research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [2,13-bis­­(acetamido)-5,16-di­methyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]do­cosane-κ4N]silver(II) dinitrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 26 February 2018; accepted 1 March 2018; online 6 March 2018)

The asymmetric unit of the title compound, [Ag(C24H46N6O2)](NO3)2 [C24H46N6O2 is (5,16-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosane-2,13-di­yl)diacetamide, L], consists of one independent half of the [Ag(C24H46N6O2)]2+ cation and one nitrate anion. The Ag atom, lying on an inversion centre, has a square-planar geometry and the complex adopts a stable trans-III conformation. Inter­estingly, the two O atoms of the pendant acetamide groups are not coordinated to the AgII ion. The longer distance of 2.227 (2) Å for Ag—N(tertiary) compared to 2.134 (2) Å for Ag—N(secondary) may be due to the effects of the attached acetamide group on the tertiary N atom. Two nitrate anions are very weakly bound to the AgII ion in the axial sites and are further connected to the ligand of the cation by N—H⋯O hydrogen bonds. The crystal packing is stabilized by hydrogen-bonding inter­actions among the N—H donor groups of the macrocycle and its actetamide substituents, and the O atoms of the nitrate anions and of an acetamide group as the acceptor atoms.

1. Chemical context

Macrocycles with N-substituted groups on the polyaza macrocyclic ring and their transition metal complexes have attracted considerable attention because of their structural and chemical properties, which are different from those of the corresponding unsubstituted macrocyclic systems. Recently, it has been shown that the cyclam (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) derivatives and their metal complexes exhibit anti-HIV activity (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). These cyclam-based macrocyclic ligands have a moderately flexible structure, and can adopt both planar (trans) and folded (cis) configurations. There are five conformational trans isomers for the cyclam moiety, which differ in the chirality of the sec-NH centers (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The trans-I, trans-II and trans-V configurations can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). The conformation of the macrocyclic ligand and the orientations of the N–H bonds are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and crystal packing of transition metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specially target alternative events in the HIV replicative cycle (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). Partially N-substituted tetra­aza­macrocycles and their complexes have been much less widely studied. This may be due to the difficulty encountered in the attachment of only one or two pendant arms to the tetra­aza macrocycle by several steps and in low yields. The presence of two methyl substit­uents on the macrocyclic ring carbon atoms next to the secondary amine groups facilitates syntheses, as N-substitution takes place only on the less sterically hindered nitro­gen atoms.

[Scheme 1]

The syntheses and crystal structures of transition metal complexes with the constrained cyclam ligand containing two acetamide groups on the nitro­gen atoms have received much attention because of the effects of the functional groups on their chemical properties and coordination geometry (Choi et al., 2001a[Choi, K.-Y., Kim, Y.-S., Choo, G.-H., Kim, J.-G. & Suh, I.-H. (2001a). Acta Cryst. C57, 1014-1015.],b[Choi, K.-Y., Kim, H.-H. & Suh, I.-H. (2001b). J. Korean Chem. Soc. 45, 189-193.],c[Choi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). Polyhedron, 20, 2003-2009.]; Choi & Lee, 2007[Choi, K.-Y. & Lee, H.-K. (2007). J. Chem. Crystallogr. 37, 669-673.]). The nitrate ion can also coordinate to the transition metal ions in a monodentate, chelating bidentate or bridging bidentate fashion. The oxidation state of the metal, the nature of other ligands and steric factors influence the mode of coordination.

In this communication, we report the synthesis and structural characterization a new silver(II) complex, [Ag(C24H46N6O2)](NO3)2, (I)[link] to confirm the conformation and bonding modes of the macrocyclic ligand and the nitrate anions.

2. Structural commentary

The structural analysis showed the space group to be P[\overline1] with Z = 1. The asymmetric unit contains one independent half of the [Ag(C24H46N6O2)]2+ cation and one nitrate anion. The silver(II) cation is situated on a center of inversion in the small triclinic cell, which contains a single silver(II) complex. An ellipsoid plot of the title compound is shown in Fig. 1[link] along with the atomic numbering scheme. The two methyl groups on the six-membered chelate rings and the two –(CH2)4– parts of the cyclo­hexane backbones are anti with respect to the macrocyclic plane. Two pendant acetamide groups in the AgII complex mol­ecule are also trans to each other, and thus the macrocyclic skeleton adopts the most stable trans-III (RRSS) conformation. The five-membered chelate rings adopt a gauche, and the six-membered rings are in chair conformations. The AgII cation is surrounded by a square-planar array of four nitro­gen atoms from the secondary and tertiary amines in the macrocycle. Inter­estingly, the oxygen atoms of the acetamide substituents are not coordinated to the metal center. It is noteworthy that the ZnII, NiII and CuII complexes of the same ligand have a tetra­gonally distorted octa­hedral environment with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of the pendant acetamide groups in axial positions (Choi et al., 2001a[Choi, K.-Y., Kim, Y.-S., Choo, G.-H., Kim, J.-G. & Suh, I.-H. (2001a). Acta Cryst. C57, 1014-1015.],b[Choi, K.-Y., Kim, H.-H. & Suh, I.-H. (2001b). J. Korean Chem. Soc. 45, 189-193.],c[Choi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). Polyhedron, 20, 2003-2009.]; Choi & Lee, 2007[Choi, K.-Y. & Lee, H.-K. (2007). J. Chem. Crystallogr. 37, 669-673.]). The Ag—N bond lengths of 2.134 (2) and 2.227 (2) Å from the donor atoms of the macrocycle can be compared to those determined in [Ag(cyclam)](ClO4)2 [2.158 (2)–2.192 (2) Å; Ito et al., 1981[Ito, T., Ito, H. & Toriumi, K. (1981). Chem. Lett. 10, 1101-1104.]], [Ag(tmc)](ClO4)2 [2.194 (2)–2.196 (2) Å; tmc = 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane; Po et al., 1991[Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310-2312.]], [Ag(tet a)](NO3)2 [2.159 (3)–2.162 (3) Å; tet a = C-meso-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane; Mertes, 1978[Mertes, K. B. (1978). Inorg. Chem. 17, 49-52.]] and [Ag(3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]doco­sa­ne)](NO3)2·4H2O [2.140 (2)–2.150 (3) Å; Moon et al., 2010[Moon, J. R., Lough, A. J., Yoon, Y. T., Kim, Y. I. & Kim, J. C. (2010). Inorg. Chim. Acta, 363, 2682-2685.]]. The longer Ag—N(tertiary) bond distance, compared to the length of the Ag—N(secondary) bond may be due to the steric and inductive effects of the pendant acetamide group on the tertiary N atom. The Ag—O distance of 3.109 (2) Å is longer than the corresponding distances in [Ag(cyclam)](ClO4)2 [2.788 (2) Å; Ito et al., 1981[Ito, T., Ito, H. & Toriumi, K. (1981). Chem. Lett. 10, 1101-1104.]], [Ag(tmc)](ClO4)2 [2.889 (4) Å; Po et al., 1991[Po, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310-2312.]], [Ag(tet a)](NO3)2 [2.807 (4) Å; Mertes, 1978[Mertes, K. B. (1978). Inorg. Chem. 17, 49-52.]] and [Ag(3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosa­ne)](NO3)2·4H2O [2.923 (2) Å; Moon et al., 2010[Moon, J. R., Lough, A. J., Yoon, Y. T., Kim, Y. I. & Kim, J. C. (2010). Inorg. Chim. Acta, 363, 2682-2685.]]. The longest N1—C4 bond distance is also probably due to the effect of the acetamide group and the cyclo­hexane ring. The nitrate anion has a slightly distorted trigonal-planar geometry because of the hydrogen bonding inter­actions and the very weak inter­action with the silver(II) ion. Two nitrate ions are located above and below the coordination planes, and each are linked to the cation via N—H⋯O hydrogen bonds.

[Figure 1]
Figure 1
A perspective view (50% probability) of complex (I)[link]. The primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z + 1). Hydrogen bonds are drawn as dashed lines.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). The nitrate ions are connected to the ligand of the cation via N—H⋯O hydrogen bonds. The nitrate anions have slightly distorted trigonal–planar geometries because of these inter­actions and the very weak inter­action with the silver(II) cation. The supra­molecular architecture involves hydrogen bonds between the N—H groups of both the macrocycle and its pendant acetamide substituents as donors, and the O atoms of the nitrate anions and the acetamides as acceptors. An array of these contacts generate a two-dimensional sheet of mol­ecules stacked along the b-axis direction (Fig. 2[link]). This hydrogen-bonded network helps to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1N 1.00 2.59 3.214 (4) 121
N2—H2⋯O3N 1.00 1.93 2.925 (4) 172
N3—H3A⋯O1i 0.88 2.03 2.913 (4) 177
N3—H3B⋯O1Nii 0.88 2.06 2.930 (4) 168
N3—H3B⋯O2Nii 0.88 2.59 3.281 (4) 136
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing in complex (I)[link], viewed along the b-axis direction. Dashed lines represent N—H⋯O hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, May 2017 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave four hits for the macrocycle (C24H46N6O2) unit. The crystal structures of [Cu(C24H46N6O2)]Cl2·8H2O (Choi et al., 2001a[Choi, K.-Y., Kim, Y.-S., Choo, G.-H., Kim, J.-G. & Suh, I.-H. (2001a). Acta Cryst. C57, 1014-1015.]), [Zn(C24H46N6O2)]Cl2·3H2O (Choi et al., 2001b[Choi, K.-Y., Kim, H.-H. & Suh, I.-H. (2001b). J. Korean Chem. Soc. 45, 189-193.]), [Ni(C24H46N6O2)](ClO4)2 (Choi et al., 2001c[Choi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). Polyhedron, 20, 2003-2009.]) and [Cu(C24H46N6O2)](ClO4)2 (Choi et al., 2001c[Choi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). Polyhedron, 20, 2003-2009.]) have been reported previously. In all of these structures, two O atoms of the acetamide substit­uents occupy the axial positions, giving rise to a tetra­gonally distorted octa­hedral geometry. This is quite unlike the square-planar geometry of the title compound as the two O atoms of the acetamide substituents are not bound to the silver(II) cation in this case. Until now, no structure of the complex ion [Ag(C24H46N6O2)]2+ with any anion has been reported.

5. Synthesis and crystallization

As a starting material, 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosane was prepared according to a published procedure (Kang et al., 1991[Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.]). All other chemicals were purchased from commercial sources and used without further purification. The macrocyclic ligand 2,13-bis­(acet­amido)-5,16-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosane (L) was prepared by a previously reported method (Maumela et al., 1995[Maumela, H., Hancock, R. D., Carlton, L., Reibenspies, J. H. & Wainwright, K. P. (1995). J. Am. Chem. Soc. 117, 6698-6707.]). AgNO3 (0.34 g, 2 mmol) dissolved in water (10 mL) was mixed with a suspension of the ligand L (0.45 g, 1 mmol) in methanol (20 mL). The resulting mixture was heated at 313 K for 30 min and then filtered to remove metallic silver. The orange filtrate was left in an open beaker, protected from the light, at ambient temperature. After several days block-like dark-orange crystals of (I)[link] suitable only for synchrotron X-ray analysis were formed.

In the synthesis of the title complex, two pertinent features are found. One is that the complex contains the silver in the unusually high oxidation state, AgII. This is stabilized by the macrocycle L. The complex is the product of the disproportionation of the AgI complex according to the following equation:

2AgI + L → AgIIL + Ag(s) ↓

It is generally understood that macrocyclic ligands possess a suitable cavity size and hard nitro­gen donor atoms that can form stable AgII complexes in aqueous solution (Ali et al., 2004[Ali, M., Shames, A. I., Gangopadhyay, S., Saha, B. & Meyerstein, D. (2004). Transition Met. Chem. 29, 463-470.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.98–1.00 Å and an N—H distance of 0.88–1.0 Å. All displacement parameters of H atoms Uiso(H) were set to 1.2 or 1.5Ueq of their respective parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C24H46N6O2)](NO3)2
Mr 682.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.3460 (17), 9.2874 (19), 10.171 (2)
α, β, γ (°) 104.32 (3), 90.28 (3), 109.60 (3)
V3) 716.3 (3)
Z 1
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.51
Crystal size (mm) 0.02 × 0.02 × 0.01
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.937, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7431, 3750, 3418
Rint 0.034
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.05
No. of reflections 3750
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.71, −2.17
Computer programs: PAL BL2D-SMDC Program (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC Program (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

[(5,16-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane-2,13-diyl)diacetamide-κ4N2,N6,N13,N17]silver(II) dinitrate top
Crystal data top
[Ag(C24H46N6O2)](NO3)2Z = 1
Mr = 682.56F(000) = 357
Triclinic, P1Dx = 1.582 Mg m3
a = 8.3460 (17) ÅSynchrotron radiation, λ = 0.610 Å
b = 9.2874 (19) ÅCell parameters from 46429 reflections
c = 10.171 (2) Åθ = 0.4–33.7°
α = 104.32 (3)°µ = 0.51 mm1
β = 90.28 (3)°T = 173 K
γ = 109.60 (3)°Block, dark orange
V = 716.3 (3) Å30.02 × 0.02 × 0.01 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
3418 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.034
ω scanθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.937, Tmax = 1.000k = 1212
7431 measured reflectionsl = 1414
3750 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.71 e Å3
3750 reflectionsΔρmin = 2.17 e Å3
189 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.065 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.5000000.5000000.5000000.01559 (13)
O10.2273 (3)0.5401 (3)0.0700 (3)0.0332 (6)
N10.3945 (3)0.4502 (3)0.2855 (2)0.0138 (4)
N20.3842 (3)0.2496 (3)0.4657 (2)0.0141 (4)
H20.4806980.2079530.4602930.017*
N30.0231 (4)0.4445 (4)0.1558 (3)0.0287 (6)
H3A0.0826430.4480230.0857660.034*
H3B0.0756490.4102730.2227820.034*
C10.5320 (4)0.5522 (4)0.2206 (3)0.0190 (6)
H1A0.4917330.5319560.1238040.023*
H1AB0.6333360.5196890.2223570.023*
C20.2334 (4)0.4871 (4)0.2920 (3)0.0200 (6)
H2A0.2581450.5918830.3579700.024*
H2AB0.1495580.4081760.3304180.024*
C30.1459 (4)0.4909 (4)0.1604 (3)0.0223 (6)
C40.3680 (4)0.2774 (3)0.2288 (3)0.0167 (5)
H40.4836240.2688370.2171420.020*
C50.2651 (4)0.2038 (4)0.0888 (3)0.0218 (6)
H5A0.1480660.2067990.0966390.026*
H5B0.3196170.2663030.0248040.026*
C60.2561 (5)0.0326 (4)0.0329 (3)0.0296 (7)
H6A0.1865570.0136500.0563010.035*
H6B0.3726030.0304160.0186120.035*
C70.1776 (5)0.0665 (4)0.1307 (3)0.0318 (8)
H7A0.1798690.1750560.0951730.038*
H7B0.0568640.0740550.1374540.038*
C80.2763 (5)0.0082 (4)0.2717 (3)0.0249 (6)
H8A0.3937560.0056160.2659730.030*
H8B0.2201860.0547970.3348620.030*
C90.2852 (4)0.1794 (3)0.3284 (3)0.0148 (5)
H90.1663640.1805020.3376560.018*
C100.2906 (4)0.2024 (3)0.5819 (3)0.0182 (5)
H100.2521720.0842750.5609730.022*
C110.4128 (4)0.2696 (4)0.7127 (3)0.0207 (6)
H11A0.3579440.2134550.7806350.025*
H11B0.5171000.2433810.6921380.025*
C120.1312 (4)0.2481 (4)0.5968 (3)0.0269 (7)
H12A0.1593710.3576720.5914540.040*
H12B0.0887530.2388740.6850980.040*
H12C0.0428230.1771570.5233760.040*
O1N0.7629 (4)0.3507 (3)0.3690 (3)0.0343 (6)
O2N0.8673 (3)0.1611 (3)0.3122 (3)0.0338 (6)
O3N0.6869 (3)0.1576 (3)0.4643 (3)0.0328 (6)
N1N0.7737 (3)0.2225 (3)0.3815 (3)0.0237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01841 (18)0.01836 (19)0.00929 (16)0.00500 (12)0.00143 (10)0.00443 (10)
O10.0323 (13)0.0502 (16)0.0254 (12)0.0174 (12)0.0029 (10)0.0203 (11)
N10.0189 (11)0.0161 (11)0.0080 (9)0.0073 (9)0.0004 (8)0.0043 (8)
N20.0177 (11)0.0149 (11)0.0100 (10)0.0054 (9)0.0004 (8)0.0042 (8)
N30.0271 (14)0.0434 (18)0.0213 (13)0.0161 (13)0.0001 (11)0.0132 (12)
C10.0216 (14)0.0232 (14)0.0102 (11)0.0044 (11)0.0030 (10)0.0058 (10)
C20.0248 (15)0.0243 (15)0.0128 (12)0.0118 (12)0.0022 (10)0.0038 (10)
C30.0306 (16)0.0216 (15)0.0172 (13)0.0127 (13)0.0030 (11)0.0045 (11)
C40.0200 (13)0.0201 (14)0.0084 (11)0.0068 (11)0.0012 (9)0.0013 (9)
C50.0291 (16)0.0251 (15)0.0103 (12)0.0110 (13)0.0036 (10)0.0007 (10)
C60.0408 (19)0.0286 (17)0.0162 (14)0.0164 (15)0.0059 (13)0.0056 (12)
C70.044 (2)0.0203 (16)0.0237 (16)0.0103 (15)0.0127 (14)0.0049 (12)
C80.0338 (17)0.0178 (14)0.0194 (14)0.0074 (13)0.0060 (12)0.0006 (11)
C90.0177 (13)0.0165 (13)0.0112 (11)0.0079 (10)0.0011 (9)0.0028 (9)
C100.0211 (14)0.0175 (13)0.0153 (12)0.0036 (11)0.0023 (10)0.0073 (10)
C110.0275 (15)0.0233 (15)0.0136 (12)0.0078 (12)0.0017 (11)0.0106 (11)
C120.0206 (15)0.0370 (19)0.0193 (14)0.0072 (13)0.0040 (11)0.0046 (13)
O1N0.0386 (15)0.0353 (14)0.0385 (14)0.0187 (12)0.0114 (11)0.0183 (11)
O2N0.0326 (14)0.0448 (16)0.0263 (12)0.0211 (12)0.0051 (10)0.0027 (11)
O3N0.0376 (14)0.0359 (14)0.0388 (14)0.0232 (12)0.0152 (11)0.0195 (11)
N1N0.0222 (13)0.0297 (15)0.0203 (12)0.0137 (11)0.0037 (10)0.0021 (10)
Geometric parameters (Å, º) top
Ag1—N2i2.134 (2)C5—H5A0.9900
Ag1—N22.134 (2)C5—H5B0.9900
Ag1—N12.227 (2)C6—C71.523 (5)
Ag1—N1i2.227 (2)C6—H6A0.9900
O1—C31.234 (4)C6—H6B0.9900
N1—C21.493 (4)C7—C81.527 (4)
N1—C11.496 (4)C7—H7A0.9900
N1—C41.504 (4)C7—H7B0.9900
N2—C91.494 (3)C8—C91.527 (4)
N2—C101.495 (3)C8—H8A0.9900
N2—H21.0000C8—H8B0.9900
N3—C31.326 (4)C9—H91.0000
N3—H3A0.8800C10—C121.524 (4)
N3—H3B0.8800C10—C111.532 (4)
C1—C11i1.530 (4)C10—H101.0000
C1—H1A0.9900C11—H11A0.9900
C1—H1AB0.9900C11—H11B0.9900
C2—C31.535 (4)C12—H12A0.9800
C2—H2A0.9900C12—H12B0.9800
C2—H2AB0.9900C12—H12C0.9800
C4—C51.531 (4)O1N—N1N1.261 (4)
C4—C91.540 (4)O2N—N1N1.240 (4)
C4—H41.0000O3N—N1N1.249 (4)
C5—C61.526 (5)
N2i—Ag1—N2180.0H5A—C5—H5B108.1
N2i—Ag1—N196.57 (9)C7—C6—C5111.1 (3)
N2—Ag1—N183.43 (9)C7—C6—H6A109.4
N2i—Ag1—N1i83.43 (9)C5—C6—H6A109.4
N2—Ag1—N1i96.57 (9)C7—C6—H6B109.4
N1—Ag1—N1i180.0 (2)C5—C6—H6B109.4
C2—N1—C1114.7 (2)H6A—C6—H6B108.0
C2—N1—C4114.1 (2)C6—C7—C8110.4 (3)
C1—N1—C4111.6 (2)C6—C7—H7A109.6
C2—N1—Ag1106.66 (16)C8—C7—H7A109.6
C1—N1—Ag1105.59 (17)C6—C7—H7B109.6
C4—N1—Ag1102.92 (15)C8—C7—H7B109.6
C9—N2—C10115.8 (2)H7A—C7—H7B108.1
C9—N2—Ag1109.76 (16)C7—C8—C9111.9 (3)
C10—N2—Ag1113.18 (17)C7—C8—H8A109.2
C9—N2—H2105.7C9—C8—H8A109.2
C10—N2—H2105.7C7—C8—H8B109.2
Ag1—N2—H2105.7C9—C8—H8B109.2
C3—N3—H3A120.0H8A—C8—H8B107.9
C3—N3—H3B120.0N2—C9—C8110.5 (2)
H3A—N3—H3B120.0N2—C9—C4110.5 (2)
N1—C1—C11i115.2 (2)C8—C9—C4109.6 (2)
N1—C1—H1A108.5N2—C9—H9108.7
C11i—C1—H1A108.5C8—C9—H9108.7
N1—C1—H1AB108.5C4—C9—H9108.7
C11i—C1—H1AB108.5N2—C10—C12111.9 (2)
H1A—C1—H1AB107.5N2—C10—C11109.9 (2)
N1—C2—C3119.0 (2)C12—C10—C11113.0 (2)
N1—C2—H2A107.6N2—C10—H10107.3
C3—C2—H2A107.6C12—C10—H10107.3
N1—C2—H2AB107.6C11—C10—H10107.3
C3—C2—H2AB107.6C1i—C11—C10117.6 (2)
H2A—C2—H2AB107.0C1i—C11—H11A107.9
O1—C3—N3123.2 (3)C10—C11—H11A107.9
O1—C3—C2122.4 (3)C1i—C11—H11B107.9
N3—C3—C2114.3 (3)C10—C11—H11B107.9
N1—C4—C5113.8 (2)H11A—C11—H11B107.2
N1—C4—C9111.8 (2)C10—C12—H12A109.5
C5—C4—C9109.8 (2)C10—C12—H12B109.5
N1—C4—H4107.0H12A—C12—H12B109.5
C5—C4—H4107.0C10—C12—H12C109.5
C9—C4—H4107.0H12A—C12—H12C109.5
C6—C5—C4110.7 (3)H12B—C12—H12C109.5
C6—C5—H5A109.5O2N—N1N—O3N120.6 (3)
C4—C5—H5A109.5O2N—N1N—O1N120.7 (3)
C6—C5—H5B109.5O3N—N1N—O1N118.6 (3)
C4—C5—H5B109.5
C2—N1—C1—C11i57.5 (3)C6—C7—C8—C956.2 (4)
C4—N1—C1—C11i170.8 (2)C10—N2—C9—C878.2 (3)
Ag1—N1—C1—C11i59.7 (3)Ag1—N2—C9—C8152.1 (2)
C1—N1—C2—C353.5 (3)C10—N2—C9—C4160.3 (2)
C4—N1—C2—C377.0 (3)Ag1—N2—C9—C430.6 (3)
Ag1—N1—C2—C3170.0 (2)C7—C8—C9—N2179.4 (3)
N1—C2—C3—O135.8 (4)C7—C8—C9—C457.4 (4)
N1—C2—C3—N3147.4 (3)N1—C4—C9—N252.8 (3)
C2—N1—C4—C554.2 (3)C5—C4—C9—N2179.9 (2)
C1—N1—C4—C577.8 (3)N1—C4—C9—C8174.8 (2)
Ag1—N1—C4—C5169.4 (2)C5—C4—C9—C857.9 (3)
C2—N1—C4—C970.9 (3)C9—N2—C10—C1259.3 (3)
C1—N1—C4—C9157.1 (2)Ag1—N2—C10—C1268.7 (3)
Ag1—N1—C4—C944.3 (2)C9—N2—C10—C11174.3 (2)
N1—C4—C5—C6175.4 (3)Ag1—N2—C10—C1157.7 (3)
C9—C4—C5—C658.5 (3)N2—C10—C11—C1i73.2 (3)
C4—C5—C6—C757.5 (4)C12—C10—C11—C1i52.5 (3)
C5—C6—C7—C855.6 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1N1.002.593.214 (4)121
N2—H2···O3N1.001.932.925 (4)172
N3—H3A···O1ii0.882.032.913 (4)177
N3—H3B···O1Niii0.882.062.930 (4)168
N3—H3B···O2Niii0.882.593.281 (4)136
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z.
 

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

First citationAli, M., Shames, A. I., Gangopadhyay, S., Saha, B. & Meyerstein, D. (2004). Transition Met. Chem. 29, 463–470.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, K.-Y., Kim, Y.-S., Choo, G.-H., Kim, J.-G. & Suh, I.-H. (2001a). Acta Cryst. C57, 1014–1015.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, K.-Y., Kim, H.-H. & Suh, I.-H. (2001b). J. Korean Chem. Soc. 45, 189–193.  CAS Google Scholar
First citationChoi, K.-Y. & Lee, H.-K. (2007). J. Chem. Crystallogr. 37, 669–673.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, K.-Y., Lee, H.-H., Park, B. B., Kim, J. H., Kim, J., Kim, M.-W., Ryu, J.-W., Suh, M. & Suh, I.-H. (2001c). Polyhedron, 20, 2003–2009.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIto, T., Ito, H. & Toriumi, K. (1981). Chem. Lett. 10, 1101–1104.  CSD CrossRef Web of Science Google Scholar
First citationKang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.  CAS Google Scholar
First citationMaumela, H., Hancock, R. D., Carlton, L., Reibenspies, J. H. & Wainwright, K. P. (1995). J. Am. Chem. Soc. 117, 6698–6707.  CSD CrossRef CAS Web of Science Google Scholar
First citationMertes, K. B. (1978). Inorg. Chem. 17, 49–52.  CSD CrossRef CAS Web of Science Google Scholar
First citationMoon, J. R., Lough, A. J., Yoon, Y. T., Kim, Y. I. & Kim, J. C. (2010). Inorg. Chim. Acta, 363, 2682–2685.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPo, H. N., Brinkman, E. & Doedens, R. J. (1991). Acta Cryst. C47, 2310–2312.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds