research communications
Diaphorina citri Kuwayama, the insect vector of citrus greening disease
of diaphorin methanol monosolvate isolated fromaCornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, USA, bUSDA-ARS RW Holley Center for Agriculture and Health, Ithaca NY 14853, USA, cU.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA, dBoyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA, and ePlant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, USA
*Correspondence e-mail: dms35@cornell.edu, michelle.cilia@ars.usda.gov, stuart.krasnoff@ars.usda.gov
The title compound C22H39NO9·CH3OH [systematic name: (S)-N-((S)-{(2S,4R,6R)-6-[(S)-2,3-dihydroxypropyl]-4-hydroxy-5,5-dimethyltetrahydro-2H-pyran-2-yl}(hydroxy)methyl)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylenetetrahydro-2H-pyran-2-yl]acetamide methanol monosolvate], was isolated from the Asian citrus psyllid, Diaphorina citri Kuwayama, and crystallizes in the P21. `Candidatus Profftella armatura' a bacterial endosymbiont of D. citri, biosynthesizes diaphorin, which is a hybrid polyketide–nonribosomal peptide comprising two highly substituted tetrahydropyran rings joined by an N-acyl aminal bridge [Nakabachi et al. (2013). Curr. Biol. 23, 1478–1484]. The of the title compound establishes the complete of diaphorin, which agrees at all nine chiral centers with the structure of the methanol monosolvate of the di-p-bromobenzoate derivative of pederin, a biogenically related compound whose was reported previously [Furusaki et al. (1968). Tetrahedron Lett. 9, 6301–6304]. Thus, the of diaphorin is proposed by analogy to that of pederin.
Keywords: crystal structure; diaphorin; pederin; Diaphorina citri; `Candidatus Profftella armatura'; hydrogen bonding.
CCDC reference: 1824900
1. Chemical context
Huanglongbing (HLB), also known as citrus greening disease, which destroys the marketability of citrus fruit and eventually kills the tree, is a major threat to world citrus production (Wang et al., 2017; Bové, 2006). HLB is associated with plant infection by one of three fastidious bacterial species, `Candidatus Liberibacter asiaticus', `Candidatus Liberibacter americanus' or `Candidatus Liberibacter africanus'. All three bacteria are spread within a grove by psyllids – sap-sucking insects in the order Hemiptera. In North America, `Ca. L. asiaticus' is transmitted by the invasive citrus pest, the Asian citrus psyllid, Diaphorina citri Kuwayama. A complex community of vertically transmitted endosymbiotic bacteria colonizes D. citri, whether or not the psyllids are infected with `Ca. L. asiaticus' (Nakabachi et al., 2013). Two of these D. citri endosymbionts, `Candidatus Profftella armatura', and `Candidatus Carsonella rudii' are localized to the bacteriome, an organ in the D. citri abdomen (Nakabachi et al., 2013). While `Ca. C. rudii' is the primary endosymbiont of many psyllid species, `Ca. P. armatura' is only found in D. citri and has been detected in every D. citri population surveyed, worldwide (Nakabachi et al., 2013). Approximately 15% of the `Ca. P. armatura' genome is composed of a hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene and associated tailoring genes dedicated to the biosynthesis of diaphorin. Because `Ca. P. armatura' is unculturable, diaphorin is extracted directly from its D. citri host (Nakabachi et al., 2013). Diaphorin is a hybrid polyketide–nonribosomal peptide in which two highly functionalized tetrahydropyran rings are joined by an N-acyl aminal bridge. It is a tri-O-desmethyl analog of pederin, a potent cytotoxin deriving from an undetermined Pseudomonas-like endosymbiont of staphylinid beetles in the genus Paederus (Cardani et al., 1967; Mosey & Floreancig, 2012; Cardani et al., 1965; Furusaki et al., 1968; Matsumoto et al., 1968; Piel, 2002). Nakabachi et al. (2013) assigned the of six of the nine stereogenic centers in diaphorin, but carbons 7, 10 and 17 remained unspecified. We pursued the of diaphorin to complete the assignment of the of the molecule.
2. Structural commentary
The title compound crystallizes in the monoclinic P21 and features an N-acyl aminal bridge that connects two highly substituted tetrahydropyran rings adopting chair conformations (Fig. 1). Ring A substitutions comprise an equatorial methyl group on C2, an axial methyl group on C3, an exomethylene group on C4, and a methoxy group at C6. Ring A (O1/C2–C6) has a chair conformation with puckering parameters: amplitude Q = 0.541 (4) Å, θ = 173.0 (5)°, φ = 265 (4)°. Ring B (O11/C11–C15) substitutions comprise a hydroxyl group at C13, a geminal pair of methyl groups at C14 and a 2,3 dihydroxypropyl group at C15. It also has a chair conformation with puckering parameters: amplitude Q = 0.559 (4) Å, θ = 8.1 (4)°, φ = 258 (3)°. The mean planes of rings A and B are inclined to each other at an angle of 80.1 (2)°. For the plane including the central amide bond, (C7/O7/C8/O8/N9/C10), the r.m.s. deviation from the plane for those atoms is 0.045 Å. This planar conformation is likely influenced by a hydrogen bond in which the amide proton H9 is the donor and O7 is the acceptor with an interatomic distance of 2.16 Å between the participants (Fig. 1, Table 1). The chain from C13 through O18, viz. C13–C18/O18, is seen to be approximately planar, with an r.m.s. deviation from the plane of 0.117 Å. This conformation appears to result from crystal-packing interactions and probably has no biological significance. The of the title compound assigns the three chiral centers left undetermined by Nakabachi et al. (2013) as 10S*, 13R*, and 17S*, and thus provides the complete of diaphorin. The as depicted in Fig. 1, was inferred by analogy to that of pederin di-p-bromobenzoate (Furusaki et al., 1968), which it matches at all stereogenic centers.
3. Supramolecular features
The , Table 1). The diaphorin–methanol group forms a compact, roughly planar disk; disks are packed in a herringbone fashion as illustrated in Fig. 2. Intermolecular contacts between symmetry-related diaphorin molecules include probable hydrogen bonds between O13 (donor) and O6′ (acceptor); O17 (donor) and O10′ (acceptor); and O18 (donor) and O8′ (acceptor), as shown in Fig. 2, see also Table 1. The combination of these intermolecular interactions leads to the formation of slabs lying parallel to the ab plane.
was found to contain one methanol molecule, forming two hydrogen bonds to diaphorin; the methanol OH acts as a proton donor to O18 and an acceptor of a proton from O7 (Fig. 14. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for related structures gave two hits. They are pederin di-p-bromobenzoate methanol monosolvate (CSD refcode PEDERB; CCDC No. 1229933; Furusaki et al., 1968), for which no atomic coordinates are available, and pederin di-p-bromobenzoate ethanol monosolvate (CSD refcode BPEDER; CCDC No. 1114946; Corradi et al., 1971). They both have the same skeleton as diaphorin, except for the addition of the two p-bromobenzoate substituents. The structure of diaphorin can be matched to that of pederin by rotations about the following single bonds: C7—C8, N9—C10, C10—C11, and bonds in the C15–O18 moiety.
5. Isolation and crystallization
Diaphorin was isolated using a liquid–liquid extraction scheme with semi-preparative HPLC with modifications from the published method (Nakabachi et al., 2013). A batch of ca 3000 D. citri was reared on Citrus macrophylla (not infected by `Ca. L. asiaticus') at the US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA. Insects were allocated to 2 ml microcentrifuge tubes, then flash frozen in liquid N2 and cryoground for 3.5 min at 30 Hz using 3 × 3.2 mm metal beads per tube in a ball mill apparatus (Retsch Mixer Miller MM-400). Ground insects in each tube were then extracted three times in MeOH for 45 min at 298 K. After agitation, the tubes were centrifuged for 2 min at 16,000 g, and the supernatants were pooled, filtered through two layers of Whatman #1 paper and dried in vacuo. The residue was taken up in 90% MeOH and partitioned against cyclohexane. The methanolic phase was then fractionated by repetitive semi-preparative reversed phase HPLC using a Thermo Fluophase® column (250 × 10 mm ID, 5 µm particle), eluted at 4 ml min−1 with 20% MeCN, and 1 ml fractions were collected. Following detection by UV absorption at 215 nm, selected fractions were monitored for the presence of diaphorin by syringe pump infusion (5 µL min−1) into a Waters-Micromass ZQ single quadrupole (scan range: m/z 50–1500 in 1 sec with cone and capillary voltages of 25 and 3500 V, respectively). Fractions showing the pseudomolecular ion of diaphorin (M + Na+ at m/z 484) were recombined and dried in vacuo to afford ca 4.0 mg of diaphorin. Crystals of the title compound were obtained by slow evaporation from MeOH. A single crystal measuring approximately 0.01 × 0.02 × 0.20 mm was harvested using a needle dipped in a drop of oil for adhesion (type A immersion oil, Hampton Research Corp.) and mounted in a small nylon loop (Hampton). The identity and purity of diaphorin was confirmed by comparing 1H NMR data acquired using the sample that afforded crystals with published data (Nakabachi et al., 2013). Further confirmation was obtained by HPLC with detection by high resolution electrospray (HRESIMS). (tR) and accurate mass estimates were compared with those of authentic diaphorin using a Waters Acquity UPLC system with a Waters C18 BEH column (2.1 × 50 mm; 1.7 µm), eluted at 0.3 ml min−1 using a gradient formed from 0.1% formic acid (A) and acetonitrile (B) with 0.1% formic acid (90% A 0–1 min, 14 min linear ramp to 80% A, followed by a 1 min ramp to 10% A, a 2 min hold, and a ramp back to 90% A in 1 min). Spectra were acquired on a Waters Xevo G-2 QTOF operated in positive ion mode scanning the from m/z 50 to 1200 in 0.1 sec with capillary and cone voltages set at 3.5 V and 25 k V, respectively. The spectrometer was calibrated in the range m/z 50–1200 using sodium formate. Spectra were calibrated in real-time using the M + H+ of co-infused leucine encephalin (m/z 556.2771) as the reference and were further processed by centering using the proprietary `automatic peak detection' tool supplied with Waters MassLynx® 4.1 software.
1H NMR (AVIII HD 500, Bruker BioSpin, Rheinstetten Germany, 500 MHz, CD3OD), referenced to the center of the residual CHD2OD pentet at δH 3.31. δH (p.p.m.) 5.60 (d, J = 7.9 Hz, 1H, H-10), 4.80 (t, J = 2.2 Hz, 1H, H-4-CHa), 4.64 (t, J = 2.2 Hz, 1H, H-4-CHb), 4.26 (s, 1H, H-7), 3.882 (m, 2H, H-2), 3.880 (m, 2H, H-11), 3.76 (qd, J = 4.0, 6.3 Hz, 1H, H-17), 3.61 (dd, J = 4.4, 10.3 Hz, 1H, H-13), 3.49 (dd, J = 4.1, 11.2 Hz, 1H, H-18a), 3.40 (m, 2H, 15, H-18b), 3.25 (s, 3H, H-6-OCH3), 2.50 (dt, J = 2.2, 14.3 Hz, 1H, H-5 ax), 2.31 (d, J = 14.3 Hz, 1H, H-5 eq), 2.20 (qd, J = 2.5, 7.0 Hz, 1H, H-3), 2.04 (ddd, J = 3.3, 4.4, 13.5 Hz, 1H, H-12eq), 1.76 (ddd, J = 5.9, 10.3, 13.5 Hz, 1H, H-12ax), 1.67 (t, J = 6.2 Hz, 2H, H-16), 1.17 (d, J = 6.6 Hz, 3H, H-2–CH3), 0.99 (d, J = 7.0 Hz, 3H, H-3–CH3), 0.95 (s, 3H, H-14–CH3 eq), 0.88 (s, 3H, H-14–CH3 ax). HRESIMS m/z 484.2521 (calculated for C22H39NO9Na, 484.2517); tR = 8.61 min.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were fixed geometrically (O—H = 0.84 Å, N—H = 0.86 Å, C—H = 0.98–0.10 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl, O-hydroxyl) and 1.2Ueq(N, C) for other H atoms.
details are summarized in Table 2The p-bromobenzoate methanol monosolvate (Furusaki et al., 1968), for which no atomic coordinates are available, and pederin di-p-bromobenzoate ethanol monosolvate (Corradi et al., 1971), for which the absolute configurations were determined by resonant scattering.
of the molecule in the crystal could not be determined by It was assigned by analogy to that of pederin di-X-ray crystallographic data were collected at the Cornell High Energy Synchrotron Source (Ithaca, NY, 14853, USA). The synchrotron beamline available to us (CHESS F1) is normally used for macromolecular data collection. It is a fixed-wavelength line and it is not possible (due to interference with equipment including the crystal-mounting robot) to move the area detector (Pilatus 6M) close enough to the sample to record data beyond 0.95 Å (in the corners; only to 1.15 Å at the edges). This explains the lack of high-resolution data, and the large s.u.'s on the cell dimensions, which may also be related to the use of the program XDS, which is typically used for macromolecular data reduction, for of these and other experimental parameters.
Supporting information
CCDC reference: 1824900
https://doi.org/10.1107/S2056989018002992/su5424sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018002992/su5424Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018002992/su5424Isup3.cml
Data collection: ADX (Szebenyi et al., 1997); cell
XDS (Kabsch, 2010); data reduction: HKL-2000 (Otwinowski & Minor, 1997) and XDS (Kabsch, 2010); program(s) used to solve structure: SnB (Weeks & Miller, 1999a,b) and COOT (Emsley et al., 2010); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C22H39NO9·CH4O | F(000) = 536 |
Mr = 493.58 | Dx = 1.263 Mg m−3 |
Monoclinic, P21 | Synchrotron radiation, λ = 0.9768 Å |
a = 7.40 (5) Å | Cell parameters from 7493 reflections |
b = 12.87 (5) Å | µ = 0.10 mm−1 |
c = 13.92 (5) Å | T = 100 K |
β = 101.9 (5)° | Needle, colorless |
V = 1297 (11) Å3 | 0.20 × 0.02 × 0.01 mm |
Z = 2 |
Single-axis goniometer diffractometer | 2610 independent reflections |
Radiation source: synchrotron, CHESS F1 | 2594 reflections with I > 2σ(I) |
Si 111 monochromator | Rint = 0.054 |
Detector resolution: 5.8 pixels mm-1 | θmax = 31.0°, θmin = 2.1° |
rotation scans | h = −7→7 |
Absorption correction: empirical (using intensity measurements) XDS (Kabsch, 2010), determined correction factors as a function of position on detector surface and frame number | k = −11→11 |
l = −13→13 | |
7818 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0824P)2 + 0.1123P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max = 0.003 |
S = 1.06 | Δρmax = 0.32 e Å−3 |
2610 reflections | Δρmin = −0.20 e Å−3 |
309 parameters | Extinction correction: (SHELXL2016; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.40 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9096 (3) | 0.2920 (2) | 0.80732 (18) | 0.0500 (8) | |
C2 | 0.9272 (6) | 0.2740 (4) | 0.9119 (3) | 0.0535 (11) | |
H2 | 1.016017 | 0.326420 | 0.947691 | 0.064* | |
C21 | 1.0113 (7) | 0.1696 (4) | 0.9330 (3) | 0.0699 (14) | |
H21A | 1.025710 | 0.154301 | 1.003109 | 0.105* | |
H21B | 0.931223 | 0.117144 | 0.894720 | 0.105* | |
H21C | 1.132612 | 0.168310 | 0.915028 | 0.105* | |
C3 | 0.7419 (6) | 0.2909 (4) | 0.9412 (3) | 0.0573 (12) | |
H3 | 0.763070 | 0.286355 | 1.014381 | 0.069* | |
C31 | 0.5998 (8) | 0.2084 (4) | 0.8990 (4) | 0.0794 (15) | |
H31A | 0.648769 | 0.139379 | 0.919953 | 0.119* | |
H31B | 0.485812 | 0.220347 | 0.922838 | 0.119* | |
H31C | 0.573618 | 0.212280 | 0.827217 | 0.119* | |
C4 | 0.6769 (5) | 0.3987 (3) | 0.9124 (3) | 0.0526 (12) | |
C41 | 0.6378 (7) | 0.4687 (4) | 0.9736 (3) | 0.0729 (14) | |
H41A | 0.650173 | 0.452128 | 1.041137 | 0.087* | |
H41B | 0.597033 | 0.535848 | 0.950379 | 0.087* | |
C5 | 0.6684 (5) | 0.4217 (4) | 0.8052 (3) | 0.0519 (11) | |
H5A | 0.643771 | 0.496615 | 0.792631 | 0.062* | |
H5B | 0.565825 | 0.381975 | 0.764628 | 0.062* | |
C6 | 0.8492 (5) | 0.3925 (3) | 0.7761 (3) | 0.0486 (11) | |
C61 | 1.1667 (6) | 0.4515 (5) | 0.8158 (4) | 0.0846 (16) | |
H61A | 1.242862 | 0.508656 | 0.848400 | 0.127* | |
H61B | 1.208582 | 0.385864 | 0.848678 | 0.127* | |
H61C | 1.177943 | 0.447788 | 0.746930 | 0.127* | |
O6 | 0.9777 (4) | 0.4692 (2) | 0.8205 (2) | 0.0605 (9) | |
C7 | 0.8314 (5) | 0.3961 (4) | 0.6628 (3) | 0.0507 (11) | |
H7 | 0.951763 | 0.375121 | 0.646523 | 0.061* | |
O7 | 0.7924 (4) | 0.4996 (3) | 0.6331 (2) | 0.0619 (9) | |
H7O | 0.877526 | 0.522651 | 0.607387 | 0.093* | |
C8 | 0.6803 (5) | 0.3240 (4) | 0.6102 (3) | 0.0464 (11) | |
O8 | 0.6892 (4) | 0.2290 (3) | 0.6211 (2) | 0.0632 (9) | |
N9 | 0.5382 (4) | 0.3699 (3) | 0.5516 (2) | 0.0497 (9) | |
H9 | 0.543516 | 0.437329 | 0.541738 | 0.060* | |
C10 | 0.3757 (5) | 0.3139 (4) | 0.5035 (3) | 0.0480 (10) | |
H10 | 0.413987 | 0.246240 | 0.478500 | 0.058* | |
O10 | 0.2581 (4) | 0.2944 (3) | 0.5687 (2) | 0.0664 (9) | |
H10O | 0.148429 | 0.291116 | 0.537269 | 0.100* | |
C11 | 0.2635 (5) | 0.3755 (3) | 0.4177 (3) | 0.0453 (10) | |
H11 | 0.186863 | 0.425783 | 0.446886 | 0.054* | |
O11 | 0.3736 (3) | 0.43630 (19) | 0.36578 (17) | 0.0441 (7) | |
C12 | 0.1296 (6) | 0.3068 (4) | 0.3494 (3) | 0.0586 (12) | |
H12A | 0.071687 | 0.257717 | 0.388794 | 0.070* | |
H12B | 0.030483 | 0.350459 | 0.310811 | 0.070* | |
C13 | 0.2208 (6) | 0.2458 (3) | 0.2797 (3) | 0.0557 (12) | |
H13 | 0.305741 | 0.193298 | 0.318282 | 0.067* | |
O13 | 0.0833 (5) | 0.1925 (3) | 0.2103 (3) | 0.0866 (12) | |
H13O | 0.024701 | 0.151919 | 0.239959 | 0.130* | |
C14 | 0.3347 (6) | 0.3177 (4) | 0.2252 (3) | 0.0523 (11) | |
C141 | 0.2083 (6) | 0.3926 (4) | 0.1573 (3) | 0.0640 (12) | |
H81A | 0.141651 | 0.436190 | 0.196215 | 0.096* | |
H81B | 0.282632 | 0.436814 | 0.123108 | 0.096* | |
H81C | 0.119616 | 0.352949 | 0.109176 | 0.096* | |
C142 | 0.4403 (8) | 0.2489 (4) | 0.1661 (4) | 0.0786 (15) | |
H82A | 0.520714 | 0.201311 | 0.210493 | 0.118* | |
H82B | 0.352426 | 0.208692 | 0.117926 | 0.118* | |
H82C | 0.515442 | 0.292557 | 0.131858 | 0.118* | |
C15 | 0.4700 (5) | 0.3774 (3) | 0.3038 (3) | 0.0429 (9) | |
H15 | 0.552106 | 0.325972 | 0.345588 | 0.052* | |
C16 | 0.5904 (6) | 0.4549 (4) | 0.2642 (3) | 0.0551 (11) | |
H16A | 0.660085 | 0.417211 | 0.221483 | 0.066* | |
H16B | 0.508935 | 0.505438 | 0.222398 | 0.066* | |
C17 | 0.7263 (5) | 0.5146 (3) | 0.3396 (3) | 0.0472 (10) | |
H17 | 0.795982 | 0.464083 | 0.388030 | 0.057* | |
O17 | 0.6405 (4) | 0.5872 (3) | 0.3908 (3) | 0.0862 (12) | |
H17O | 0.683199 | 0.646702 | 0.384383 | 0.129* | |
C18 | 0.8628 (6) | 0.5731 (4) | 0.2932 (3) | 0.0637 (13) | |
H18A | 0.923433 | 0.524690 | 0.254403 | 0.076* | |
H18B | 0.797692 | 0.627021 | 0.248268 | 0.076* | |
O18 | 0.9944 (5) | 0.6193 (3) | 0.3660 (3) | 0.0858 (12) | |
H18O | 1.090157 | 0.631327 | 0.344277 | 0.129* | |
C50 | 1.2409 (8) | 0.6109 (6) | 0.5972 (4) | 0.0977 (19) | |
H50A | 1.231228 | 0.684217 | 0.614718 | 0.147* | |
H50B | 1.322178 | 0.604524 | 0.550159 | 0.147* | |
H50C | 1.292065 | 0.570815 | 0.656395 | 0.147* | |
O50 | 1.0684 (5) | 0.5734 (3) | 0.5557 (3) | 0.0862 (11) | |
H50O | 1.032480 | 0.600368 | 0.500097 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0570 (16) | 0.055 (2) | 0.0380 (15) | 0.0062 (13) | 0.0094 (11) | 0.0020 (12) |
C2 | 0.061 (2) | 0.059 (3) | 0.037 (2) | −0.001 (2) | 0.0026 (17) | 0.0020 (18) |
C21 | 0.086 (3) | 0.068 (4) | 0.054 (3) | 0.010 (2) | 0.012 (2) | 0.012 (2) |
C3 | 0.073 (3) | 0.061 (3) | 0.039 (2) | −0.008 (2) | 0.0138 (18) | 0.000 (2) |
C31 | 0.086 (3) | 0.064 (4) | 0.093 (3) | −0.019 (3) | 0.028 (3) | −0.007 (3) |
C4 | 0.054 (2) | 0.057 (3) | 0.049 (2) | −0.006 (2) | 0.0142 (19) | −0.007 (2) |
C41 | 0.097 (3) | 0.071 (3) | 0.056 (3) | 0.003 (3) | 0.026 (2) | −0.009 (2) |
C5 | 0.051 (2) | 0.059 (3) | 0.044 (2) | 0.004 (2) | 0.0073 (18) | −0.0005 (19) |
C6 | 0.050 (2) | 0.055 (3) | 0.039 (2) | 0.000 (2) | 0.0058 (17) | −0.001 (2) |
C61 | 0.050 (3) | 0.103 (4) | 0.095 (4) | −0.018 (3) | 0.001 (2) | 0.009 (3) |
O6 | 0.0532 (17) | 0.063 (2) | 0.0605 (17) | −0.0105 (14) | 0.0004 (13) | −0.0011 (14) |
C7 | 0.053 (2) | 0.054 (3) | 0.047 (2) | 0.0050 (19) | 0.0138 (18) | 0.007 (2) |
O7 | 0.0651 (17) | 0.063 (2) | 0.0582 (17) | −0.0057 (15) | 0.0128 (14) | 0.0127 (15) |
C8 | 0.052 (2) | 0.050 (3) | 0.038 (2) | 0.010 (2) | 0.0116 (19) | −0.0045 (19) |
O8 | 0.068 (2) | 0.053 (3) | 0.0614 (19) | 0.0169 (15) | −0.0022 (15) | −0.0052 (15) |
N9 | 0.056 (2) | 0.047 (2) | 0.0433 (18) | 0.0063 (16) | 0.0037 (17) | 0.0048 (16) |
C10 | 0.051 (2) | 0.049 (2) | 0.045 (2) | 0.0039 (19) | 0.0124 (18) | 0.0049 (19) |
O10 | 0.0692 (18) | 0.074 (2) | 0.0617 (18) | 0.0026 (16) | 0.0263 (15) | 0.0147 (15) |
C11 | 0.046 (2) | 0.045 (2) | 0.046 (2) | 0.0022 (18) | 0.0104 (17) | 0.0072 (19) |
O11 | 0.0536 (14) | 0.0383 (16) | 0.0401 (14) | −0.0021 (12) | 0.0093 (12) | 0.0011 (11) |
C12 | 0.048 (2) | 0.063 (3) | 0.061 (3) | −0.004 (2) | 0.0028 (19) | 0.013 (2) |
C13 | 0.063 (2) | 0.046 (3) | 0.051 (2) | −0.012 (2) | −0.006 (2) | 0.0020 (19) |
O13 | 0.103 (3) | 0.063 (2) | 0.079 (2) | −0.031 (2) | −0.0153 (19) | −0.0031 (17) |
C14 | 0.066 (2) | 0.045 (2) | 0.043 (2) | −0.002 (2) | 0.0035 (19) | −0.0041 (19) |
C141 | 0.074 (3) | 0.060 (3) | 0.051 (2) | −0.008 (2) | −0.003 (2) | 0.003 (2) |
C142 | 0.100 (4) | 0.063 (4) | 0.074 (3) | −0.008 (3) | 0.020 (3) | −0.025 (3) |
C15 | 0.051 (2) | 0.035 (2) | 0.042 (2) | 0.0022 (18) | 0.0093 (17) | 0.0024 (18) |
C16 | 0.066 (2) | 0.055 (3) | 0.046 (2) | −0.003 (2) | 0.0125 (19) | 0.003 (2) |
C17 | 0.050 (2) | 0.043 (3) | 0.051 (2) | −0.0006 (18) | 0.0158 (18) | 0.0007 (18) |
O17 | 0.070 (2) | 0.069 (2) | 0.132 (3) | −0.0264 (18) | 0.051 (2) | −0.048 (2) |
C18 | 0.061 (3) | 0.063 (3) | 0.072 (3) | −0.008 (2) | 0.026 (2) | 0.004 (2) |
O18 | 0.0644 (19) | 0.103 (3) | 0.090 (3) | −0.033 (2) | 0.0148 (18) | 0.007 (2) |
C50 | 0.080 (4) | 0.127 (6) | 0.081 (4) | −0.021 (4) | 0.003 (3) | 0.000 (3) |
O50 | 0.084 (2) | 0.098 (3) | 0.079 (2) | −0.023 (2) | 0.0224 (19) | 0.006 (2) |
O1—C6 | 1.407 (7) | C11—O11 | 1.429 (7) |
O1—C2 | 1.454 (7) | C11—C12 | 1.511 (9) |
C2—C21 | 1.485 (9) | C11—H11 | 1.0000 |
C2—C3 | 1.525 (11) | O11—C15 | 1.443 (7) |
C2—H2 | 1.0000 | C12—C13 | 1.510 (9) |
C21—H21A | 0.9800 | C12—H12A | 0.9900 |
C21—H21B | 0.9800 | C12—H12B | 0.9900 |
C21—H21C | 0.9800 | C13—O13 | 1.427 (9) |
C3—C4 | 1.496 (9) | C13—C14 | 1.552 (8) |
C3—C31 | 1.525 (9) | C13—H13 | 1.0000 |
C3—H3 | 1.0000 | O13—H13O | 0.8400 |
C31—H31A | 0.9800 | C14—C141 | 1.527 (9) |
C31—H31B | 0.9800 | C14—C142 | 1.528 (9) |
C31—H31C | 0.9800 | C14—C15 | 1.529 (9) |
C4—C41 | 1.312 (7) | C141—H81A | 0.9800 |
C4—C5 | 1.510 (8) | C141—H81B | 0.9800 |
C41—H41A | 0.9500 | C141—H81C | 0.9800 |
C41—H41B | 0.9500 | C142—H82A | 0.9800 |
C5—C6 | 1.523 (11) | C142—H82B | 0.9800 |
C5—H5A | 0.9900 | C142—H82C | 0.9800 |
C5—H5B | 0.9900 | C15—C16 | 1.515 (8) |
C6—O6 | 1.421 (8) | C15—H15 | 1.0000 |
C6—C7 | 1.557 (8) | C16—C17 | 1.507 (9) |
C61—O6 | 1.431 (11) | C16—H16A | 0.9900 |
C61—H61A | 0.9800 | C16—H16B | 0.9900 |
C61—H61B | 0.9800 | C17—O17 | 1.403 (7) |
C61—H61C | 0.9800 | C17—C18 | 1.508 (9) |
C7—O7 | 1.406 (8) | C17—H17 | 1.0000 |
C7—C8 | 1.520 (9) | O17—H17O | 0.8400 |
C7—H7 | 1.0000 | C18—O18 | 1.387 (10) |
O7—H7O | 0.8400 | C18—H18A | 0.9900 |
C8—O8 | 1.231 (7) | C18—H18B | 0.9900 |
C8—N9 | 1.330 (9) | O18—H18O | 0.8400 |
N9—C10 | 1.444 (9) | C50—O50 | 1.376 (11) |
N9—H9 | 0.8800 | C50—H50A | 0.9800 |
C10—O10 | 1.403 (9) | C50—H50B | 0.9800 |
C10—C11 | 1.528 (9) | C50—H50C | 0.9800 |
C10—H10 | 1.0000 | O50—H50O | 0.8400 |
O10—H10O | 0.8400 | ||
C6—O1—C2 | 114.4 (3) | O11—C11—C10 | 113.9 (5) |
O1—C2—C21 | 106.8 (4) | C12—C11—C10 | 111.7 (5) |
O1—C2—C3 | 110.2 (5) | O11—C11—H11 | 106.3 |
C21—C2—C3 | 116.1 (4) | C12—C11—H11 | 106.3 |
O1—C2—H2 | 107.8 | C10—C11—H11 | 106.3 |
C21—C2—H2 | 107.8 | C11—O11—C15 | 114.7 (4) |
C3—C2—H2 | 107.8 | C13—C12—C11 | 112.7 (5) |
C2—C21—H21A | 109.5 | C13—C12—H12A | 109.0 |
C2—C21—H21B | 109.5 | C11—C12—H12A | 109.0 |
H21A—C21—H21B | 109.5 | C13—C12—H12B | 109.0 |
C2—C21—H21C | 109.5 | C11—C12—H12B | 109.0 |
H21A—C21—H21C | 109.5 | H12A—C12—H12B | 107.8 |
H21B—C21—H21C | 109.5 | O13—C13—C12 | 109.5 (5) |
C4—C3—C2 | 108.5 (4) | O13—C13—C14 | 109.8 (4) |
C4—C3—C31 | 112.6 (5) | C12—C13—C14 | 111.3 (5) |
C2—C3—C31 | 112.6 (5) | O13—C13—H13 | 108.7 |
C4—C3—H3 | 107.6 | C12—C13—H13 | 108.7 |
C2—C3—H3 | 107.6 | C14—C13—H13 | 108.7 |
C31—C3—H3 | 107.6 | C13—O13—H13O | 109.5 |
C3—C31—H31A | 109.5 | C141—C14—C142 | 110.4 (5) |
C3—C31—H31B | 109.5 | C141—C14—C15 | 110.7 (5) |
H31A—C31—H31B | 109.5 | C142—C14—C15 | 110.1 (5) |
C3—C31—H31C | 109.5 | C141—C14—C13 | 110.7 (5) |
H31A—C31—H31C | 109.5 | C142—C14—C13 | 107.9 (5) |
H31B—C31—H31C | 109.5 | C15—C14—C13 | 106.9 (4) |
C41—C4—C3 | 124.3 (5) | C14—C141—H81A | 109.5 |
C41—C4—C5 | 122.5 (5) | C14—C141—H81B | 109.5 |
C3—C4—C5 | 113.1 (4) | H81A—C141—H81B | 109.5 |
C4—C41—H41A | 120.0 | C14—C141—H81C | 109.5 |
C4—C41—H41B | 120.0 | H81A—C141—H81C | 109.5 |
H41A—C41—H41B | 120.0 | H81B—C141—H81C | 109.5 |
C4—C5—C6 | 110.8 (5) | C14—C142—H82A | 109.5 |
C4—C5—H5A | 109.5 | C14—C142—H82B | 109.5 |
C6—C5—H5A | 109.5 | H82A—C142—H82B | 109.5 |
C4—C5—H5B | 109.5 | C14—C142—H82C | 109.5 |
C6—C5—H5B | 109.5 | H82A—C142—H82C | 109.5 |
H5A—C5—H5B | 108.1 | H82B—C142—H82C | 109.5 |
O1—C6—O6 | 111.2 (5) | O11—C15—C16 | 105.8 (5) |
O1—C6—C5 | 112.7 (4) | O11—C15—C14 | 111.1 (5) |
O6—C6—C5 | 105.0 (5) | C16—C15—C14 | 114.7 (4) |
O1—C6—C7 | 107.2 (4) | O11—C15—H15 | 108.4 |
O6—C6—C7 | 109.3 (5) | C16—C15—H15 | 108.4 |
C5—C6—C7 | 111.5 (5) | C14—C15—H15 | 108.4 |
O6—C61—H61A | 109.5 | C17—C16—C15 | 116.1 (4) |
O6—C61—H61B | 109.5 | C17—C16—H16A | 108.3 |
H61A—C61—H61B | 109.5 | C15—C16—H16A | 108.3 |
O6—C61—H61C | 109.5 | C17—C16—H16B | 108.3 |
H61A—C61—H61C | 109.5 | C15—C16—H16B | 108.3 |
H61B—C61—H61C | 109.5 | H16A—C16—H16B | 107.4 |
C6—O6—C61 | 116.2 (5) | O17—C17—C16 | 112.7 (5) |
O7—C7—C8 | 110.5 (5) | O17—C17—C18 | 107.4 (5) |
O7—C7—C6 | 107.2 (4) | C16—C17—C18 | 111.4 (5) |
C8—C7—C6 | 111.7 (5) | O17—C17—H17 | 108.4 |
O7—C7—H7 | 109.1 | C16—C17—H17 | 108.4 |
C8—C7—H7 | 109.1 | C18—C17—H17 | 108.4 |
C6—C7—H7 | 109.1 | C17—O17—H17O | 109.5 |
C7—O7—H7O | 109.5 | O18—C18—C17 | 109.3 (5) |
O8—C8—N9 | 122.2 (4) | O18—C18—H18A | 109.8 |
O8—C8—C7 | 122.1 (5) | C17—C18—H18A | 109.8 |
N9—C8—C7 | 115.7 (6) | O18—C18—H18B | 109.8 |
C8—N9—C10 | 122.7 (5) | C17—C18—H18B | 109.8 |
C8—N9—H9 | 118.6 | H18A—C18—H18B | 108.3 |
C10—N9—H9 | 118.6 | C18—O18—H18O | 109.5 |
O10—C10—N9 | 110.9 (5) | O50—C50—H50A | 109.5 |
O10—C10—C11 | 106.8 (5) | O50—C50—H50B | 109.5 |
N9—C10—C11 | 111.8 (5) | H50A—C50—H50B | 109.5 |
O10—C10—H10 | 109.1 | O50—C50—H50C | 109.5 |
N9—C10—H10 | 109.1 | H50A—C50—H50C | 109.5 |
C11—C10—H10 | 109.1 | H50B—C50—H50C | 109.5 |
C10—O10—H10O | 109.5 | C50—O50—H50O | 109.5 |
O11—C11—C12 | 111.7 (4) | ||
C6—O1—C2—C21 | −173.8 (3) | C8—N9—C10—O10 | 78.8 (5) |
C6—O1—C2—C3 | 59.3 (4) | C8—N9—C10—C11 | −162.2 (3) |
O1—C2—C3—C4 | −57.1 (4) | O10—C10—C11—O11 | 156.4 (4) |
C21—C2—C3—C4 | −178.6 (4) | N9—C10—C11—O11 | 35.0 (5) |
O1—C2—C3—C31 | 68.3 (6) | O10—C10—C11—C12 | −75.9 (5) |
C21—C2—C3—C31 | −53.3 (6) | N9—C10—C11—C12 | 162.7 (3) |
C2—C3—C4—C41 | −122.7 (6) | C12—C11—O11—C15 | −53.8 (5) |
C31—C3—C4—C41 | 111.9 (6) | C10—C11—O11—C15 | 73.9 (5) |
C2—C3—C4—C5 | 54.6 (6) | O11—C11—C12—C13 | 49.2 (5) |
C31—C3—C4—C5 | −70.7 (6) | C10—C11—C12—C13 | −79.7 (5) |
C41—C4—C5—C6 | 127.0 (5) | C11—C12—C13—O13 | −173.2 (3) |
C3—C4—C5—C6 | −50.4 (5) | C11—C12—C13—C14 | −51.6 (5) |
C2—O1—C6—O6 | 62.7 (6) | O13—C13—C14—C141 | 55.7 (6) |
C2—O1—C6—C5 | −54.9 (5) | C12—C13—C14—C141 | −65.8 (5) |
C2—O1—C6—C7 | −177.9 (3) | O13—C13—C14—C142 | −65.2 (5) |
C4—C5—C6—O1 | 48.9 (5) | C12—C13—C14—C142 | 173.3 (4) |
C4—C5—C6—O6 | −72.3 (5) | O13—C13—C14—C15 | 176.3 (3) |
C4—C5—C6—C7 | 169.5 (4) | C12—C13—C14—C15 | 54.9 (5) |
O1—C6—O6—C61 | 49.5 (5) | C11—O11—C15—C16 | −174.7 (3) |
C5—C6—O6—C61 | 171.7 (4) | C11—O11—C15—C14 | 60.2 (4) |
C7—C6—O6—C61 | −68.6 (6) | C141—C14—C15—O11 | 62.4 (4) |
O1—C6—C7—O7 | −173.2 (3) | C142—C14—C15—O11 | −175.2 (3) |
O6—C6—C7—O7 | −52.5 (5) | C13—C14—C15—O11 | −58.3 (5) |
C5—C6—C7—O7 | 63.1 (4) | C141—C14—C15—C16 | −57.5 (5) |
O1—C6—C7—C8 | 65.6 (5) | C142—C14—C15—C16 | 64.9 (6) |
O6—C6—C7—C8 | −173.7 (3) | C13—C14—C15—C16 | −178.2 (3) |
C5—C6—C7—C8 | −58.1 (6) | O11—C15—C16—C17 | 57.6 (5) |
O7—C7—C8—O8 | 176.5 (3) | C14—C15—C16—C17 | −179.6 (4) |
C6—C7—C8—O8 | −64.2 (5) | C15—C16—C17—O17 | −70.4 (6) |
O7—C7—C8—N9 | −3.3 (4) | C15—C16—C17—C18 | 168.8 (4) |
C6—C7—C8—N9 | 115.9 (5) | O17—C17—C18—O18 | 61.3 (5) |
O8—C8—N9—C10 | 6.0 (5) | C16—C17—C18—O18 | −174.8 (4) |
C7—C8—N9—C10 | −174.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O7 | 0.88 | 2.16 | 2.594 (12) | 109 |
O7—H7O···O50 | 0.84 | 1.83 | 2.672 (15) | 178 |
O50—H50O···O18 | 0.84 | 1.85 | 2.651 (11) | 160 |
O13—H13O···O6i | 0.84 | 2.50 | 2.927 (12) | 113 |
O17—H17O···O10ii | 0.84 | 2.03 | 2.796 (11) | 152 |
O18—H18O···O8iii | 0.84 | 2.04 | 2.708 (14) | 136 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) −x+2, y+1/2, −z+1. |
Acknowledgements
The authors thank Kathie Moulton (USDA–Ft Pierce) for providing insects, and Aaron Finke (MacCHESS) and Ivan Keresztes (Cornell Chemistry and Biology) for helpful discussions.
Funding information
Funding for this research was provided by: National Institutes of Health (award No. GM-103485 to the MacCHESS Facility); National Science Foundation (award No. DMR-133208 to the CHESS facility; award No. CHE-1531632 to Cornell University NMR Facility); California Citrus Research Board (grant No. 5300-155 to Michelle L. Heck); National Institute of Food and Agriculture (United States) (grant No. 60-8062-6-002 to Michelle L. Heck).
References
Bové, J. M. (2006). J. Plant Pathol. 7–37. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cardani, C., Ghiringhelli, D., Mondelli, R. & Quilico, A. (1965). Tetrahedron Lett. 6, 2537–2545. CrossRef Google Scholar
Cardani, C., Ghiringhelli, D., Quilico, A. & Selva, A. (1967). Tetrahedron Lett. 8, 4023–4025. CrossRef Google Scholar
Corradi, A. B., Mangia, A., Nadelli, M. & Pelizzi, G. (1971). Gazz. Chim. Ital. 101, 591. Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. Web of Science CrossRef CAS IUCr Journals Google Scholar
Furusaki, A., Watanabé, T., Matsumoto, T. & Yanagiya, M. (1968). Tetrahedron Lett. 9, 6301–6304. CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kabsch, W. (2010). Acta Cryst. D66, 125–132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matsumoto, T., Yanagiya, M., Maeno, S. & Yasuda, S. (1968). Tetrahedron Lett. 9, 6297–6300. CrossRef Google Scholar
Mosey, R. A. & Floreancig, P. E. (2012). Nat. Prod. Rep. 29, 980–995. Web of Science CrossRef CAS Google Scholar
Nakabachi, A., Ueoka, R., Oshima, K., Teta, R., Mangoni, A., Gurgui, M., Oldham, N. J., van Echten-Deckert, G., Okamura, K., Yamamoto, K., Inoue, H., Ohkuma, M., Hongoh, Y., Miyagishima, S. Y., Hattori, M., Piel, J. & Fukatsu, T. (2013). Curr. Biol. 23, 1478–1484. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Piel, J. (2002). Proc. Natl Acad. Sci. USA, 99, 14002–14007. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szebenyi, D. M. E., Arvai, A., Ealick, S., LaIuppa, J. M. & Nielsen, C. (1997). J. Synchrotron Rad. 4, 128–135. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wang, N., Stelinski, L. L., Pelz-Stelinski, K. S., Graham, J. H. & Zhang, Y. (2017). Phytopathology, 107, 380–387. Web of Science CrossRef Google Scholar
Weeks, C. M. & Miller, R. (1999a). J. Appl. Cryst. 32, 120-124. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weeks, C. M. & Miller, R. (1999b). Acta Cryst. D55, 492–500. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.