research communications
2-Oxo-2H-chromen-7-yl 4-tert-butylbenzoate
aLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliquées (UMRI EEA), Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093, Yamoussoukro, Côte d'Ivoire, and cInstitut de Chimie Radicalaire, Equipe SREP, UMR 7273 Aix-Marseille Université, Avenue Escadrille Normandie-Niemen, Service 521, 13397 Marseille cedex 20, France
*Correspondence e-mail: abouakoun@gmail.com
In the title compound, C20H18O4, the benzoate ring is oriented at an acute angle of 33.10 (12)° with respect to the planar (r.m.s deviation = 0.016 Å) coumarin ring system. An intramolecular C—H⋯O hydrogen bond closes an S(6) ring motif. In the crystal, C—H⋯O contacts generate infinite C(6) chains along the b-axis direction. Also present are π–π stacking interactions between neighbouring pyrone and benzene rings [centroid–centroid distance = 3.7034 (18) Å] and C=O⋯π interactions [O⋯centroid = 3.760 (3) Å]. The data obtained from quantum chemical calculations performed on the title compound are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin ring system and the benzoate ring (129.1°) is somewhat lower than the observed value [141.3 (3)°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.
Keywords: crystal structure; C—H⋯O hydrogen bond; coumarin; Hirshfeld surface analysis; quantum chemical calculations.
CCDC reference: 1828991
1. Chemical context
core of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009), anti-oxidant (Vukovic et al., 2010) and anti-inflammatory agents (Emmanuel-Giota et al., 2001). In view of their importance and as a continuation of our work on the analysis of coumarin derivatives (Abou et al., 2012, 2013), we report herein the synthesis, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative, (I).
and their derivatives constitute one of the major classes of naturally occurring compounds and interest in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the2. Structural commentary
The molecular structure of the title coumarin derivative, (I), is illustrated in Fig. 1. An S(6) ring motif arises from an intramolecular C6—H6⋯O4 hydrogen bond, and generates a pseudo-tricyclic ring system (Fig. 1). The coumarin ring system is planar [r.m.s deviation = 0.016 Å] and is oriented at an acute angle of 33.10 (12)° with respect to the C11–C16 benzene ring while the pseudo-six-membered ring makes dihedral angles of 27.34 (11) and 13.98 (13)°, respectively, with the coumarin ring system and the benzene ring. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C3—C2 [1.338 (5) Å] and C2—C1 [1.426 (5) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2016).
3. Supramolecular features
In the crystal, two types of intermolecular hydrogen-bonding interactions are present (Table 1). The C8—H8⋯O4 hydrogen bonds link molecules into infinite chains along the [010] direction (Fig. 2) while the C15—H15⋯O2 hydrogen-bonding interactions generate chains extending along the c-axis direction, as shown in Fig. 3. In addition, a close contact [H2⋯H19B(−x, − + y, − z) = 2.38 Å] is found at a distance shorter than the sum of the van der Waals radii. An unusual C10=O4⋯π interaction [O4⋯Cg2(−x, + y, − z) = 3.760 (3) Å, where Cg2 is the centroid of the C4–C9 benzene ring], is also present. The resulting supramolecular aggregation is completed by the presence of π–π stacking (Fig. 4) between the pyrone and benzene rings with centroid–centroid distances [Cg1⋯Cg3(−x, − + y, − z) = 3.7035 (18) and Cg3⋯Cg1 (−x, + y, − z) = 3.7034 (18) Å, where Cg1 and Cg3 are the centroids of the pyrone and the C11–C16 benzene rings, respectively] that are less than 3.8 Å, the maximum regarded as suitable for an effective π–π interaction (Janiak, 2000). In these interactions, the perpendicular distances of Cg1 on ring 3 are 3.6144 (13) and 3.6143 (13) Å, respectively, and the distances between Cg1 and a perpendicular projection of Cg3 on ring 1 (slippage) are 0.726 and 0.807Å, respectively.
4. Database survey
A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016) found five coumarin ester structures with substituents at the 7 positions (Ramasubbu et al.,1982; Gnanaguru et al., 1985; Parveen et al., 2011; Ji et al., 2014, 2017). In these structures and those of meta-substituted coumarin (Abou et al., 2012, 2013; Bibila Mayaya Bisseyou et al., 2013; Yu et al., 2014; Gomes et al., 2016; Ziki et al., 2016, 2017), the pyrone rings all show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated here with C2—C3 = 1.338 (5) Å while C1—C2 = 1.426 (5), C3—C4 = 1.436 (5) and C4—C5 = 1.375 (4) Å.
5. Hirshfeld surface analysis
Molecular Hirshfeld surfaces of 2-oxo-2H-chromen-7-yl 4-tert-butylbenzoate, (I), were calculated using a standard (high) surface resolution, and with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.39 (red) to 1.4 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012). The analysis of intermolecular interactions through the mapping of dnorm is accomplished by considering the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I), the surface mapped over dnorm highlights six red spots showing distances shorter than the sum of the van der Waals radii. These dominant interactions correspond to intermolecular C—H⋯O hydrogen bonds, O⋯π and π–π stacking interactions between the surface and the neighbouring environment. The mapping also shows white spots with distances equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are transparent to allow visualization of the molecule (Fig. 5). Furthermore, the two-dimensional fingerprint plots (FP) in Fig. 6 highlight particular close contacts of atom pairs and the contributions from different contacts are provided. The red spots in the middle of the surface appearing near de = di ≃ 1.8–2 Å correspond to close C⋯C interplanar contacts. These contacts, which comprise 8.3% of the total Hirshfeld surface area, relate to π–π interactions (Fig. 6a), as shown by the X-ray study. The most significant contribution to the Hirshfeld surface (46.8%) is from H⋯H contacts, which appear in the central region of the FP (Fig. 6b). H⋯O/O⋯H interactions with a 24.1% contribution appear as blue spikes in Fig. 6c and show the presence of O⋯H contacts, whereas the C⋯H/H⋯C plot (17.3%) gives information about intermolecular hydrogen bonds (Fig. 6d). Other visible spots in the Hirshfeld surfaces show C⋯O/O⋯C and O⋯O contacts, which contribute only 4.0 and 1.0%, respectively (Fig. 6e and 6f).
6. Theoretical calculations
The geometry optimization of compound (I) was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The in the solid state was used as the starting structure for the calculations. The DFT calculations are performed with the GAUSSIAN09 program package (Frisch et al., 2013). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study. An analysis of the computational bond lengths and bond angles and comparison with the crystallographic results shows a good agreement between them, with a root-mean-square deviation of 0.017 Å for bond lengths and 0.97° for bond angles (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin ring system and the benzene (C11–C16) ring are planar (Supplementary Table S3), which is in good agreement with the crystallographic prevision, although the calculated C10—O3—C7—C8 torsion angle between them (129.1°) is somewhat lower than the observed value [141.3 (3)°].
7. Synthesis and crystallization
To a solution of 4-tert-butylbenzoyl chloride (6.17 mmol; 1.3 g) in dry tetrahydrofuran (30 to 40 ml), was added dry trimethylamine (2.6 ml; 3 molar equivalents) and 7-hydroxycoumarin (6.17 mmol; 1g) in small portions over 30 min. The mixture was then refluxed for four h and poured into 40 ml of chloroform. The solution was acidified with diluted hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from chloroform. Colourless crystals of the title compound were obtained in a good yield: 90%; m.p. 406–408 K.
8. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding-model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq(C) of the respective parent atom.
details are summarized in Table 2Supporting information
CCDC reference: 1828991
https://doi.org/10.1107/S2056989018004188/sj5549sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018004188/sj5549Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018004188/sj5549Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek,2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C20H18O4 | F(000) = 680 |
Mr = 322.34 | Dx = 1.284 Mg m−3 |
Monoclinic, P21/c | Melting point = 406–408 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 18.684 (2) Å | Cell parameters from 1499 reflections |
b = 6.5431 (5) Å | θ = 4.7–63.4° |
c = 13.6688 (14) Å | µ = 0.73 mm−1 |
β = 93.627 (11)° | T = 298 K |
V = 1667.7 (3) Å3 | Prism, colorless |
Z = 4 | 0.40 × 0.12 × 0.04 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2 diffractometer | 3005 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1710 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 67.7°, θmin = 4.7° |
ω scans | h = −22→19 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −7→7 |
Tmin = 0.714, Tmax = 1.000 | l = −15→16 |
9647 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.202 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0981P)2] where P = (Fo2 + 2Fc2)/3 |
3005 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.13 e Å−3 |
72 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.05338 (12) | 0.1955 (3) | 0.65709 (16) | 0.0967 (6) | |
O1 | −0.19810 (13) | 0.3433 (3) | 0.65369 (16) | 0.1016 (7) | |
O4 | 0.04152 (14) | 0.5177 (3) | 0.6031 (2) | 0.1233 (9) | |
C7 | −0.01924 (18) | 0.1455 (4) | 0.64140 (19) | 0.0869 (8) | |
C4 | −0.15790 (19) | 0.0068 (4) | 0.61057 (19) | 0.0905 (8) | |
C6 | −0.07476 (18) | 0.2783 (4) | 0.6568 (2) | 0.0904 (8) | |
H6 | −0.0662 | 0.4119 | 0.6776 | 0.108* | |
C11 | 0.15865 (18) | 0.3838 (4) | 0.63538 (19) | 0.0860 (8) | |
C5 | −0.14356 (18) | 0.2044 (4) | 0.63979 (19) | 0.0869 (8) | |
C9 | −0.1001 (2) | −0.1235 (4) | 0.5982 (2) | 0.0974 (9) | |
H9 | −0.1086 | −0.2586 | 0.5797 | 0.117* | |
C10 | 0.0789 (2) | 0.3799 (4) | 0.6300 (2) | 0.0907 (8) | |
C12 | 0.1920 (2) | 0.5629 (4) | 0.6107 (2) | 0.0974 (9) | |
H12 | 0.1645 | 0.6774 | 0.5935 | 0.117* | |
C14 | 0.3083 (2) | 0.4064 (5) | 0.6350 (2) | 0.0971 (9) | |
C8 | −0.0311 (2) | −0.0549 (4) | 0.6129 (2) | 0.0933 (8) | |
H8 | 0.0073 | −0.1419 | 0.6038 | 0.112* | |
C3 | −0.2317 (2) | −0.0532 (5) | 0.5957 (2) | 0.1066 (10) | |
H3 | −0.2432 | −0.1866 | 0.5774 | 0.128* | |
O2 | −0.31255 (16) | 0.4209 (5) | 0.6509 (2) | 0.1421 (11) | |
C13 | 0.2657 (2) | 0.5738 (5) | 0.6111 (2) | 0.1024 (10) | |
H13 | 0.2872 | 0.6965 | 0.5950 | 0.123* | |
C16 | 0.20033 (19) | 0.2163 (4) | 0.6614 (2) | 0.0957 (9) | |
H16 | 0.1788 | 0.0951 | 0.6794 | 0.115* | |
C15 | 0.2743 (2) | 0.2284 (5) | 0.6607 (2) | 0.1034 (10) | |
H15 | 0.3018 | 0.1140 | 0.6781 | 0.124* | |
C1 | −0.2694 (2) | 0.2881 (6) | 0.6378 (3) | 0.1124 (10) | |
C2 | −0.2839 (2) | 0.0826 (6) | 0.6080 (3) | 0.1137 (11) | |
H2 | −0.3314 | 0.0415 | 0.5968 | 0.136* | |
C17 | 0.3902 (2) | 0.4102 (6) | 0.6331 (3) | 0.1112 (10) | |
C18 | 0.4185 (3) | 0.6214 (7) | 0.6053 (4) | 0.1529 (18) | |
H18A | 0.3973 | 0.6606 | 0.5423 | 0.229* | |
H18B | 0.4062 | 0.7200 | 0.6535 | 0.229* | |
H18C | 0.4697 | 0.6157 | 0.6028 | 0.229* | |
C19 | 0.4251 (3) | 0.3551 (9) | 0.7329 (4) | 0.170 (2) | |
H19A | 0.4763 | 0.3583 | 0.7302 | 0.256* | |
H19B | 0.4107 | 0.4518 | 0.7807 | 0.256* | |
H19C | 0.4103 | 0.2205 | 0.7508 | 0.256* | |
C20 | 0.4126 (3) | 0.2572 (8) | 0.5546 (4) | 0.166 (2) | |
H20A | 0.3901 | 0.2942 | 0.4920 | 0.249* | |
H20B | 0.4638 | 0.2604 | 0.5512 | 0.249* | |
H20C | 0.3979 | 0.1219 | 0.5717 | 0.249* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.1181 (17) | 0.0720 (10) | 0.0991 (14) | 0.0106 (10) | −0.0014 (11) | 0.0063 (9) |
O1 | 0.1168 (17) | 0.0875 (13) | 0.0988 (14) | 0.0074 (11) | −0.0057 (12) | −0.0189 (10) |
O4 | 0.129 (2) | 0.0812 (13) | 0.160 (2) | 0.0214 (13) | 0.0119 (16) | 0.0276 (13) |
C7 | 0.119 (2) | 0.0684 (13) | 0.0726 (15) | 0.0089 (14) | −0.0013 (14) | 0.0037 (10) |
C4 | 0.132 (2) | 0.0739 (14) | 0.0647 (14) | −0.0064 (15) | 0.0000 (14) | 0.0019 (10) |
C6 | 0.128 (2) | 0.0655 (13) | 0.0764 (15) | 0.0065 (14) | −0.0047 (14) | −0.0088 (11) |
C11 | 0.120 (2) | 0.0690 (13) | 0.0681 (14) | 0.0067 (13) | −0.0017 (14) | −0.0029 (10) |
C5 | 0.121 (2) | 0.0732 (13) | 0.0660 (14) | 0.0058 (15) | −0.0021 (13) | −0.0042 (11) |
C9 | 0.150 (3) | 0.0642 (13) | 0.0779 (16) | 0.0016 (16) | 0.0037 (17) | 0.0010 (11) |
C10 | 0.133 (3) | 0.0646 (13) | 0.0730 (15) | 0.0115 (14) | −0.0011 (15) | −0.0031 (11) |
C12 | 0.133 (3) | 0.0688 (14) | 0.0890 (18) | 0.0092 (15) | −0.0019 (17) | 0.0035 (12) |
C14 | 0.124 (3) | 0.0839 (17) | 0.0813 (17) | −0.0018 (16) | −0.0056 (16) | −0.0001 (13) |
C8 | 0.130 (3) | 0.0681 (14) | 0.0815 (16) | 0.0106 (15) | 0.0045 (16) | 0.0028 (12) |
C3 | 0.143 (3) | 0.0864 (18) | 0.0893 (19) | −0.0144 (19) | 0.0001 (19) | −0.0027 (14) |
O2 | 0.126 (2) | 0.149 (2) | 0.149 (2) | 0.0183 (18) | −0.0063 (17) | −0.0434 (19) |
C13 | 0.132 (3) | 0.0772 (16) | 0.097 (2) | −0.0074 (16) | 0.0000 (18) | 0.0070 (14) |
C16 | 0.121 (3) | 0.0740 (15) | 0.0915 (19) | 0.0033 (15) | 0.0038 (16) | 0.0098 (13) |
C15 | 0.123 (3) | 0.0817 (17) | 0.104 (2) | 0.0078 (16) | −0.0040 (18) | 0.0128 (15) |
C1 | 0.127 (3) | 0.114 (2) | 0.095 (2) | 0.003 (2) | −0.0028 (19) | −0.0183 (18) |
C2 | 0.123 (3) | 0.115 (3) | 0.102 (2) | −0.016 (2) | 0.002 (2) | −0.0086 (19) |
C17 | 0.115 (3) | 0.109 (2) | 0.108 (2) | −0.0068 (19) | −0.0027 (19) | −0.0005 (18) |
C18 | 0.137 (4) | 0.133 (3) | 0.185 (5) | −0.031 (3) | −0.019 (3) | 0.017 (3) |
C19 | 0.119 (3) | 0.246 (6) | 0.143 (4) | 0.016 (3) | −0.012 (3) | 0.050 (4) |
C20 | 0.140 (4) | 0.166 (4) | 0.198 (5) | −0.026 (3) | 0.052 (4) | −0.048 (4) |
O3—C10 | 1.357 (3) | C8—H8 | 0.9300 |
O3—C7 | 1.399 (4) | C3—C2 | 1.338 (5) |
O1—C1 | 1.383 (4) | C3—H3 | 0.9300 |
O1—C5 | 1.387 (3) | O2—C1 | 1.206 (4) |
O4—C10 | 1.184 (3) | C13—H13 | 0.9300 |
C7—C6 | 1.379 (4) | C16—C15 | 1.385 (5) |
C7—C8 | 1.382 (4) | C16—H16 | 0.9300 |
C4—C5 | 1.375 (4) | C15—H15 | 0.9300 |
C4—C9 | 1.395 (5) | C1—C2 | 1.426 (5) |
C4—C3 | 1.436 (5) | C2—H2 | 0.9300 |
C6—C5 | 1.379 (4) | C17—C19 | 1.517 (5) |
C6—H6 | 0.9300 | C17—C18 | 1.536 (5) |
C11—C16 | 1.378 (4) | C17—C20 | 1.545 (5) |
C11—C12 | 1.379 (4) | C18—H18A | 0.9600 |
C11—C10 | 1.488 (5) | C18—H18B | 0.9600 |
C9—C8 | 1.369 (5) | C18—H18C | 0.9600 |
C9—H9 | 0.9300 | C19—H19A | 0.9600 |
C12—C13 | 1.380 (5) | C19—H19B | 0.9600 |
C12—H12 | 0.9300 | C19—H19C | 0.9600 |
C14—C13 | 1.381 (4) | C20—H20A | 0.9600 |
C14—C15 | 1.383 (4) | C20—H20B | 0.9600 |
C14—C17 | 1.531 (5) | C20—H20C | 0.9600 |
C10—O3—C7 | 121.3 (2) | C14—C13—H13 | 119.3 |
C1—O1—C5 | 121.1 (3) | C11—C16—C15 | 120.1 (3) |
C6—C7—C8 | 122.2 (3) | C11—C16—H16 | 120.0 |
C6—C7—O3 | 124.1 (3) | C15—C16—H16 | 120.0 |
C8—C7—O3 | 113.7 (3) | C14—C15—C16 | 121.7 (3) |
C5—C4—C9 | 118.2 (3) | C14—C15—H15 | 119.2 |
C5—C4—C3 | 117.8 (3) | C16—C15—H15 | 119.2 |
C9—C4—C3 | 124.0 (3) | O2—C1—O1 | 115.8 (3) |
C5—C6—C7 | 117.1 (3) | O2—C1—C2 | 127.2 (4) |
C5—C6—H6 | 121.5 | O1—C1—C2 | 117.0 (4) |
C7—C6—H6 | 121.5 | C3—C2—C1 | 122.3 (4) |
C16—C11—C12 | 118.8 (3) | C3—C2—H2 | 118.8 |
C16—C11—C10 | 123.2 (3) | C1—C2—H2 | 118.8 |
C12—C11—C10 | 118.0 (3) | C19—C17—C14 | 110.7 (3) |
C4—C5—C6 | 122.8 (3) | C19—C17—C18 | 107.5 (4) |
C4—C5—O1 | 121.6 (3) | C14—C17—C18 | 112.2 (3) |
C6—C5—O1 | 115.6 (2) | C19—C17—C20 | 110.6 (4) |
C8—C9—C4 | 120.8 (3) | C14—C17—C20 | 108.4 (3) |
C8—C9—H9 | 119.6 | C18—C17—C20 | 107.3 (4) |
C4—C9—H9 | 119.6 | C17—C18—H18A | 109.5 |
O4—C10—O3 | 123.5 (3) | C17—C18—H18B | 109.5 |
O4—C10—C11 | 124.8 (3) | H18A—C18—H18B | 109.5 |
O3—C10—C11 | 111.7 (2) | C17—C18—H18C | 109.5 |
C11—C12—C13 | 120.6 (3) | H18A—C18—H18C | 109.5 |
C11—C12—H12 | 119.7 | H18B—C18—H18C | 109.5 |
C13—C12—H12 | 119.7 | C17—C19—H19A | 109.5 |
C13—C14—C15 | 117.4 (4) | C17—C19—H19B | 109.5 |
C13—C14—C17 | 123.0 (3) | H19A—C19—H19B | 109.5 |
C15—C14—C17 | 119.6 (3) | C17—C19—H19C | 109.5 |
C9—C8—C7 | 119.0 (3) | H19A—C19—H19C | 109.5 |
C9—C8—H8 | 120.5 | H19B—C19—H19C | 109.5 |
C7—C8—H8 | 120.5 | C17—C20—H20A | 109.5 |
C2—C3—C4 | 120.1 (3) | C17—C20—H20B | 109.5 |
C2—C3—H3 | 119.9 | H20A—C20—H20B | 109.5 |
C4—C3—H3 | 119.9 | C17—C20—H20C | 109.5 |
C12—C13—C14 | 121.4 (3) | H20A—C20—H20C | 109.5 |
C12—C13—H13 | 119.3 | H20B—C20—H20C | 109.5 |
C10—O3—C7—C6 | −41.5 (4) | C6—C7—C8—C9 | 0.8 (4) |
C10—O3—C7—C8 | 141.3 (3) | O3—C7—C8—C9 | 178.1 (3) |
C8—C7—C6—C5 | −1.7 (4) | C5—C4—C3—C2 | 1.5 (5) |
O3—C7—C6—C5 | −178.7 (2) | C9—C4—C3—C2 | −179.2 (3) |
C9—C4—C5—C6 | 0.3 (4) | C11—C12—C13—C14 | 0.8 (5) |
C3—C4—C5—C6 | 179.7 (3) | C15—C14—C13—C12 | −1.5 (5) |
C9—C4—C5—O1 | 180.0 (2) | C17—C14—C13—C12 | 177.9 (3) |
C3—C4—C5—O1 | −0.6 (4) | C12—C11—C16—C15 | −1.1 (5) |
C7—C6—C5—C4 | 1.2 (4) | C10—C11—C16—C15 | 177.2 (3) |
C7—C6—C5—O1 | −178.5 (2) | C13—C14—C15—C16 | 0.9 (5) |
C1—O1—C5—C4 | −0.5 (4) | C17—C14—C15—C16 | −178.5 (3) |
C1—O1—C5—C6 | 179.2 (3) | C11—C16—C15—C14 | 0.4 (5) |
C5—C4—C9—C8 | −1.3 (4) | C5—O1—C1—O2 | −179.1 (3) |
C3—C4—C9—C8 | 179.4 (3) | C5—O1—C1—C2 | 0.8 (5) |
C7—O3—C10—O4 | 9.6 (4) | C4—C3—C2—C1 | −1.2 (5) |
C7—O3—C10—C11 | −168.7 (2) | O2—C1—C2—C3 | 180.0 (4) |
C16—C11—C10—O4 | −175.9 (3) | O1—C1—C2—C3 | 0.1 (6) |
C12—C11—C10—O4 | 2.4 (5) | C13—C14—C17—C19 | 122.1 (4) |
C16—C11—C10—O3 | 2.3 (4) | C15—C14—C17—C19 | −58.5 (5) |
C12—C11—C10—O3 | −179.4 (2) | C13—C14—C17—C18 | 1.9 (5) |
C16—C11—C12—C13 | 0.6 (4) | C15—C14—C17—C18 | −178.7 (4) |
C10—C11—C12—C13 | −177.8 (3) | C13—C14—C17—C20 | −116.5 (4) |
C4—C9—C8—C7 | 0.7 (4) | C15—C14—C17—C20 | 62.9 (4) |
Cg2 is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O4i | 0.93 | 2.32 | 3.114 (4) | 144 |
C15—H15···O2ii | 0.93 | 2.65 | 3.310 (4) | 128 |
C6—H6···O4 | 0.93 | 2.41 | 2.813 (4) | 106 |
C10—O4···Cg2iii | 1.18 (1) | 3.76 (1) | 3.560 (3) | 71 (1) |
Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z+3/2; (iii) −x, y+1/2, −z+3/2. |
Experimental and calculated bond lengths (Å) |
Bond | X-ray | 6-311++G(d,p) |
O3—C10 | 1.357 (3) | 1.381 |
O3—C7 | 1.399 (4) | 1.387 |
O1—C1 | 1.383 (4) | 1.399 |
O1—C5 | 1.387 (3) | 1.363 |
O4—C10 | 1.184 (3) | 1.203 |
C7—C6 | 1.379 (4) | 1.387 |
C7—C8 | 1.382 (4) | 1.399 |
C4—C5 | 1.375 (4) | 1.406 |
C4—C9 | 1.395 (5) | 1.405 |
C4—C3 | 1.436 (5) | 1.438 |
C6—C5 | 1.379 (4) | 1.392 |
C11—C16 | 1.378 (4) | 1.401 |
C11—C12 | 1.379 (4) | 1.397 |
C11—C10 | 1.488 (5) | 1.482 |
C9—C8 | 1.369 (5) | 1.383 |
C12—C13 | 1.380 (5) | 1.391 |
C14—C13 | 1.381 (4) | 1.401 |
C14—C15 | 1.383 (4) | 1.405 |
C14—C17 | 1.531 (5) | 1.537 |
C3—C2 | 1.338 (5) | 1.350 |
O2—C1 | 1.206 (4) | 1.202 |
C16—C15 | 1.385 (5) | 1.388 |
C1—C2 | 1.426 (5) | 1.457 |
C17—C19 | 1.517 (5) | 1.547 |
C17—C18 | 1.536 (5) | 1.540 |
C17—C20 | 1.545 (5) | 1.547 |
Experimental and calculated bond angles (°) |
Bond angle | X-ray | 6-311++G(d,p) |
C10—O3—C7 | 121.3 (2) | 120.5 |
C1—O1—C5 | 121.1 (3) | 122.9 |
C6—C7—C8 | 122.2 (3) | 121.8 |
C6—C7—O3 | 124.1 (3) | 121.7 |
C8—C7—O3 | 113.7 (3) | 116.5 |
C5—C4—C9 | 118.2 (3) | 118.3 |
C5—C4—C3 | 117.8 (3) | 117.5 |
C9—C4—C3 | 124.0 (3) | 124.3 |
C5—C6—C7 | 117.1 (3) | 118.2 |
C16—C11—C12 | 118.8 (3) | 118.9 |
C16—C11—C10 | 123.2 (3) | 123.1 |
C12—C11—C10 | 118.0 (3) | 118.0 |
C4—C5—C6 | 122.8 (3) | 121.7 |
C4—C5—O1 | 121.6 (3) | 121.2 |
C6—C5—O1 | 115.6 (2) | 117.0 |
C8—C9—C4 | 120.8 (3) | 120.8 |
O4—C10—O3 | 123.5 (3) | 123.0 |
O4—C10—C11 | 124.8 (3) | 125.7 |
O3—C10—C11 | 111.7 (2) | 111.4 |
C11—C12—C13 | 120.6 (3) | 120.5 |
C13—C14—C15 | 117.4 (4) | 117.3 |
C13—C14—C17 | 123.0 (3) | 122.8 |
C15—C14—C17 | 119.6 (3) | 119.9 |
C9—C8—C7 | 119.0 (3) | 119.2 |
C2—C3—C4 | 120.1 (3) | 120.9 |
C12—C13—C14 | 121.4 (3) | 121.4 |
C11—C16—C15 | 120.1 (3) | 120.1 |
C14—C15—C16 | 121.7 (3) | 121.8 |
O2—C1—O1 | 115.8 (3) | 117.7 |
O2—C1—C2 | 127.2 (4) | 126.4 |
O1—C1—C2 | 117.0 (4) | 115.9 |
C3—C2—C1 | 122.3 (4) | 121.6 |
C19—C17—C14 | 110.7 (3) | 109.3 |
C19—C17—C18 | 107.5 (4) | 108.2 |
C14—C17—C18 | 112.2 (3) | 112.4 |
C19—C17—C20 | 110.6 (4) | 109.4 |
C14—C17—C20 | 108.4 (3) | 109.3 |
C18—C17—C20 | 107.3 (4) | 108.2 |
Experimental and calculated torsion angles (°) |
Torsion angle | X-ray | 6-311++G(d,p) |
C10—O3—C7—C6 | -41.5 (4) | -54.7 |
C10—O3—C7—C8 | 141.3 (3) | 129.1 |
C8—C7—C6—C5 | -1.7 (4) | -0.3 |
O3—C7—C6—C5 | -178.7 (2) | -176.3 |
C9—C4—C5—C6 | 0.3 (4) | 0.1 |
C3—C4—C5—C6 | 179.7 (3) | -180.0 |
C9—C4—C5—O1 | 180.0 (2) | -179.7 |
C3—C4—C5—O1 | -0.6 (4) | 0.3 |
C7—C6—C5—C4 | 1.2 (4) | 0.2 |
C7—C6—C5—O1 | -178.5 (2) | 179.9 |
C1—O1—C5—C4 | -0.5 (4) | -0.0 |
C1—O1—C5—C6 | 179.2 (3) | -179.8 |
C5—C4—C9—C8 | -1.3 (4) | -0.2 |
C3—C4—C9—C8 | 179.4 (3) | 179.9 |
C7—O3—C10—O4 | 9.6 (4) | -2.1 |
C7—O3—C10—C11 | -168.7 (2) | 178.3 |
C16—C11—C10—O4 | -175.9 (3) | 178.9 |
C12—C11—C10—O4 | 2.4 (5) | -1.0 |
C16—C11—C10—O3 | 2.3 (4) | -1.6 |
C12—C11—C10—O3 | -179.4 (2) | 178.6 |
C16—C11—C12—C13 | 0.6 (4) | 0.1 |
C10—C11—C12—C13 | -177.8 (3) | 179.9 |
C4—C9—C8—C7 | 0.7 (4) | 0.0 |
C6—C7—C8—C9 | 0.8 (4) | 0.2 |
O3—C7—C8—C9 | 178.1 (3) | 176.4 |
C5—C4—C3—C2 | 1.5 (5) | -0.23 |
C9—C4—C3—C2 | -179.2 (3) | 179.7 |
C11—C12—C13—C14 | 0.8 (5) | -0.1 |
C15—C14—C13—C12 | -1.5 (5) | 0.0 |
C17—C14—C13—C12 | 177.9 (3) | -180.0 |
C12—C11—C16—C15 | -1.1 (5) | 0.0 |
C10—C11—C16—C15 | 177.2 (3) | -179.8 |
C13—C14—C15—C16 | 0.9 (5) | 0.1 |
C17—C14—C15—C16 | -178.5 (3) | -179.9 |
C11—C16—C15—C14 | 0.4 (5) | -0.1 |
C5—O1—C1—O2 | -179.1 (3) | 179.7 |
C5—O1—C1—C2 | 0.8 (5) | -0.3 |
C4—C3—C2—C1 | -1.2 (5) | -0.1 |
O2—C1—C2—C3 | 180.0 (4) | -179.6 |
O1—C1—C2—C3 | 0.1 (6) | 0.4 |
C13—C14—C17—C19 | 122.1 (4) | 119.9 |
C15—C14—C17—C19 | -58.5 (5) | -60.1 |
C13—C14—C17—C18 | 1.9 (5) | -0.3 |
C15—C14—C17—C18 | -178.7 (4) | 179.7 |
C13—C14—C17—C20 | -116.5 (4) | -120.4 |
C15—C14—C17—C20 | 62.9 (4) | 59.6 |
Acknowledgements
The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer.
References
Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439. CSD CrossRef CAS IUCr Journals Google Scholar
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CSD CrossRef IUCr Journals Google Scholar
Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495. Web of Science CSD CrossRef CAS Google Scholar
Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346. CSD CrossRef CAS Web of Science Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795. CSD CrossRef Google Scholar
Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548. CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30. Google Scholar
Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161. CSD CrossRef Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370. CSD CrossRef IUCr Journals Google Scholar
Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.