.0 (14)
N2S—H2SA···N3v0.883 (18)2.227 (18)3.0778 (17)161.6 (15)
N2S—H2SB···O1vi0.882 (18)2.071 (18)2.8752 (15)151.2 (15)
Symmetry codes: (ii) x, y+5/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+2, y+1/2, z+3/2.
Bis(hydroxyammonium) 5,5'-(3,3'-bi[1,2,4-oxadiazole]-5,5'-diyl)bis(1H-tetrazol-1-olate) (2) top
Crystal data top
2NH4O+·C6N12O42F(000) = 380
Mr = 372.26Dx = 1.873 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1011 (9) ÅCell parameters from 2126 reflections
b = 18.494 (3) Åθ = 4.4–51.8°
c = 7.0044 (13) ŵ = 0.17 mm1
β = 92.624 (2)°T = 296 K
V = 660.1 (2) Å3Plate, colorless
Z = 20.33 × 0.19 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1152 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.027
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.948, Tmax = 0.997k = 2323
5834 measured reflectionsl = 88
1358 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1422P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1358 reflectionsΔρmax = 0.23 e Å3
122 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26439 (19)0.64777 (6)0.49548 (14)0.0199 (3)
N10.2362 (2)0.64703 (6)0.30834 (18)0.0170 (3)
N20.3978 (2)0.68219 (7)0.19563 (19)0.0208 (3)
N30.3121 (3)0.66943 (7)0.01809 (19)0.0227 (3)
N40.0995 (2)0.62648 (7)0.01466 (18)0.0204 (3)
C50.0547 (3)0.61257 (8)0.1968 (2)0.0168 (3)
C60.1502 (3)0.56752 (8)0.2694 (2)0.0166 (3)
O70.2867 (2)0.52656 (6)0.14236 (15)0.0237 (3)
N80.4729 (3)0.48950 (7)0.24763 (19)0.0234 (3)
C90.4235 (3)0.51234 (8)0.4207 (2)0.0164 (3)
N100.2225 (2)0.56162 (7)0.44333 (18)0.0174 (3)
O1S0.1197 (2)0.72437 (6)0.61500 (17)0.0248 (3)
H1S0.003 (4)0.6930 (12)0.578 (3)0.037*
N1S0.2862 (2)0.68301 (7)0.72712 (19)0.0187 (3)
H1SA0.3927600.6564910.6512090.028*
H1SB0.3811300.7123750.7972320.028*
H1SC0.1900310.6540380.8037730.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (5)0.0290 (6)0.0157 (6)0.0000 (4)0.0006 (4)0.0016 (4)
N10.0127 (6)0.0200 (6)0.0185 (7)0.0003 (5)0.0021 (5)0.0014 (5)
N20.0149 (6)0.0237 (7)0.0242 (7)0.0007 (5)0.0056 (5)0.0018 (5)
N30.0181 (6)0.0263 (7)0.0241 (7)0.0005 (5)0.0056 (5)0.0034 (5)
N40.0168 (6)0.0243 (7)0.0205 (7)0.0009 (5)0.0040 (5)0.0027 (5)
C50.0128 (6)0.0198 (7)0.0178 (8)0.0022 (5)0.0003 (5)0.0005 (5)
C60.0135 (7)0.0182 (7)0.0180 (8)0.0013 (5)0.0004 (6)0.0001 (6)
O70.0235 (6)0.0295 (6)0.0181 (6)0.0096 (5)0.0026 (5)0.0011 (4)
N80.0219 (7)0.0272 (7)0.0213 (7)0.0092 (5)0.0036 (6)0.0010 (5)
C90.0134 (7)0.0162 (7)0.0196 (8)0.0007 (5)0.0005 (6)0.0010 (6)
N100.0134 (6)0.0198 (6)0.0192 (7)0.0013 (5)0.0014 (5)0.0008 (5)
O1S0.0181 (5)0.0238 (6)0.0335 (7)0.0016 (5)0.0127 (5)0.0016 (5)
N1S0.0140 (6)0.0226 (7)0.0199 (7)0.0015 (5)0.0032 (5)0.0008 (5)
Geometric parameters (Å, º) top
O1—N11.3122 (16)O7—N81.4071 (16)
N1—N21.3361 (18)N8—C91.298 (2)
N1—C51.3443 (19)C9—N101.3755 (19)
N2—N31.3204 (19)C9—C9i1.459 (3)
N3—N41.3436 (18)O1S—N1S1.4087 (16)
N4—C51.332 (2)O1S—H1S0.90 (2)
C5—C61.447 (2)N1S—H1SA0.8900
C6—N101.294 (2)N1S—H1SB0.8900
C6—O71.3391 (18)N1S—H1SC0.8900
O1—N1—N2122.87 (12)C9—N8—O7102.96 (11)
O1—N1—C5128.79 (12)N8—C9—N10115.78 (13)
N2—N1—C5108.33 (12)N8—C9—C9i121.42 (17)
N3—N2—N1106.43 (12)N10—C9—C9i122.79 (17)
N2—N3—N4110.78 (12)C6—N10—C9100.99 (12)
C5—N4—N3105.72 (13)N1S—O1S—H1S104.8 (13)
N4—C5—N1108.74 (13)O1S—N1S—H1SA109.5
N4—C5—C6127.32 (13)O1S—N1S—H1SB109.5
N1—C5—C6123.94 (13)H1SA—N1S—H1SB109.5
N10—C6—O7114.58 (13)O1S—N1S—H1SC109.5
N10—C6—C5128.39 (14)H1SA—N1S—H1SC109.5
O7—C6—C5117.03 (13)H1SB—N1S—H1SC109.5
C6—O7—N8105.68 (11)
O1—N1—N2—N3179.78 (12)N4—C5—C6—O710.8 (2)
C5—N1—N2—N30.58 (15)N1—C5—C6—O7168.32 (13)
N1—N2—N3—N40.30 (15)N10—C6—O7—N80.34 (16)
N2—N3—N4—C50.10 (16)C5—C6—O7—N8179.17 (12)
N3—N4—C5—N10.46 (15)C6—O7—N8—C90.35 (15)
N3—N4—C5—C6178.77 (14)O7—N8—C9—N100.29 (17)
O1—N1—C5—N4179.80 (13)O7—N8—C9—C9i179.29 (16)
N2—N1—C5—N40.66 (16)O7—C6—N10—C90.17 (16)
O1—N1—C5—C60.5 (2)C5—C6—N10—C9179.28 (14)
N2—N1—C5—C6178.61 (13)N8—C9—N10—C60.09 (17)
N4—C5—C6—N10168.63 (15)C9i—C9—N10—C6179.08 (17)
N1—C5—C6—N1012.2 (2)
Symmetry code: (i) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O10.90 (2)1.70 (2)2.5880 (15)169 (2)
N1S—H1SA···O1ii0.892.022.8234 (17)149
N1S—H1SB···N2iii0.892.352.9713 (19)127
N1S—H1SC···N4iv0.892.102.9425 (19)157
Symmetry codes: (ii) x1, y, z; (iii) x1, y+3/2, z+1/2; (iv) x, y, z+1.
Dimethylammonium 5,5'-(3,3'-bi[1,2,4-oxadiazole]-5,5'-diyl)bis(1H-tetrazol-1-olate) (3) top
Crystal data top
2C2H8N+·C6N12O42Z = 1
Mr = 396.37F(000) = 206
Triclinic, P1Dx = 1.544 Mg m3
a = 6.0946 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5197 (8) ÅCell parameters from 1925 reflections
c = 9.2814 (9) Åθ = 4.8–52.6°
α = 68.259 (3)°µ = 0.12 mm1
β = 75.957 (3)°T = 150 K
γ = 74.816 (3)°Plate, yellow
V = 426.28 (7) Å30.18 × 0.12 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1490 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.018
ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 77
Tmin = 0.978, Tmax = 0.995k = 109
4131 measured reflectionsl = 1111
1737 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1053P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1737 reflectionsΔρmax = 0.27 e Å3
129 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59547 (17)0.36241 (13)0.87451 (12)0.0211 (2)
N20.73348 (18)0.44045 (14)0.90588 (12)0.0246 (3)
N30.69908 (19)0.60180 (14)0.81186 (13)0.0259 (3)
N40.54333 (18)0.62953 (14)0.72093 (12)0.0241 (2)
C50.4791 (2)0.47875 (15)0.76160 (14)0.0205 (3)
C60.3133 (2)0.44918 (15)0.69185 (14)0.0201 (3)
O70.25452 (15)0.29342 (11)0.74431 (10)0.0248 (2)
N80.09343 (19)0.30587 (14)0.65217 (13)0.0249 (3)
C90.0765 (2)0.46521 (15)0.55884 (13)0.0201 (3)
N100.20941 (17)0.56041 (13)0.57819 (11)0.0210 (2)
O110.58447 (16)0.20008 (11)0.94750 (10)0.0258 (2)
N1S0.26051 (19)0.04614 (13)0.19850 (12)0.0249 (3)
H1SA0.3446800.1285010.1378830.030*
H1SB0.3126650.0453060.1628140.030*
C2S0.0164 (3)0.11493 (19)0.1796 (2)0.0399 (4)
H2SA0.0754720.0266670.2436640.060*
H2SB0.0023620.1473900.0688570.060*
H2SC0.0395930.2163840.2138100.060*
C3S0.2991 (3)0.00899 (18)0.36271 (16)0.0326 (3)
H3SA0.2329270.0862120.4048370.049*
H3SB0.4648860.0421530.3657810.049*
H3SC0.2249510.1075860.4264030.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0216 (5)0.0208 (5)0.0207 (5)0.0039 (4)0.0006 (4)0.0083 (4)
N20.0227 (5)0.0291 (6)0.0260 (5)0.0061 (4)0.0025 (4)0.0136 (5)
N30.0264 (6)0.0266 (6)0.0270 (6)0.0078 (4)0.0014 (4)0.0116 (5)
N40.0258 (5)0.0245 (5)0.0246 (5)0.0083 (4)0.0018 (4)0.0100 (4)
C50.0214 (6)0.0208 (6)0.0197 (6)0.0042 (5)0.0007 (5)0.0084 (5)
C60.0211 (6)0.0187 (6)0.0205 (6)0.0047 (5)0.0013 (5)0.0086 (5)
O70.0293 (5)0.0193 (4)0.0275 (5)0.0079 (4)0.0099 (4)0.0039 (4)
N80.0283 (6)0.0232 (5)0.0263 (5)0.0073 (4)0.0093 (4)0.0068 (4)
C90.0206 (6)0.0208 (6)0.0199 (6)0.0045 (5)0.0002 (5)0.0096 (5)
N100.0224 (5)0.0199 (5)0.0219 (5)0.0056 (4)0.0027 (4)0.0077 (4)
O110.0326 (5)0.0183 (4)0.0250 (5)0.0044 (4)0.0041 (4)0.0061 (3)
N1S0.0301 (6)0.0178 (5)0.0254 (5)0.0062 (4)0.0009 (4)0.0068 (4)
C2S0.0344 (8)0.0275 (7)0.0587 (10)0.0035 (6)0.0172 (7)0.0110 (7)
C3S0.0452 (8)0.0251 (7)0.0269 (7)0.0057 (6)0.0071 (6)0.0077 (5)
Geometric parameters (Å, º) top
N1—O111.3071 (13)C9—C9i1.463 (2)
N1—N21.3377 (15)N1S—C2S1.4767 (18)
N1—C51.3440 (16)N1S—C3S1.4780 (17)
N2—N31.3207 (15)N1S—H1SA0.9100
N3—N41.3390 (16)N1S—H1SB0.9100
N4—C51.3334 (16)C2S—H2SA0.9800
C5—C61.4410 (18)C2S—H2SB0.9800
C6—N101.2964 (16)C2S—H2SC0.9800
C6—O71.3460 (14)C3S—H3SA0.9800
O7—N81.4115 (14)C3S—H3SB0.9800
N8—C91.3049 (16)C3S—H3SC0.9800
C9—N101.3671 (16)
O11—N1—N2122.67 (10)C2S—N1S—C3S113.54 (12)
O11—N1—C5129.09 (11)C2S—N1S—H1SA108.9
N2—N1—C5108.24 (10)C3S—N1S—H1SA108.9
N3—N2—N1106.11 (10)C2S—N1S—H1SB108.9
N2—N3—N4111.33 (10)C3S—N1S—H1SB108.9
C5—N4—N3105.34 (10)H1SA—N1S—H1SB107.7
N4—C5—N1108.98 (11)N1S—C2S—H2SA109.5
N4—C5—C6124.29 (11)N1S—C2S—H2SB109.5
N1—C5—C6126.73 (12)H2SA—C2S—H2SB109.5
N10—C6—O7113.91 (11)N1S—C2S—H2SC109.5
N10—C6—C5126.23 (11)H2SA—C2S—H2SC109.5
O7—C6—C5119.86 (11)H2SB—C2S—H2SC109.5
C6—O7—N8105.99 (9)N1S—C3S—H3SA109.5
C9—N8—O7102.47 (10)N1S—C3S—H3SB109.5
N8—C9—N10116.05 (11)H3SA—C3S—H3SB109.5
N8—C9—C9i121.02 (14)N1S—C3S—H3SC109.5
N10—C9—C9i122.94 (13)H3SA—C3S—H3SC109.5
C6—N10—C9101.58 (10)H3SB—C3S—H3SC109.5
O11—N1—N2—N3179.65 (9)N4—C5—C6—O7177.99 (10)
C5—N1—N2—N30.10 (13)N1—C5—C6—O72.86 (18)
N1—N2—N3—N40.09 (13)N10—C6—O7—N80.34 (13)
N2—N3—N4—C50.25 (13)C5—C6—O7—N8179.34 (10)
N3—N4—C5—N10.31 (13)C6—O7—N8—C90.33 (12)
N3—N4—C5—C6179.59 (11)O7—N8—C9—N100.24 (13)
O11—N1—C5—N4179.77 (10)O7—N8—C9—C9i179.89 (13)
N2—N1—C5—N40.26 (13)O7—C6—N10—C90.18 (13)
O11—N1—C5—C61.0 (2)C5—C6—N10—C9179.47 (11)
N2—N1—C5—C6179.52 (11)N8—C9—N10—C60.05 (14)
N4—C5—C6—N102.38 (19)C9i—C9—N10—C6179.91 (14)
N1—C5—C6—N10176.77 (11)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1S—H1SA···O11ii0.912.012.8118 (14)146
N1S—H1SB···O11iii0.911.852.7524 (14)169
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1.
Bis(5-amino-1H-tetrazol-4-ium) 5,5'-(3,3'-bi[1,2,4-oxadiazole]-5,5'-diyl)bis(1H-tetrazol-1-olate) (4) top
Crystal data top
2CH4N5+·C6N12O42·4H2OF(000) = 1128
Mr = 548.36Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 24.783 (2) ÅCell parameters from 5868 reflections
b = 12.7081 (11) Åθ = 5.9–52.2°
c = 6.8396 (6) ŵ = 0.15 mm1
β = 96.289 (1)°T = 150 K
V = 2141.1 (3) Å3Rod, colorless
Z = 40.28 × 0.04 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3489 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.027
ω scansθmax = 26.2°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 3029
Tmin = 0.960, Tmax = 0.994k = 1515
18508 measured reflectionsl = 88
4274 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.1085P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
4274 reflectionsΔρmax = 0.37 e Å3
367 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41199 (5)0.76890 (10)0.63477 (19)0.0175 (3)
N20.46216 (6)0.76711 (11)0.7314 (2)0.0222 (3)
N30.47698 (6)0.66717 (11)0.7465 (2)0.0245 (3)
N40.43777 (6)0.60492 (11)0.6622 (2)0.0223 (3)
C50.39732 (6)0.66827 (12)0.5933 (2)0.0170 (3)
C60.34669 (6)0.63795 (12)0.4870 (2)0.0163 (3)
O70.33906 (4)0.53484 (8)0.44763 (16)0.0201 (3)
N80.28771 (6)0.52728 (10)0.3395 (2)0.0207 (3)
C90.27141 (6)0.62482 (12)0.3281 (2)0.0175 (3)
N100.30649 (5)0.69743 (10)0.41848 (19)0.0176 (3)
C110.21877 (6)0.65335 (12)0.2242 (2)0.0169 (3)
N120.20196 (6)0.75103 (11)0.2139 (2)0.0210 (3)
O130.15057 (4)0.74291 (8)0.10499 (17)0.0205 (3)
C140.14345 (6)0.63995 (12)0.0628 (2)0.0170 (3)
N150.18379 (5)0.58086 (10)0.1320 (2)0.0188 (3)
C160.09360 (6)0.60847 (12)0.0484 (2)0.0176 (3)
N170.07914 (5)0.50775 (10)0.08548 (19)0.0184 (3)
N180.02984 (6)0.50893 (11)0.1896 (2)0.0234 (3)
N190.01537 (6)0.60884 (11)0.2111 (2)0.0233 (3)
N200.05393 (5)0.67176 (11)0.1253 (2)0.0214 (3)
O210.38511 (5)0.85499 (9)0.59296 (17)0.0235 (3)
O220.10524 (5)0.42236 (9)0.03543 (19)0.0280 (3)
C230.12543 (7)0.63807 (13)0.5210 (2)0.0197 (4)
N240.12672 (6)0.53320 (10)0.5150 (2)0.0215 (3)
H240.1005930.4928380.4590910.026*
N250.17470 (6)0.49815 (12)0.6087 (2)0.0283 (4)
N260.20249 (6)0.57784 (11)0.6713 (2)0.0287 (4)
N270.17293 (6)0.66536 (11)0.6197 (2)0.0223 (3)
H270.1834560.7303490.6470160.027*
N280.08567 (6)0.70014 (11)0.4466 (2)0.0270 (4)
H28A0.0559080.6728180.3849940.032*
H28B0.0889250.7688590.4587450.032*
C290.62509 (7)0.63910 (13)0.9981 (2)0.0208 (4)
N300.62287 (6)0.74382 (11)1.0154 (2)0.0234 (3)
H300.5949690.7832250.9712370.028*
N310.67036 (6)0.78048 (12)1.1116 (2)0.0269 (4)
N320.70102 (6)0.70206 (12)1.1553 (2)0.0277 (4)
N330.67412 (6)0.61364 (11)1.0874 (2)0.0237 (3)
H330.6870710.5492351.1003040.028*
N340.58793 (6)0.57604 (11)0.9108 (2)0.0272 (4)
H34A0.5571550.6020560.8546860.033*
H34B0.5938240.5077860.9084830.033*
O1S0.05800 (5)0.39192 (10)0.35612 (19)0.0270 (3)
H1SA0.0549 (9)0.328 (2)0.374 (3)0.041*
H1SB0.0263 (9)0.4142 (18)0.305 (3)0.041*
O2S0.71190 (6)0.42019 (10)1.1563 (2)0.0282 (3)
H2SA0.7426 (10)0.4009 (18)1.192 (3)0.042*
H2SB0.6979 (10)0.3689 (19)1.103 (3)0.042*
O3S0.20626 (6)0.85908 (10)0.6897 (2)0.0330 (3)
H3SA0.2354 (11)0.8812 (19)0.736 (4)0.049*
H3SB0.1880 (11)0.907 (2)0.639 (4)0.049*
O4S0.44686 (6)0.38490 (11)0.6275 (3)0.0438 (4)
H4SA0.4454 (11)0.447 (3)0.636 (4)0.066*
H4SB0.4770 (11)0.367 (2)0.674 (4)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (7)0.0142 (7)0.0216 (7)0.0010 (5)0.0014 (5)0.0011 (5)
N20.0164 (7)0.0201 (7)0.0285 (7)0.0001 (6)0.0053 (6)0.0022 (6)
N30.0177 (7)0.0202 (7)0.0334 (8)0.0007 (6)0.0069 (6)0.0038 (6)
N40.0177 (7)0.0178 (7)0.0299 (7)0.0011 (5)0.0046 (6)0.0017 (6)
C50.0150 (8)0.0144 (8)0.0210 (8)0.0006 (6)0.0007 (6)0.0003 (6)
C60.0153 (8)0.0122 (7)0.0212 (8)0.0018 (6)0.0005 (6)0.0008 (6)
O70.0158 (6)0.0127 (6)0.0302 (6)0.0000 (4)0.0054 (5)0.0008 (5)
N80.0148 (7)0.0147 (7)0.0306 (7)0.0013 (5)0.0072 (6)0.0014 (5)
C90.0147 (8)0.0141 (8)0.0229 (8)0.0020 (6)0.0017 (6)0.0006 (6)
N100.0146 (7)0.0140 (7)0.0235 (7)0.0012 (5)0.0019 (5)0.0007 (5)
C110.0142 (8)0.0145 (8)0.0212 (8)0.0016 (6)0.0012 (6)0.0003 (6)
N120.0146 (7)0.0169 (7)0.0295 (7)0.0011 (5)0.0077 (6)0.0003 (6)
O130.0155 (6)0.0129 (6)0.0309 (6)0.0005 (4)0.0070 (5)0.0029 (5)
C140.0160 (8)0.0123 (7)0.0222 (8)0.0013 (6)0.0004 (6)0.0006 (6)
N150.0159 (7)0.0130 (7)0.0264 (7)0.0013 (5)0.0031 (6)0.0008 (5)
C160.0155 (8)0.0121 (7)0.0245 (8)0.0008 (6)0.0014 (7)0.0001 (6)
N170.0140 (7)0.0130 (7)0.0268 (7)0.0002 (5)0.0039 (6)0.0004 (5)
N180.0166 (7)0.0187 (7)0.0326 (8)0.0010 (6)0.0073 (6)0.0005 (6)
N190.0177 (7)0.0192 (7)0.0310 (8)0.0008 (6)0.0059 (6)0.0011 (6)
N200.0163 (7)0.0174 (7)0.0288 (7)0.0004 (5)0.0046 (6)0.0002 (6)
O210.0212 (6)0.0127 (6)0.0350 (7)0.0028 (5)0.0046 (5)0.0003 (5)
O220.0229 (7)0.0109 (6)0.0471 (8)0.0019 (5)0.0096 (6)0.0012 (5)
C230.0210 (8)0.0161 (8)0.0213 (8)0.0023 (7)0.0008 (7)0.0010 (6)
N240.0200 (7)0.0132 (7)0.0298 (7)0.0014 (6)0.0043 (6)0.0018 (6)
N250.0233 (8)0.0194 (8)0.0402 (8)0.0015 (6)0.0066 (7)0.0003 (6)
N260.0257 (9)0.0171 (7)0.0408 (9)0.0009 (6)0.0072 (7)0.0008 (6)
N270.0208 (8)0.0141 (7)0.0304 (7)0.0015 (6)0.0042 (6)0.0005 (6)
N280.0241 (8)0.0137 (7)0.0400 (8)0.0011 (6)0.0104 (7)0.0025 (6)
C290.0214 (9)0.0175 (8)0.0231 (8)0.0032 (7)0.0008 (7)0.0005 (6)
N300.0214 (8)0.0164 (7)0.0311 (8)0.0027 (6)0.0034 (6)0.0004 (6)
N310.0242 (8)0.0209 (8)0.0341 (8)0.0001 (6)0.0039 (6)0.0025 (6)
N320.0254 (8)0.0199 (8)0.0360 (8)0.0010 (6)0.0050 (6)0.0032 (6)
N330.0233 (8)0.0145 (7)0.0320 (8)0.0033 (6)0.0033 (6)0.0006 (6)
N340.0252 (8)0.0143 (7)0.0396 (9)0.0031 (6)0.0075 (7)0.0013 (6)
O1S0.0226 (7)0.0135 (6)0.0419 (8)0.0003 (5)0.0104 (6)0.0006 (5)
O2S0.0251 (7)0.0140 (6)0.0428 (8)0.0003 (5)0.0089 (6)0.0010 (5)
O3S0.0287 (8)0.0135 (6)0.0527 (9)0.0011 (5)0.0136 (6)0.0011 (6)
O4S0.0241 (8)0.0160 (7)0.0854 (12)0.0032 (6)0.0204 (8)0.0083 (7)
Geometric parameters (Å, º) top
N1—O211.2964 (17)C23—N271.337 (2)
N1—N21.3429 (19)N24—N251.362 (2)
N1—C51.351 (2)N24—H240.8800
N2—N31.3230 (19)N25—N261.272 (2)
N3—N41.3342 (19)N26—N271.357 (2)
N4—C51.331 (2)N27—H270.8800
C5—C61.432 (2)N28—H28A0.8800
C6—N101.297 (2)N28—H28B0.8800
C6—O71.3468 (18)C29—N341.314 (2)
O7—N81.4033 (16)C29—N301.338 (2)
N8—C91.303 (2)C29—N331.338 (2)
C9—N101.368 (2)N30—N311.366 (2)
C9—C111.461 (2)N30—H300.8800
C11—N121.309 (2)N31—N321.269 (2)
C11—N151.3704 (19)N32—N331.362 (2)
N12—O131.4071 (17)N33—H330.8800
O13—C141.3473 (18)N34—H34A0.8800
C14—N151.298 (2)N34—H34B0.8800
C14—C161.435 (2)O1S—H1SA0.83 (3)
C16—N201.333 (2)O1S—H1SB0.87 (2)
C16—N171.346 (2)O2S—H2SA0.81 (2)
N17—O221.2902 (17)O2S—H2SB0.81 (3)
N17—N181.3450 (19)O3S—H3SA0.81 (2)
N18—N191.3232 (19)O3S—H3SB0.82 (3)
N19—N201.3322 (19)O4S—H4SA0.79 (3)
C23—N281.320 (2)O4S—H4SB0.81 (3)
C23—N241.334 (2)
O21—N1—N2123.26 (12)N18—N19—N20110.74 (13)
O21—N1—C5129.24 (13)N19—N20—C16105.92 (13)
N2—N1—C5107.49 (12)N28—C23—N24127.21 (15)
N3—N2—N1106.79 (12)N28—C23—N27128.20 (15)
N2—N3—N4110.65 (13)N24—C23—N27104.59 (14)
C5—N4—N3106.20 (13)C23—N24—N25109.56 (13)
N4—C5—N1108.87 (14)C23—N24—H24125.2
N4—C5—C6126.93 (14)N25—N24—H24125.2
N1—C5—C6124.17 (14)N26—N25—N24108.08 (14)
N10—C6—O7114.16 (13)N25—N26—N27107.94 (14)
N10—C6—C5128.49 (14)C23—N27—N26109.82 (14)
O7—C6—C5117.34 (13)C23—N27—H27125.1
C6—O7—N8105.75 (11)N26—N27—H27125.1
C9—N8—O7102.93 (12)C23—N28—H28A120.0
N8—C9—N10115.91 (14)C23—N28—H28B120.0
N8—C9—C11121.30 (14)H28A—N28—H28B120.0
N10—C9—C11122.79 (14)N34—C29—N30127.83 (16)
C6—N10—C9101.26 (13)N34—C29—N33128.02 (15)
N12—C11—N15115.54 (14)N30—C29—N33104.15 (14)
N12—C11—C9121.58 (14)C29—N30—N31109.89 (14)
N15—C11—C9122.88 (14)C29—N30—H30125.1
C11—N12—O13102.91 (12)N31—N30—H30125.1
C14—O13—N12105.92 (11)N32—N31—N30107.93 (14)
N15—C14—O13113.96 (13)N31—N32—N33108.03 (14)
N15—C14—C16128.05 (14)C29—N33—N32110.00 (14)
O13—C14—C16117.99 (13)C29—N33—H33125.0
C14—N15—C11101.67 (13)N32—N33—H33125.0
N20—C16—N17109.25 (13)C29—N34—H34A120.0
N20—C16—C14126.58 (14)C29—N34—H34B120.0
N17—C16—C14124.14 (14)H34A—N34—H34B120.0
O22—N17—N18123.35 (13)H1SA—O1S—H1SB106 (2)
O22—N17—C16129.37 (13)H2SA—O2S—H2SB104 (2)
N18—N17—C16107.28 (12)H3SA—O3S—H3SB110 (2)
N19—N18—N17106.80 (12)H4SA—O4S—H4SB107 (3)
O21—N1—N2—N3179.48 (14)O13—C14—N15—C110.16 (18)
C5—N1—N2—N30.14 (17)C16—C14—N15—C11179.50 (16)
N1—N2—N3—N40.05 (19)N12—C11—N15—C140.14 (19)
N2—N3—N4—C50.22 (19)C9—C11—N15—C14179.76 (15)
N3—N4—C5—N10.30 (18)N15—C14—C16—N20176.68 (16)
N3—N4—C5—C6178.57 (15)O13—C14—C16—N204.0 (2)
O21—N1—C5—N4179.30 (15)N15—C14—C16—N175.5 (3)
N2—N1—C5—N40.28 (18)O13—C14—C16—N17173.77 (15)
O21—N1—C5—C61.0 (3)N20—C16—N17—O22179.06 (15)
N2—N1—C5—C6178.60 (14)C14—C16—N17—O220.9 (3)
N4—C5—C6—N10179.82 (16)N20—C16—N17—N180.78 (18)
N1—C5—C6—N102.2 (3)C14—C16—N17—N18178.89 (15)
N4—C5—C6—O71.6 (2)O22—N17—N18—N19179.15 (14)
N1—C5—C6—O7176.45 (14)C16—N17—N18—N190.70 (18)
N10—C6—O7—N80.35 (18)N17—N18—N19—N200.38 (18)
C5—C6—O7—N8178.46 (13)N18—N19—N20—C160.10 (18)
C6—O7—N8—C90.01 (16)N17—C16—N20—N190.54 (18)
O7—N8—C9—N100.31 (18)C14—C16—N20—N19178.59 (15)
O7—N8—C9—C11179.62 (14)N28—C23—N24—N25179.78 (17)
O7—C6—N10—C90.50 (18)N27—C23—N24—N250.22 (18)
C5—C6—N10—C9178.15 (16)C23—N24—N25—N260.0 (2)
N8—C9—N10—C60.51 (19)N24—N25—N26—N270.2 (2)
C11—C9—N10—C6179.43 (15)N28—C23—N27—N26179.88 (17)
N8—C9—C11—N12179.34 (16)N24—C23—N27—N260.33 (18)
N10—C9—C11—N120.7 (2)N25—N26—N27—C230.3 (2)
N8—C9—C11—N150.6 (2)N34—C29—N30—N31178.26 (17)
N10—C9—C11—N15179.38 (15)N33—C29—N30—N310.79 (18)
N15—C11—N12—O130.36 (18)C29—N30—N31—N320.74 (19)
C9—C11—N12—O13179.54 (14)N30—N31—N32—N330.35 (19)
C11—N12—O13—C140.42 (16)N34—C29—N33—N32178.47 (17)
N12—O13—C14—N150.38 (18)N30—C29—N33—N320.58 (19)
N12—O13—C14—C16179.79 (13)N31—N32—N33—C290.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N24—H24···O1S0.881.762.6267 (18)169
N27—H27···O3S0.881.742.6241 (19)177
N28—H28A···N190.882.183.054 (2)176
N28—H28B···O22i0.881.992.8656 (19)172
N30—H30···O4Sii0.881.752.605 (2)165
N33—H33···O2S0.881.782.6544 (19)173
N34—H34A···N30.882.203.080 (2)174
N34—H34B···O21iii0.882.012.8882 (19)175
O1S—H1SA···N20iv0.83 (3)1.99 (3)2.8030 (19)170 (2)
O1S—H1SB···N180.87 (2)1.94 (2)2.7758 (19)160 (2)
O2S—H2SA···N12iii0.81 (2)2.39 (2)3.0906 (18)144 (2)
O2S—H2SB···N10iii0.81 (3)2.19 (2)2.9038 (18)148 (2)
O3S—H3SA···N8i0.81 (2)2.33 (2)3.0397 (19)147 (2)
O3S—H3SB···N15i0.82 (3)2.21 (3)2.8915 (19)141 (2)
O4S—H4SA···N40.79 (3)2.03 (3)2.817 (2)177 (3)
O4S—H4SB···N2iii0.81 (3)2.02 (3)2.789 (2)157 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x, y1/2, z1/2.
Bis(aminoguanidinium) 5,5'-(3,3'-bi[1,2,4-oxadiazole]-5,5'-diyl)bis(1H-tetrazol-1-olate) (5) top
Crystal data top
2CH7N4+·C6N12O42F(000) = 468
Mr = 454.39Dx = 1.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9458 (4) ÅCell parameters from 4111 reflections
b = 5.5586 (2) Åθ = 2.9–26.4°
c = 20.6066 (9) ŵ = 0.14 mm1
β = 97.647 (2)°T = 150 K
V = 902.05 (7) Å3Rod, yellow
Z = 20.42 × 0.11 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1633 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.020
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 99
Tmin = 0.944, Tmax = 0.989k = 66
7786 measured reflectionsl = 2525
1844 independent reflections
Refinement top
Refinement on F263 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.8763P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1844 reflectionsΔρmax = 0.74 e Å3
206 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.7242 (6)0.6920 (8)0.89476 (16)0.0200 (8)0.907 (5)
N2A0.7542 (4)0.8420 (6)0.84668 (15)0.0249 (7)0.907 (5)
N3A0.6683 (3)0.7570 (6)0.79207 (13)0.0273 (7)0.907 (5)
N4A0.5827 (5)0.5580 (6)0.80370 (19)0.0256 (8)0.907 (5)
C5A0.6185 (8)0.5198 (9)0.8676 (2)0.0197 (10)0.907 (5)
O11A0.7863 (2)0.7262 (3)0.95566 (8)0.0277 (5)0.907 (5)
N1B0.599 (6)0.619 (7)0.809 (2)0.025 (7)0.093 (5)
N2B0.685 (4)0.813 (5)0.8096 (18)0.019 (5)0.093 (5)
N3B0.774 (5)0.878 (6)0.8619 (17)0.021 (5)0.093 (5)
N4B0.744 (6)0.696 (10)0.909 (2)0.020 (6)0.093 (5)
C5B0.635 (10)0.536 (10)0.878 (3)0.023 (8)0.093 (5)
O11B0.483 (2)0.528 (3)0.7672 (8)0.030 (5)0.093 (5)
C60.5571 (2)0.3235 (3)0.90328 (9)0.0191 (4)
O70.44405 (17)0.1736 (2)0.86989 (6)0.0226 (3)
N80.4063 (2)0.0012 (3)0.91550 (8)0.0222 (4)
C90.5000 (2)0.0668 (3)0.96935 (8)0.0192 (4)
N100.5969 (2)0.2681 (3)0.96468 (7)0.0203 (4)
N120.1089 (3)0.6386 (5)0.79393 (10)0.0481 (6)
H12A0.167 (3)0.578 (5)0.7645 (10)0.058*
H12B0.029 (3)0.723 (5)0.7706 (13)0.058*
N130.0329 (3)0.4421 (4)0.82311 (9)0.0403 (5)
H130.04030.34780.79950.048*
C140.0749 (2)0.4033 (4)0.88724 (10)0.0276 (5)
N150.0053 (3)0.2218 (4)0.91527 (10)0.0387 (5)
H15A0.03110.19650.95760.046*
H15B0.06700.12620.89170.046*
N160.1827 (2)0.5488 (3)0.92093 (8)0.0296 (4)
H16A0.21030.52680.96330.036*
H16B0.22760.66870.90120.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0220 (15)0.0203 (11)0.0168 (18)0.0009 (10)0.0010 (12)0.0005 (13)
N2A0.0294 (15)0.0221 (14)0.0221 (17)0.0029 (10)0.0001 (14)0.0003 (11)
N3A0.0349 (14)0.0276 (14)0.0182 (13)0.0039 (10)0.0012 (10)0.0013 (10)
N4A0.0295 (18)0.0255 (17)0.0210 (13)0.0052 (12)0.0004 (11)0.0027 (12)
C5A0.019 (2)0.0215 (13)0.018 (2)0.0001 (11)0.0004 (15)0.0022 (12)
O11A0.0332 (9)0.0290 (9)0.0185 (10)0.0056 (7)0.0054 (7)0.0019 (6)
N1B0.030 (11)0.023 (9)0.019 (7)0.006 (8)0.006 (6)0.008 (5)
N2B0.021 (6)0.019 (6)0.017 (6)0.002 (3)0.004 (3)0.003 (3)
N3B0.022 (6)0.021 (6)0.021 (6)0.001 (3)0.001 (3)0.001 (3)
N4B0.020 (11)0.022 (8)0.017 (8)0.006 (7)0.002 (6)0.005 (6)
C5B0.026 (14)0.027 (9)0.013 (8)0.005 (10)0.004 (7)0.007 (6)
O11B0.032 (7)0.036 (8)0.020 (7)0.008 (6)0.001 (6)0.002 (5)
C60.0170 (8)0.0210 (9)0.0186 (8)0.0006 (7)0.0000 (6)0.0025 (7)
O70.0251 (7)0.0244 (7)0.0172 (6)0.0043 (6)0.0015 (5)0.0004 (5)
N80.0256 (8)0.0233 (8)0.0173 (7)0.0040 (6)0.0010 (6)0.0001 (6)
C90.0196 (8)0.0203 (9)0.0174 (9)0.0008 (7)0.0015 (6)0.0019 (7)
N100.0217 (8)0.0215 (8)0.0174 (8)0.0020 (6)0.0008 (6)0.0009 (6)
N120.0518 (13)0.0630 (16)0.0285 (10)0.0028 (12)0.0017 (9)0.0059 (10)
N130.0441 (11)0.0451 (12)0.0282 (10)0.0039 (9)0.0081 (8)0.0064 (9)
C140.0225 (9)0.0272 (11)0.0319 (11)0.0016 (8)0.0007 (8)0.0078 (9)
N150.0361 (10)0.0349 (11)0.0430 (11)0.0086 (8)0.0031 (9)0.0020 (9)
N160.0304 (9)0.0324 (10)0.0241 (8)0.0078 (8)0.0037 (7)0.0027 (7)
Geometric parameters (Å, º) top
N1A—O11A1.300 (3)O7—N81.411 (2)
N1A—N2A1.341 (5)N8—C91.307 (2)
N1A—C5A1.345 (5)C9—N101.369 (2)
N2A—N3A1.323 (3)C9—C9i1.465 (4)
N3A—N4A1.337 (4)N12—N131.420 (3)
N4A—C5A1.328 (5)N12—H12A0.8800 (11)
C5A—C61.436 (4)N12—H12B0.8801 (11)
N1B—N2B1.28 (5)N13—C141.337 (3)
N1B—O11B1.28 (4)N13—H130.8800
N1B—C5B1.48 (7)C14—N161.309 (3)
N2B—N3B1.26 (4)C14—N151.320 (3)
N3B—N4B1.45 (6)N15—H15A0.8800
N4B—C5B1.34 (7)N15—H15B0.8800
C5B—C61.46 (2)N16—H16A0.8800
C6—N101.300 (2)N16—H16B0.8800
C6—O71.345 (2)
O11A—N1A—N2A122.7 (4)O7—C6—C5B127 (2)
O11A—N1A—C5A129.9 (4)C6—O7—N8105.81 (13)
N2A—N1A—C5A107.4 (3)C9—N8—O7102.65 (14)
N3A—N2A—N1A106.5 (3)N8—C9—N10116.01 (16)
N2A—N3A—N4A111.1 (3)N8—C9—C9i121.4 (2)
C5A—N4A—N3A105.3 (2)N10—C9—C9i122.6 (2)
N4A—C5A—N1A109.8 (3)C6—N10—C9101.30 (15)
N4A—C5A—C6125.9 (3)N13—N12—H12A107 (2)
N1A—C5A—C6124.3 (4)N13—N12—H12B109 (2)
N2B—N1B—O11B132 (4)H12A—N12—H12B104 (3)
N2B—N1B—C5B103 (3)C14—N13—N12118.59 (19)
O11B—N1B—C5B124 (4)C14—N13—H13120.7
N3B—N2B—N1B119 (3)N12—N13—H13120.7
N2B—N3B—N4B105 (3)N16—C14—N15121.5 (2)
C5B—N4B—N3B107 (4)N16—C14—N13119.0 (2)
N4B—C5B—C6129 (5)N15—C14—N13119.5 (2)
N4B—C5B—N1B107 (3)C14—N15—H15A120.0
C6—C5B—N1B124 (4)C14—N15—H15B120.0
N10—C6—O7114.22 (17)H15A—N15—H15B120.0
N10—C6—C5A128.5 (2)C14—N16—H16A120.0
O7—C6—C5A117.3 (2)C14—N16—H16B120.0
N10—C6—C5B119 (2)H16A—N16—H16B120.0
O11A—N1A—N2A—N3A178.2 (4)N1A—C5A—C6—N104.2 (8)
C5A—N1A—N2A—N3A0.6 (5)N4A—C5A—C6—O74.8 (8)
N1A—N2A—N3A—N4A0.6 (4)N1A—C5A—C6—O7176.2 (5)
N2A—N3A—N4A—C5A0.3 (5)N4B—C5B—C6—N102 (10)
N3A—N4A—C5A—N1A0.0 (6)N1B—C5B—C6—N10179 (5)
N3A—N4A—C5A—C6179.2 (5)N4B—C5B—C6—O7177 (6)
O11A—N1A—C5A—N4A177.8 (5)N1B—C5B—C6—O70 (10)
N2A—N1A—C5A—N4A0.4 (6)N10—C6—O7—N80.1 (2)
O11A—N1A—C5A—C63.0 (9)C5A—C6—O7—N8179.5 (4)
N2A—N1A—C5A—C6179.6 (5)C5B—C6—O7—N8180 (5)
O11B—N1B—N2B—N3B170 (5)C6—O7—N8—C90.14 (18)
C5B—N1B—N2B—N3B2 (6)O7—N8—C9—N100.1 (2)
N1B—N2B—N3B—N4B2 (5)O7—N8—C9—C9i179.9 (2)
N2B—N3B—N4B—C5B1 (6)O7—C6—N10—C90.0 (2)
N3B—N4B—C5B—C6177 (7)C5A—C6—N10—C9179.6 (4)
N3B—N4B—C5B—N1B0 (7)C5B—C6—N10—C9180 (4)
N2B—N1B—C5B—N4B1 (7)N8—C9—N10—C60.1 (2)
O11B—N1B—C5B—N4B170 (5)C9i—C9—N10—C6180.0 (2)
N2B—N1B—C5B—C6176 (6)N12—N13—C14—N160.8 (3)
O11B—N1B—C5B—C67 (10)N12—N13—C14—N15179.8 (2)
N4A—C5A—C6—N10174.8 (5)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12B···N4Aii0.88 (1)2.50 (1)3.314 (4)155 (3)
N13—H13···N3Aiii0.882.082.870 (3)149
N13—H13···N4Aiii0.882.653.405 (4)144
N15—H15A···O11Aiv0.882.192.954 (3)145
N15—H15B···N2Av0.882.243.112 (4)170
N16—H16A···O11Aiv0.882.182.949 (2)146
N16—H16A···N10iv0.882.292.926 (2)129
N16—H16B···N8vi0.882.323.079 (2)145
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x1, y1, z; (vi) x, y+1, z.
Crystal densities of each structure top
Structure IDCationDensity (g cm-1)
1hydrazinium1.694
2hydroxylammonium1.873
3dimethylammonium1.544
45-amino-1H-tetrazol-4-ium1.701
5aminoguanidinium1.673
 

Acknowledgements

We would like to thank Gary Hust, Stephen Strout, Levi Merrill, Fowzia Zaka, Ginger Guillen, and Jennifer Montgomery for completing the small-scale safety testing on our compounds.

Funding information

Crystallographic studies were supported in part by the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL). This work has been performed under the auspices of the U·S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52–07 N A27344 and the Office of Naval Research, under Contract N0001417WX00049. The authors are grateful for financial support from the Joint DoD/DOE Munitions Technology Development Program and the DOE Campaign 2 Program. Approved for public release through NRL release number 17–1231-3217.

References

First citationAkella, A. & Keszler, D. A. (1994). Acta Cryst. C50, 1974–1976.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAkhavan, J. (2011). The Chemistry of Explosives, pp. 68–69. Cambridge: RSC Publishing.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenffer, M. von, Klapötke, T. M., Kramer, G., Spiess, G., Welch, J. M. & Heeb, G. (2005). Propellants, Explosives, Pyrotech. 30, 191–195.  Google Scholar
First citationDickens, B. (1969). Acta Cryst. B25, 1875–1882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Y., Zhang, A., Zhang, C., Jiang, D., Zhu, Y. & Zhang, C. (2014). Cryst. Growth Des. 14, 4703–4713.  Web of Science CrossRef CAS Google Scholar
First citationPagoria, P. F., Zhang, M. X., Zuckerman, N. B., DeHope, A. J. & Parrish, D. A. (2017). Chem. Heterocycl. C. 53, 760–778.  Web of Science CrossRef CAS Google Scholar
First citationSakurai, K. & Tomiie, Y. (1952). Acta Cryst. 5, 293–294.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev. 37, 68–83.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds