research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of trans-bis­­(5-fluoro­indoline-2,3-dione 3-oximato-κ2O2,N3)-trans-bis­­(pyridine-κN)copper(II)

CROSSMARK_Color_square_no_text.svg

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and bDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 10 February 2018; accepted 27 February 2018; online 2 March 2018)

The reaction in methanol of CuII acetate monohydrate with 5-fluoro­isatin 3-oxime deprotonated with KOH in a 1:2 molar ratio and recrystallization from pyridine yielded the title compound, [Cu(C8H4FN2O2)2(C5H5N)2]. In the centrosymmetric complex, the anionic form of the isatin oxime acts as a κ2N,O donor, building five-membered metallarings. The CuII cation is sixfold coordinated in a slightly distorted octa­hedral environment by two trans, equatorial, anionic isatin derivatives and two trans pyridine ligands in axial positions. The complexes are linked by hydrogen bonding into a three-dimensional network, which is also stabilized by ππ stacking inter­actions [centroid-to-centroid distance = 3.7352 (9) Å] and C—H⋯π contacts. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H⋯H (31.80%), H⋯C (24.30%), H⋯O (15.20%) and H⋯F (10.80%). This work is the second report in the literature of a crystal structure of a coordination compound with isatin 3-oxime ligands (coordination chemistry).

1. Chemical context

By the first half of the 19th century, the first reports on the chemistry of the isatin fragment were published independently in Germany and France (Erdmann, 1841a[Erdmann, O. L. (1841a). Ann. Chim. Phys. 3, 355-371.],b[Erdmann, O. L. (1841b). J. Prakt. Chem. 22, 257-299.]; Laurent, 1841[Laurent, A. (1841). Ann. Chim. Phys. 3, 371-383.]). One very nice review concerning the organic synthesis of the isatin derivatives was published 74 years ago (Sumpter, 1944[Sumpter, W. C. (1944). Chem. Rev. 34, 393-434.]) and the topic remains up-to-date. From the early years, the chemistry of isatin-based mol­ecules emerged from the synthetic approach to a large class of organic compounds with applications in biochemistry and pharmacology. For two recent examples, see: 1-[(2-methyl­benzimidazol-1-yl) meth­yl]-2-oxo-indolin-3-yl­idene]amino]­thio­urea, a derivative with in silico and in vitro inhibition of Chikungunya virus replication (Mishra et al., 2016[Mishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122.]) and 5-chloro­isatin-4-methyl­thio­semi­carbazone, another derivative which appears as an inter­mediate in the synthesis of an HIV-1 RT inhibitor (Meleddu et al., 2017[Meleddu, R., Distinto, S., Corona, A., Tramontano, E., Bianco, G., Melis, C., Cottiglia, F. & Maccioni, E. (2017). J. Enzyme Inhib. Med. Chem. 32, 130-136.]). The abbreviation HIV-1 RT stands for human immunodeficiency virus type 1 reverse transcriptase. Along the same line of research of the present work, the crystal structure, the Hirshfeld surface analysis and the lock-and-key supra­molecular analysis through in silico evaluation with the vascular endothelial growth factor receptor-2 (VEGFR-2) of the isatin derivative ligand of the title complex were recently carried out. The (3Z)-5-fluoro-3-(hy­droxy­imino)-indolin-2-one mol­ecule showed a structure–activity relationship with the selected biological target through hydrogen bonding (Martins et al., 2017[Martins, B. B., Bresolin, L., Farias, R. L. de, Oliveira, A. B. de & Gervini, V. C. (2017). Acta Cryst. E73, 987-992.]). Although the chemistry of isatins is already well reported in several scientific disciplines, crystal structures of complexes with isatin 3-oxime derivatives are surprisingly few in number. Thus, the crystal structure determination of isatin-based mol­ecules has become our major research inter­est and herein, the synthesis, crystal structure and Hirshfeld surface analysis of a 5-fluoro­isatin 3-oxime complex with copper(II) is reported.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title coordination compound consists of one CuII cation, which lies on an inversion center, and two ligands in general positions, the anionic form of 5-fluoro­isatin 3-oxime and one pyridine mol­ecule. The CuII atoms are sixfold coordinated in a slightly distorted octa­hedral environment by two five-membered chelate 5-fluoro­isatin-3-oximate ligands, acting as κ2N,O-donors in equatorial positions, and by two pyridine ligands in axial positions (Fig. 1[link]). The isatin 3-oxime derivative is nearly planar with an r.m.s. deviation from the mean plane of the non–H atoms of 0.0145 Å and a maximum deviation of 0.0344 (9) Å for the N2 atom. The dihedral angle between the pyridine ring and the mean plane through the indoline ring system is 73.82 (3)°. For the five-membered ring, the r.m.s. from the mean plane through the Cu1/C1/C2/N2/O1 fragment is 0.074 Å and the maximum deviation from that plane is 0.0945 (7) Å for the N2 atom. The N2—Cu1—N3 and O1—Cu1—N3 angles are 88.75 (4) and 89.01 (4)°, respectively. Four intra­molecular C—H⋯O hydrogen bonds are observed for the title compound, forming rings with S(5) graph-set motif. As an inter­esting feature of the structure, a hydrogen-bonded macrocyclic coordination environment can be assumed based on the S(5) rings (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/C9–C13 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H5⋯O1i 0.95 2.54 3.1424 (18) 121
C12—H8⋯F1ii 0.95 2.49 3.287 (2) 142
C13—H9⋯O1 0.95 2.54 3.1077 (19) 119
N1—H4⋯O2iii 0.88 2.00 2.7529 (14) 143
C6—H2⋯Cg1iv 0.95 2.79 3.7076 (17) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, y-1, z; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. [Symmetry code: (i) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1.]
[Figure 2]
Figure 2
The intra­molecular C—H⋯O hydrogen inter­actions of the title compound (dashed lines) forming a ring of S(5) graph-set motif.

3. Supra­molecular features and Hirshfeld analysis

In the crystal, the mol­ecules of the centrosymmetric title compound are connected into a three-dimensional hydrogen-bonded network (Table 1[link]). The complexes are linked by centrosymmetric pairs of C—H⋯F inter­actions into dimers with graph-set motif R22(22). The dimers are the subunits of the periodic arrangement along the [110] direction (Fig. 3[link]). The mol­ecular units are also connected by C—H⋯O inter­actions into a one-dimensional hydrogen-bonded polymer along the [001] direction (Fig. 4[link]) and finally, the complexes are linked by N—H⋯O inter­actions into centrosymmetric dimers with graph-set motif R22(14). Like the dimers of the first structural element, with C—H⋯F inter­actions connecting the mol­ecules, the latter element is also based on dimers as subunits of the polymeric motif, connected through N—H⋯O inter­actions but in this case along the [010] direction (Fig. 5[link]). In addition, ππ stacking ­inter­actions [centroid-to-centroid distance: 3.7352 (9) Å] and C—H⋯π contacts (Table 1[link]) stabilize the crystal structure.

[Figure 3]
Figure 3
Partial crystal packing of the title compound, viewed down the c axis, showing the C—H⋯F inter­actions (dashed lines) forming rings of R22(22) graph-set motif connecting the mol­ecules into a chain along the [110] direction.
[Figure 4]
Figure 4
Partial crystal packing of the title compound, viewed down the a axis, showing the C—H⋯O inter­actions (dashed lines) organized in a C(8) graph-set motif along the [001] direction.
[Figure 5]
Figure 5
Partial crystal packing of the title compound, viewed along the c axis, showing the C—H⋯O inter­actions (dashed lines) forming rings of R22(14) graph-set motif connecting the mol­ecules into a chain along the [010] direction.

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the crystal structure suggests that the contributions of the H⋯H, H⋯C and H⋯O inter­molecular inter­actions to the crystal packing amount to 31.80, 24.30 and 15.20%, respectively. Other important inter­molecular contacts for the cohesion of the structure are (values given in %): H⋯F = 10.80, C⋯C = 6.20, and H⋯N = 4.30. The contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CRYSTAL EXPLORER. University of Western Australia, Perth, Australia.]). The de (y axis) and di (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 6[link]). The graphical representation of the Hirshfeld surface for the title compound with transparency and labelled atoms (Fig. 7[link]) indicates, in magenta, the locations of the strongest inter­molecular contacts, e.g. the H4, H7, H8, O2 and F1 atoms.

[Figure 6]
Figure 6
Hirshfeld surface two-dimensional fingerprint plot for the title compound showing (a) H⋯H, (b) H⋯C, (c) O⋯H and (d) H⋯F, (e) C⋯C and (f) H⋯N contacts in detail (cyan dots). The contribution of the inter­actions to the crystal packing amounts to 31.80, 24.30, 15.20, 10.80, 06.20 and 04.30%, respectively. The de (y axis) and di (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
Graphical representation of the Hirshfeld surface (dnorm) for the title compound. The surface is drawn with transparency and simplified for clarity. The surface regions with strongest inter­molecular inter­actions are drawn in magenta and the respective atoms are labelled. [Symmetry code: (i) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1.]

4. Database survey

A search of SciFinder (SciFinder, 2018[SciFinder (2018). Chemical Abstracts Service: Columbus, OH, 2010; RN 58-08-2 (accessed Feb 08, 2018).]) revealed a single report in the literature about the crystal structure of coordin­ation compounds with isatin 3-oxime derivatives, i.e. the one-dimensional coordination polymer, catena-poly[[[aquasodium]-di-μ-aqua-[aqua­sodium]-bis­(μ-2-oxoindoline-2,3-dione 3-oximato)] tetra­kis­(oxoindoline-2,3-dione 3-oxime)] (Barreto Martins et al., 2011[Barreto Martins, B., Bresolin, L., Santana Carratu, V., Boneberger Behm, M. & Bof de Oliveira, A. (2011). Acta Cryst. E67, m790-m791.]). For that complex, the Na cations shows an octa­hedral coordination environment builded by the anionic form of the isatin 3-oxime and water mol­ecules (Fig. 8[link]).

[Figure 8]
Figure 8
Partial view of the structure of catena-poly[[[aqua­sodium]-di-μ-aqua-[aqua­sodium]-bis­(μ-2-oxoindoline-2,3-dione 3-oximato)] tetra­kis­(oxoindoline-2,3-dione 3-oxime)].

5. Synthesis and crystallization

All the starting materials were commercially available and were used without further purification. The synthesis of the ligand followed the procedure reported previously (Martins et al., 2017[Martins, B. B., Bresolin, L., Farias, R. L. de, Oliveira, A. B. de & Gervini, V. C. (2017). Acta Cryst. E73, 987-992.]). 5-Fluoro­isatin 3-oxime was dissolved in methanol (4 mmol, 50 mL) and deprotonated with one pellet of KOH with stirring maintained for 60 min. Simultaneously, a green solution of copper acetate mono­hydrate in methanol (2 mmol, 50 mL) was prepared under continuous stirring. A dark-coloured mixture of both solutions was maintained with stirring at room temperature for 8 h. A crude dark-red material was obtained by evaporation of the solvent. Purple crystals of the complex, suitable for X-ray analysis, were obtained by recrystallization of the solid from a pyridine/methanol (1:10 v/v) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model, with Uiso(H) = 1.2Ueq(C, N), and with C—H = 0.95 and N—H = 0.88 Å.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8H4FN2O2)2(C5H5N)2]
Mr 580.00
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 19.9709 (14), 7.2155 (5), 17.1989 (12)
β (°) 98.579 (2)
V3) 2450.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.95
Crystal size (mm) 0.40 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.674, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18806, 4481, 3966
Rint 0.017
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.12
No. of reflections 4481
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CRYSTAL EXPLORER. University of Western Australia, Perth, Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and CrystalExplorer (Wolff et al., 2012); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

trans-Bis(5-fluoroindoline-2,3-dione 3-oximato-κ2O2,N3)-trans-bis(pyridine-κN)copper(II) top
Crystal data top
[Cu(C8H4FN2O2)2(C5H5N)2]F(000) = 1180
Mr = 580.00Dx = 1.572 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.9709 (14) ÅCell parameters from 9537 reflections
b = 7.2155 (5) Åθ = 2.4–32.7°
c = 17.1989 (12) ŵ = 0.95 mm1
β = 98.579 (2)°T = 200 K
V = 2450.6 (3) Å3Prismatic, purple
Z = 40.40 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
3966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tube, Bruker APEX2 CCDRint = 0.017
φ and ω scansθmax = 32.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3030
Tmin = 0.674, Tmax = 0.746k = 107
18806 measured reflectionsl = 2626
4481 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.035P)2 + 2.817P]
where P = (Fo2 + 2Fc2)/3
4481 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66193 (6)0.43044 (17)0.51144 (7)0.0202 (2)
C20.62981 (6)0.59529 (16)0.54136 (7)0.0179 (2)
C30.57200 (6)0.53285 (17)0.57616 (7)0.0190 (2)
C40.52421 (7)0.6220 (2)0.61397 (8)0.0252 (2)
H10.5241390.7526870.6205650.030*
C50.47665 (7)0.5092 (2)0.64150 (10)0.0308 (3)
C60.47458 (7)0.3189 (2)0.63286 (10)0.0330 (3)
H20.4406370.2488440.6528510.040*
C70.52236 (8)0.2300 (2)0.59479 (10)0.0292 (3)
H30.5216100.0993540.5877210.035*
C80.57102 (6)0.33887 (17)0.56761 (8)0.0213 (2)
C90.79324 (7)0.8070 (2)0.66905 (8)0.0271 (3)
H50.7781420.9294890.6560220.033*
C100.81834 (9)0.7655 (3)0.74669 (9)0.0361 (3)
H60.8202990.8581920.7861810.043*
C110.84039 (8)0.5880 (3)0.76578 (9)0.0374 (4)
H70.8574250.5563920.8186530.045*
C120.83737 (9)0.4571 (3)0.70703 (10)0.0359 (3)
H80.8526880.3342160.7187750.043*
C130.81167 (8)0.5072 (2)0.63051 (9)0.0285 (3)
H90.8096070.4166730.5901000.034*
Cu10.7500000.7500000.5000000.01704 (6)
F10.42924 (6)0.59199 (17)0.67886 (8)0.0505 (3)
N10.62487 (6)0.28139 (15)0.52904 (8)0.0242 (2)
H40.6334430.1655830.5178490.029*
N20.65751 (5)0.75711 (14)0.53373 (6)0.01704 (17)
N30.78961 (5)0.67952 (17)0.61181 (6)0.0208 (2)
O10.71204 (5)0.42959 (14)0.47722 (6)0.02501 (19)
O20.62959 (5)0.90531 (12)0.55624 (6)0.02333 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0261 (5)0.0133 (5)0.0219 (5)0.0016 (4)0.0052 (4)0.0011 (4)
C20.0209 (5)0.0130 (5)0.0204 (5)0.0011 (4)0.0051 (4)0.0007 (4)
C30.0205 (5)0.0150 (5)0.0215 (5)0.0005 (4)0.0041 (4)0.0022 (4)
C40.0254 (6)0.0219 (6)0.0299 (6)0.0018 (5)0.0092 (5)0.0011 (5)
C50.0246 (6)0.0335 (8)0.0367 (7)0.0022 (5)0.0131 (5)0.0036 (6)
C60.0254 (6)0.0329 (8)0.0420 (8)0.0059 (6)0.0098 (6)0.0092 (7)
C70.0292 (6)0.0201 (6)0.0386 (7)0.0053 (5)0.0057 (5)0.0062 (5)
C80.0237 (5)0.0145 (5)0.0255 (5)0.0007 (4)0.0036 (4)0.0033 (4)
C90.0295 (6)0.0297 (7)0.0220 (6)0.0023 (5)0.0034 (5)0.0005 (5)
C100.0398 (8)0.0476 (10)0.0199 (6)0.0019 (7)0.0009 (5)0.0030 (6)
C110.0345 (7)0.0532 (11)0.0230 (6)0.0028 (7)0.0006 (5)0.0120 (6)
C120.0375 (8)0.0367 (8)0.0327 (7)0.0066 (7)0.0026 (6)0.0141 (6)
C130.0322 (6)0.0278 (7)0.0262 (6)0.0071 (5)0.0069 (5)0.0045 (5)
Cu10.01925 (10)0.01681 (10)0.01575 (9)0.00118 (7)0.00488 (6)0.00176 (7)
F10.0404 (5)0.0492 (7)0.0705 (8)0.0048 (5)0.0367 (5)0.0016 (6)
N10.0325 (6)0.0093 (4)0.0326 (6)0.0007 (4)0.0108 (5)0.0011 (4)
N20.0204 (4)0.0131 (4)0.0179 (4)0.0018 (3)0.0040 (3)0.0000 (3)
N30.0203 (4)0.0249 (5)0.0182 (4)0.0027 (4)0.0064 (3)0.0029 (4)
O10.0308 (5)0.0182 (4)0.0284 (5)0.0044 (4)0.0123 (4)0.0013 (4)
O20.0297 (4)0.0122 (4)0.0301 (5)0.0025 (3)0.0113 (4)0.0021 (3)
Geometric parameters (Å, º) top
C1—O11.2342 (15)C9—N31.3412 (19)
C1—N11.3649 (16)C9—C101.387 (2)
C1—C21.4798 (17)C9—H50.9500
C2—N21.3070 (15)C10—C111.378 (3)
C2—C31.4493 (16)C10—H60.9500
C3—C41.3901 (18)C11—C121.378 (3)
C3—C81.4072 (17)C11—H70.9500
C4—C51.386 (2)C12—C131.387 (2)
C4—H10.9500C12—H80.9500
C5—F11.3591 (17)C13—N31.3423 (19)
C5—C61.382 (2)C13—H90.9500
C6—C71.392 (2)Cu1—N22.0176 (10)
C6—H20.9500Cu1—N32.0319 (11)
C7—C81.3841 (18)N1—H40.8800
C7—H30.9500N2—O21.2917 (13)
C8—N11.4077 (17)
O1—C1—N1127.37 (12)N3—C9—H5119.0
O1—C1—C2126.46 (12)C10—C9—H5119.0
N1—C1—C2106.18 (11)C11—C10—C9119.13 (15)
N2—C2—C3133.98 (11)C11—C10—H6120.4
N2—C2—C1118.12 (10)C9—C10—H6120.4
C3—C2—C1107.89 (10)C10—C11—C12119.00 (14)
C4—C3—C8120.61 (12)C10—C11—H7120.5
C4—C3—C2133.96 (12)C12—C11—H7120.5
C8—C3—C2105.40 (11)C11—C12—C13119.13 (15)
C5—C4—C3116.20 (13)C11—C12—H8120.4
C5—C4—H1121.9C13—C12—H8120.4
C3—C4—H1121.9N3—C13—C12122.02 (15)
F1—C5—C6118.42 (13)N3—C13—H9119.0
F1—C5—C4117.69 (14)C12—C13—H9119.0
C6—C5—C4123.89 (14)N2—Cu1—N388.75 (4)
C5—C6—C7119.82 (13)O1—Cu1—N389.01 (4)
C5—C6—H2120.1C1—N1—C8110.49 (10)
C7—C6—H2120.1C1—N1—H4124.8
C8—C7—C6117.53 (13)C8—N1—H4124.8
C8—C7—H3121.2O2—N2—C2120.09 (10)
C6—C7—H3121.2O2—N2—Cu1124.18 (8)
C7—C8—C3121.93 (13)C2—N2—Cu1115.18 (8)
C7—C8—N1128.03 (12)C9—N3—C13118.66 (12)
C3—C8—N1110.04 (11)C9—N3—Cu1119.59 (10)
N3—C9—C10122.06 (15)C13—N3—Cu1121.74 (10)
O1—C1—C2—N22.32 (19)C4—C3—C8—N1178.83 (12)
N1—C1—C2—N2177.94 (12)C2—C3—C8—N10.40 (14)
O1—C1—C2—C3179.09 (13)N3—C9—C10—C110.1 (2)
N1—C1—C2—C30.65 (14)C9—C10—C11—C120.5 (3)
N2—C2—C3—C40.5 (3)C10—C11—C12—C130.6 (3)
C1—C2—C3—C4178.76 (14)C11—C12—C13—N30.0 (2)
N2—C2—C3—C8177.63 (14)O1—C1—N1—C8179.33 (13)
C1—C2—C3—C80.63 (13)C2—C1—N1—C80.41 (14)
C8—C3—C4—C50.3 (2)C7—C8—N1—C1179.97 (14)
C2—C3—C4—C5178.20 (14)C3—C8—N1—C10.01 (16)
C3—C4—C5—F1179.91 (13)C3—C2—N2—O24.6 (2)
C3—C4—C5—C60.4 (2)C1—C2—N2—O2177.27 (11)
F1—C5—C6—C7179.92 (15)C3—C2—N2—Cu1167.30 (11)
C4—C5—C6—C70.2 (3)C1—C2—N2—Cu110.83 (14)
C5—C6—C7—C80.6 (2)C10—C9—N3—C130.7 (2)
C6—C7—C8—C31.3 (2)C10—C9—N3—Cu1178.48 (12)
C6—C7—C8—N1178.68 (14)C12—C13—N3—C90.6 (2)
C4—C3—C8—C71.2 (2)C12—C13—N3—Cu1178.54 (12)
C2—C3—C8—C7179.62 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/C9–C13 ring
D—H···AD—HH···AD···AD—H···A
C9—H5···O1i0.952.543.1424 (18)121
C12—H8···F1ii0.952.493.287 (2)142
C13—H9···O10.952.543.1077 (19)119
N1—H4···O2iii0.882.002.7529 (14)143
C6—H2···Cg1iv0.952.793.7076 (17)162
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x1/2, y1/2, z.
 

Acknowledgements

ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for long-term support, in particular Professor Johannes Beck and Dr Jörg Daniels.

Funding information

APLM thanks the CAPES foundation for a scholarship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarreto Martins, B., Bresolin, L., Santana Carratu, V., Boneberger Behm, M. & Bof de Oliveira, A. (2011). Acta Cryst. E67, m790–m791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErdmann, O. L. (1841a). Ann. Chim. Phys. 3, 355–371.  Google Scholar
First citationErdmann, O. L. (1841b). J. Prakt. Chem. 22, 257–299.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLaurent, A. (1841). Ann. Chim. Phys. 3, 371–383.  Google Scholar
First citationMartins, B. B., Bresolin, L., Farias, R. L. de, Oliveira, A. B. de & Gervini, V. C. (2017). Acta Cryst. E73, 987–992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeleddu, R., Distinto, S., Corona, A., Tramontano, E., Bianco, G., Melis, C., Cottiglia, F. & Maccioni, E. (2017). J. Enzyme Inhib. Med. Chem. 32, 130–136.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122.  Web of Science CrossRef PubMed Google Scholar
First citationSciFinder (2018). Chemical Abstracts Service: Columbus, OH, 2010; RN 58-08-2 (accessed Feb 08, 2018).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSumpter, W. C. (1944). Chem. Rev. 34, 393–434.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CRYSTAL EXPLORER. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds