research communications
and Hirshfeld surface analysis of 3-cyanophenylboronic acid
aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, bDepartamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Sede Noria Alta, Noria Alta S/N, Col. Noria Alta, CP 36050, Guanajuato, Gto., México, and cCentro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos, México
*Correspondence e-mail: cruzadriana@uas.edu.mx
In the title compound, C7H6BNO2, the mean plane of the –B(OH)2 group is twisted by 21.28 (6)° relative to the cyanophenyl ring mean plane. In the crystal, molecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, forming chains propagating along the [101] direction. Offset π–π and B⋯π stacking interactions link the chains, forming a three-dimensional network. Hirshfeld surface analysis shows that van der Waals interactions constitute a further major contribution to the intermolecular interactions, with H⋯H contacts accounting for 25.8% of the surface.
Keywords: crystal structure; boronic acid; hydrogen bonding; offset π–π interactions; Hirshfeld surface analysis.
CCDC reference: 1825335
1. Chemical context
Boron-containing compounds and particularly arylboronic acid are an important class of compounds in the fields of organic and medicinal chemistry, and have played a role in the development of modern organic synthesis, macromolecular chemistry, crystal engineering and molecular recognition (Fujita et al., 2008; Severin, 2009). As a result of their peculiar dynamic covalent reactivity with (Jin et al., 2013), arylboronic acids and their dehydrated derivatives enable the self-assembly of a large variety of architectures resulting from boronate esterification (Takahagi et al. 2009) as well as boroxine (Côté et al., 2005) and spiroborate formation (Du et al., 2016).
Boronic acids form neutral and charge-assisted homo- and heterodimeric hydrogen-bonding patterns resembling characteristics similar to those found for carboxylic acids (see Fig. 1a). However, the –B(OH)2 moiety contains two O—H hydrogen-bond donors and can, thus, form two O—H⋯X hydrogen bonds and adopt different conformations (see Fig. 1b). This enables the generation of hydrogen-bonding networks with increased dimensionality (one to three dimensions) in the solid state (Fournier et al., 2003; Madura et al., 2015; Georgiou et al., 2017). In recent years, have also been explored in the context of forming multicomponent molecular complexes with organic carboxylic acids (–COOH), (–CONH2), (–OH) and pyridines, which are based on molecular recognition processes (Rodríguez-Cuamatzi et al., 2005; Madura et al., 2014; Hernández-Paredes et al., 2015; Campos-Gaxiola et al., 2017; Pedireddi & Lekshmi, 2004; Vega et al., 2010; TalwelkarShimpi et al., 2016). As part of our ongoing studies in this area, we report herein on the molecular and crystal structures of 3-cyanophenylboronic acid, I. In addition, a Hirshfeld surface analysis was performed to visualize and quantify the intermolecular interactions in the of compound (I).
2. Structural commentary
The molecular structure of the title compound (I) is illustrated in Fig. 2. It can be seen that the –B(OH)2 group adopts the most preferred syn–anti conformation (Lekshmi & Pedireddi, 2007). As a result of the H⋯H repulsion between the endo-oriented B—OH hydrogen and the C—H hydrogen in position 2 of the aromatic ring, the –B(OH)2 mean plane is twisted by 21.28 (6)° relative to the cyanophenyl ring mean plane. This torsion disables intramolecular C—H⋯O hydrogen bonding between the oxygen atom of the exo-oriented B—OH function and weakens the B—C π–π bonding interactions (Durka et al., 2012). The B1—O1, B1—O2 and B1—C1 bond lengths are 1.3455 (17), 1.3661 (18) and 1.5747 (18) Å, respectively. For comparison, in coplanar triphenyl boroxine the B—C bond lengths range from 1.544 (4) to 1.549 (4) Å (Brock et al., 1987). The C≡N bond length of 1.1416 (18) Å is typical for a bond with triple-bond character.
3. Supramolecular features
In the crystal of (I), the boronic acid molecules are in the first instance associated to form chains through two well-known double-bridged homodimeric motifs based on a –BOH⋯O(H)B– [motif A; graph set R22(8)] and C—H⋯N≡C hydrogen bonds [motif B; graph set R22(10)]. This hydrogen-bonding pattern is strengthened further by a –BOH⋯N≡C contact [motif C; graph set R21(7)] (Fig. 3a, Table 1). In comparison to the of 4-cyanophenylboronic acid, where the chains are almost linear (TalwelkarShimpi et al., 2017), in (I) they have a pronounced zigzag topology. The O1⋯O2i, C2⋯N1ii and O2⋯N1ii separations in motifs A, B and C are 2.796 (1), 3.452 (2) and 2.909 (2) Å, respectively (Table 1), and are similar to distances reported for related systems (Rodríguez-Cuamatzi et al., 2005; TalwelkarShimpi et al., 2017). Within the neighboring tapes are linked through additional C—H⋯O contacts to give an overall two-dimensional network running parallel to (01) with macrocyclic motifs D [graph set R66(26)], see Fig. 3b. The C4⋯O1iii distance is 3.469 (2) Å, see Table 1. The resulting 2D networks stack in a parallel fashion to form a layered 3D structure based on offset π–π interactions between adjacent 3-cyanophenylboronic acid molecules [Cg⋯Cgiv = 3.8064 (8) Å; slippage 1.38 Å; symmetry code (iv) = −1 + x, y, z] and η2-type B⋯π contacts with B⋯C distances of 3.595 (2) and 3.673 (2) Å (Fig. 3c). Similar interactions are also depicted in molecular crystals formed between 1,4-benzenediboronic acid and aromatic amine N-oxides (Sarma & Baruah, 2009; Sarma et al., 2011).
4. Hirshfeld surface analysis
Hirshfeld surfaces and fingerprint plots were generated for (I) based on the (CIF) using CrystalExplorer (Hirshfeld, 1977; McKinnon et al., 2004). Hirshfeld surfaces enable the visualization of intermolecular interactions by different colors and color intensity, representing short or long contacts and indicating the relative strength of the interactions. Fig. 4 shows the Hirshfeld surface of the title compound mapped over dnorm (−0.60 to 0.90 Å) and the shape-index (−1.0 to 1.0 Å). In the dnorm map, the vivid red spots in the Hirshfeld surface are due to short normalized O⋯H and N⋯H distances corresponding to O—H⋯O and O—H⋯N interactions. The white spots represent the contacts resulting from C—H⋯N hydrogen bonding (Fig. 4a). On the shape-index surface for compound (I), convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups. The –B(OH)2 group behaves simultaneously as a donor and an acceptor, meanwhile the –C≡N group is an acceptor only. The occurrence of offset π–π interactions is indicated by adjacent red and blue triangles (Fig. 4b).
The two-dimensional fingerprint plots quantify the contributions of each type of non-covalent interaction to the Hirshfeld surface (McKinnon et al., 2007). The major contribution with 25.8% of the surface is due to H⋯H contacts, which represent van der Waals interactions, followed by N⋯H and O⋯H interactions, which contribute 23.6 and 20.4%, respectively (these contributions are observed as two sharp peaks in the plot of Fig. 5). This behavior is usual for strong hydrogen bonds (Spackman & McKinnon, 2002). Finally, the presence of C⋯C (11.4%) and B⋯C (2.3%) contacts corresponds to the π–π and B⋯π interactions, respectively, established in the analysis section.
5. Experimental
3-Cyanophenylboronic acid and the solvent used in this work are commercially available and were used without further purification. For single-crystal growth, a solution of 3-cyanophenylboronic acid (0.050 g) in 5 ml of ethanol was heated to reflux for 15 min. The solution was left to evaporate slowly at room temperature, giving after one week colorless crystals suitable for single-crystal X-ray diffraction analysis.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
details are summarized in Table 2Supporting information
CCDC reference: 1825335
https://doi.org/10.1107/S2056989018003146/su5425sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003146/su5425Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018003146/su5425Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H6BNO2 | F(000) = 304 |
Mr = 146.94 | Dx = 1.388 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.8064 (2) Å | Cell parameters from 4312 reflections |
b = 16.156 (1) Å | θ = 4.4–29.1° |
c = 11.4585 (4) Å | µ = 0.10 mm−1 |
β = 93.472 (4)° | T = 293 K |
V = 703.36 (6) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.25 × 0.20 mm |
Rigaku OD SuperNova Single source at offset EosS2 diffractometer | 1434 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1347 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 8.0945 pixels mm-1 | θmax = 26.4°, θmin = 3.6° |
ω scans | h = −4→4 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) | k = −20→20 |
Tmin = 0.992, Tmax = 0.996 | l = −14→14 |
7332 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1839P] where P = (Fo2 + 2Fc2)/3 |
1434 reflections | (Δ/σ)max < 0.001 |
102 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.8906 (3) | 0.49351 (6) | 0.34935 (8) | 0.0436 (3) | |
H2 | 0.881271 | 0.482459 | 0.279381 | 0.065* | |
O1 | 0.8143 (3) | 0.60701 (6) | 0.47187 (8) | 0.0507 (3) | |
H1 | 0.900315 | 0.572989 | 0.518407 | 0.076* | |
N1 | 0.0762 (4) | 0.58588 (8) | −0.12243 (11) | 0.0485 (4) | |
C3 | 0.3424 (3) | 0.65006 (8) | 0.06942 (10) | 0.0307 (3) | |
C7 | 0.1909 (4) | 0.61462 (8) | −0.03743 (11) | 0.0355 (3) | |
C1 | 0.6246 (3) | 0.62961 (8) | 0.26214 (10) | 0.0302 (3) | |
C2 | 0.4765 (3) | 0.59744 (8) | 0.15775 (11) | 0.0309 (3) | |
H2A | 0.467006 | 0.540428 | 0.146805 | 0.037* | |
C4 | 0.3561 (4) | 0.73542 (8) | 0.08286 (12) | 0.0367 (3) | |
H4 | 0.267843 | 0.770116 | 0.023320 | 0.044* | |
C6 | 0.6325 (4) | 0.71575 (8) | 0.27423 (11) | 0.0352 (3) | |
H6 | 0.727616 | 0.738593 | 0.343630 | 0.042* | |
C5 | 0.5031 (4) | 0.76802 (8) | 0.18615 (12) | 0.0400 (3) | |
H5 | 0.515094 | 0.825073 | 0.196425 | 0.048* | |
B1 | 0.7827 (4) | 0.57324 (9) | 0.36442 (12) | 0.0336 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0679 (7) | 0.0371 (5) | 0.0242 (5) | 0.0103 (5) | −0.0092 (5) | −0.0004 (4) |
O1 | 0.0810 (8) | 0.0414 (6) | 0.0278 (5) | 0.0165 (5) | −0.0120 (5) | −0.0029 (4) |
N1 | 0.0625 (9) | 0.0474 (7) | 0.0339 (7) | 0.0077 (6) | −0.0115 (6) | −0.0044 (5) |
C3 | 0.0303 (6) | 0.0361 (7) | 0.0254 (6) | 0.0025 (5) | −0.0001 (5) | 0.0001 (5) |
C7 | 0.0398 (7) | 0.0365 (7) | 0.0295 (7) | 0.0077 (5) | −0.0031 (5) | 0.0028 (5) |
C1 | 0.0304 (6) | 0.0332 (7) | 0.0267 (6) | 0.0014 (5) | −0.0002 (5) | 0.0017 (5) |
C2 | 0.0343 (7) | 0.0291 (6) | 0.0290 (6) | 0.0019 (5) | −0.0011 (5) | 0.0005 (5) |
C4 | 0.0426 (8) | 0.0353 (7) | 0.0320 (7) | 0.0063 (5) | 0.0004 (5) | 0.0067 (5) |
C6 | 0.0397 (7) | 0.0358 (7) | 0.0296 (6) | −0.0019 (5) | −0.0016 (5) | −0.0031 (5) |
C5 | 0.0520 (8) | 0.0287 (7) | 0.0390 (8) | 0.0007 (6) | 0.0009 (6) | 0.0001 (5) |
B1 | 0.0385 (8) | 0.0347 (8) | 0.0268 (7) | 0.0006 (6) | −0.0038 (6) | 0.0010 (5) |
O2—B1 | 1.3661 (18) | C1—C2 | 1.3917 (17) |
O1—B1 | 1.3455 (17) | C1—C6 | 1.3987 (18) |
N1—C7 | 1.1416 (18) | C1—B1 | 1.5747 (18) |
C3—C7 | 1.4401 (18) | C4—C5 | 1.3825 (19) |
C3—C2 | 1.3948 (17) | C6—C5 | 1.3834 (19) |
C3—C4 | 1.3882 (19) | ||
C2—C3—C7 | 119.00 (12) | C1—C2—C3 | 120.50 (12) |
C4—C3—C7 | 119.98 (11) | C5—C4—C3 | 118.95 (12) |
C4—C3—C2 | 121.02 (12) | C5—C6—C1 | 122.04 (12) |
N1—C7—C3 | 178.81 (15) | C4—C5—C6 | 119.98 (12) |
C2—C1—C6 | 117.51 (11) | O2—B1—C1 | 123.75 (11) |
C2—C1—B1 | 122.70 (11) | O1—B1—O2 | 119.15 (12) |
C6—C1—B1 | 119.79 (11) | O1—B1—C1 | 117.10 (12) |
C3—C4—C5—C6 | −0.2 (2) | C2—C1—B1—O1 | −159.37 (13) |
C7—C3—C2—C1 | −179.96 (12) | C4—C3—C2—C1 | 0.64 (19) |
C7—C3—C4—C5 | −179.92 (12) | C6—C1—C2—C3 | 0.00 (18) |
C1—C6—C5—C4 | 0.9 (2) | C6—C1—B1—O2 | −158.17 (13) |
C2—C3—C4—C5 | −0.5 (2) | C6—C1—B1—O1 | 21.14 (19) |
C2—C1—C6—C5 | −0.8 (2) | B1—C1—C2—C3 | −179.50 (12) |
C2—C1—B1—O2 | 21.3 (2) | B1—C1—C6—C5 | 178.76 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.82 | 1.98 | 2.796 (1) | 170 |
O2—H2···N1ii | 0.82 | 2.12 | 2.909 (2) | 160 |
C2—H2A···N1ii | 0.93 | 2.71 | 3.452 (2) | 138 |
C4—H4···O1iii | 0.93 | 2.67 | 3.469 (2) | 144 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x−1, −y+3/2, z−1/2. |
Funding information
This work was supported financially by the Consejo Nacional de Ciencia y Tecnología (CONACYT, Project Nos. 177616 and 229929) and Red Temática de Química Supramolecular (CONACYT, Project No. 281251). AJCV thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for a graduate scholarship (273977).
References
Brock, C. P., Minton, R. P. & Niedenzu, K. (1987). Acta Cryst. C43, 1775–1779. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Campos-Gaxiola, J. J., García-Grajeda, B. A., Hernández-Ahuactzi, I. F., Guerrero-Álvarez, J. A., Höpfl, H. & Cruz-Enríquez, A. (2017). CrystEngComm, 19, 3760–3775. CAS Google Scholar
Côté, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J. & Yaghi, O. M. (2005). Science, 310, 1166–1170. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, Y., Yang, H., Whiteley, J. M., Wan, S., Jin, Y., Lee, S. H. & Zhang, W. (2016). Angew. Chem. Int. Ed. 55, 1737–1741. Web of Science CrossRef CAS Google Scholar
Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734. Web of Science CSD CrossRef CAS Google Scholar
Fournier, J. H., Maris, T., Wuest, J. D., Guo, W. & Galoppini, E. (2003). J. Am. Chem. Soc. 125, 1002–1006. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091. Web of Science CrossRef PubMed CAS Google Scholar
Georgiou, I., Kervyn, S., Rossignon, A., De Leo, F., Wouters, J., Bruylants, G. & Bonifazi, D. (2017). J. Am. Chem. Soc. 139, 2710–2727. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hernández-Paredes, J., Olvera-Tapia, A. L., Arenas-García, J. I., Höpfl, H., Morales-Rojas, H., Herrera-Ruiz, D., Gonzaga-Morales, A. I. & Rodríguez-Fragoso, L. (2015). CrystEngComm, 17, 5166–5186. Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jin, Y., Yu, C., Denman, R. J. & Zhang, W. (2013). Chem. Soc. Rev. 42, 6634–6654. Web of Science CrossRef CAS Google Scholar
Lekshmi, N. S. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 944–949. Google Scholar
Madura, I. D., Adamczyk-Woźniak, A. & Sporzyński, A. (2015). J. Mol. Struct. 1083, 204–211. Web of Science CSD CrossRef CAS Google Scholar
Madura, I. D., Czerwińska, K. & Sołdańska, D. (2014). Cryst. Growth Des. 14, 5912–5921. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pedireddi, V. R. & Lekshmi, N. S. (2004). Tetrahedron Lett. 45, 1903–1906. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England. Google Scholar
Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2005). Cryst. Growth Des. 5, 167–175. Google Scholar
Sarma, R. & Baruah, J. B. (2009). J. Mol. Struct. 920, 350–354. Web of Science CSD CrossRef CAS Google Scholar
Sarma, R., Bhattacharyya, P. K. & Baruah, J. B. (2011). Comput. Theor. Chem. 963, 141–147. Web of Science CrossRef CAS Google Scholar
Severin, K. (2009). Dalton Trans. pp. 5254–5264. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Takahagi, H., Fujibe, S. & Iwasawa, N. (2009). Chem. Eur. J. 15, 13327–13330. Web of Science CSD CrossRef CAS Google Scholar
TalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2016). RSC Adv. 6, 43060–43068. Web of Science CSD CrossRef CAS Google Scholar
TalwelkarShimpi, M., Öberg, S., Giri, L. & Pedireddi, V. R. (2017). Cryst. Growth Des. 17, 6247–6254. Web of Science CSD CrossRef CAS Google Scholar
Vega, A., Zarate, M., Tlahuext, H. & Höpfl, H. (2010). Acta Cryst. C66, o219–o221. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.