research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and anti­oxidant capacity of (E)-5-benz­yl­oxy-2-{[(4-chloro­phen­yl)imino]­meth­yl}phenol and (E)-5-benz­yl­oxy-2-({[2-(1H-indol-3-yl)eth­yl]iminium­yl}meth­yl)phenolate

CROSSMARK_Color_square_no_text.svg

aUnite of Research CHEMS, University of Constantine 1, Algeria, bThe Centre of Research in Biotechnology, Constantine, Algeria, and cLaboratory of Material Chemistry, University of Constantine 1, Algeria
*Correspondence e-mail: nadirgh82@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 February 2018; accepted 2 March 2018; online 9 March 2018)

The title Schiff base compounds, C20H16ClNO2 (I) and C24H22N2O2 (II), were synthesized via the condensation reaction of 2-amino-4-chloro­phenol for (I), and 2-(2,3-di­hydro-1H-indol-3-yl)ethan-1-amine for (II), with 4-benz­yloxy-2-hy­droxy­benzaldehyde. In both compounds, the configuration about the C=N imine bond is E. Neither mol­ecule is planar. In (I), the central benzene ring makes dihedral angles of 49.91 (12) and 53.52 (11)° with the outer phenyl and chloro­phenyl rings, respectively. In (II), the central benzene ring makes dihedral angles of 89.59 (9) and 72.27 (7)°, respectively, with the outer phenyl ring and the mean plane of the indole ring system (r.m.s. deviation = 0.011 Å). In both compounds there is an intra­molecular hydrogen bond forming an S(6) ring motif; an O—H⋯O hydrogen bond in (I), but a charge-assisted N+—H⋯O hydrogen bond in (II). In the crystal of (I), mol­ecules are linked by C—H⋯π inter­actions, forming slabs parallel to plane (001). In the crystal of (II), mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O hydrogen bonds, C—H⋯π inter­actions and a weak N—H⋯π inter­action, forming columns propagating along the a-axis direction. The anti­oxidant capacity of the synthesized compounds was determined by cupric reducing anti­oxidant capacity (CUPRAC) for compound (I) and by 2,2-picrylhydrazyl hydrate (DPPH) for compound (II).

1. Chemical context

Schiff bases of the general type RR′C=NR′′ exhibit a wide structural diversity and have found a wide range of applications (Jia & Li, 2015[Jia, Y. & Li, J. (2015). Chem. Rev. 115, 1597-1621.]). Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu et al., 2015[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281-291.], 2016[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185-195.]), anti-inflammatory (Alam et al., 2012[Alam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103-4108.]), anti­anxiety, anti­depressant (Jubie et al., 2011[Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109-112.]), anti-tumour, anti­bacterial, and fungicidal properties (Refat et al., 2008[Refat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898-906.]; Kannan & Ramesh, 2006[Kannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095-3103.]). They can be used as potential materials for optical memory and switch devices (Zhao et al., 2007[Zhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120-1125.]). Besides their biological applications, many Schiff bases also reversibly bind with oxygen, coordinate with and show fluorescent variability with metals, exhibiting photo-chromism and/or thermochromism, and have been used as catalysts, pigments and dyes, corrosion inhibitors, polymer stabilizers, or precursors in the formation of nanoparticles (Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]; Gupta et al., 2009[Gupta, K. C., Kumar Sutar, A. & Lin, C.-C. (2009). Coord. Chem. Rev. 253, 1926-1946.]; Mishra et al., 2012[Mishra, A. P., Tiwari, A. & Jain, R. K. (2012). Adv. Mat. Lett. 3, 213-219.]). The common structural feature of these compounds is the presence of an azomethine group linked by an η-methyl­ene bridge, which can act as hydrogen-bond acceptors. In view of this inter­est we have synthesized the title compounds, (I)[link] and (II)[link], and report herein on their crystal structures. The 1H NMR spectra revealed the presence of an imino group (N=CH) in the range δ = 8.5–8.6 p.p.m. Cupric reducing anti­oxidant capacity (CUPRAC) of (I)[link] was estimated, and the anti­oxidant capacity of compound (II)[link] was determined by in vitro 2,2-diphenyl-1-picrylhydrazil hydrate (DPPH) radical scavenging.

[Scheme 1]

1.1. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link], illus­trated in Figs. 1[link] and 2[link], respectively, may be influenced by intra­molecular hydrogen bonds; O—H⋯N in (I)[link] and N+—H⋯O in (II)[link] (see Tables 1[link] and 2[link]). These hydrogen bonds form S(6) ring motifs as shown in Figs. 1[link] and 2[link]. In compound (II)[link], the N atom is protonated (see Section 6, Refinement) and the C1—O13 (C—O) bond length is 1.281 (2) Å, compared to the C9—O1 (C—OH) bond length of 1.343 (3) Å in (I)[link]. The configuration of the C=N imine bond is E in both compounds and the C=N bond lengths are 1.286 (3) Å for C7=N1 in (I)[link] and 1.297 (3) Å for C11=N1 in (II)[link]. Neither mol­ecule is planar: in (I)[link], the central benzene ring (C8–C13) is inclined to the two outer benzene rings (C1–C6 and C15–C20) by 53.52 (11) and 49.91 (12)°, respectively, while in (II)[link] the central benzene ring (C12–C17) makes dihedral angles of 89.59 (9) and 72.27 (7)°, respectively, with outer benzene ring (C19–C24) and the mean plane of the indole ring system (N2/C1–C8; r.m.s. deviation = 0.011 Å).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 and Cg3 are the centroids of rings C8–C13 and C15–C20, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.82 1.89 2.616 (3) 147
C3—H3⋯Cg3i 0.93 2.85 3.593 (3) 138
C6—H6⋯Cg3ii 0.93 2.82 3.520 (3) 133
C13—H13⋯Cg2iii 0.93 2.79 3.419 (3) 126
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1, Cg2 and Cg4 are the centroids of rings N2/C1/C2/C7/C8, C3–C8 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 1.07 (3) 1.81 (3) 2.657 (2) 133 (2)
N1—H1N⋯O1i 1.07 (3) 2.19 (3) 3.004 (2) 131 (2)
C2—H2⋯O1ii 0.93 2.55 3.467 (2) 167
C23—H23⋯Cg2i 0.93 2.95 3.716 (2) 141
C24—H24⋯Cg1i 0.93 2.70 3.465 (3) 140
N2—H2NCg4ii 0.85 (2) 3.03 (2) 3.75 (3) 145 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z.
[Figure 1]
Figure 1
View of the mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bond (see Table 1[link]) is shown as a dashed line.
[Figure 2]
Figure 2
View of the mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular charge-assisted N+—H⋯O hydrogen bond (see Table 2[link]) is shown as a dashed line.

2. Supra­molecular features

In the crystal structures of both compounds C—H⋯π inter­actions predominate; see Table 1[link] for details concerning compound (I)[link], and Table 2[link] for details concerning compound (II)[link]. In the crystal of (I)[link], mol­ecules are linked by C—H⋯π inter­actions, forming slabs lying parallel to (001), as illustrated in Fig. 3[link]. In the crystal of (II)[link], mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, and a weak N—H⋯π inter­action, forming columns propagating along the a-axis direction. The different hydrogen bonds and X—H⋯π (X = C, N) inter­actions are illustrated in Fig. 4[link], and the overall crystal packing is illus­trated in Fig. 5[link]. There are no other significant inter­molecular contacts present in either crystal structure.

[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound (I)[link]. The intra­molecular O—H⋯N hydrogen bond and the inter­molecular C—H⋯π inter­actions are represented by dashed lines (see Table 1[link]), and only the H atoms (grey balls) involved these inter­actions have been included.
[Figure 4]
Figure 4
A view of the hydrogen bonds (dashed lines) and C—H⋯π and weak N—H⋯π inter­actions (blue arrows) in the crystal structure of compound (II)[link]; centroid Cg1 is blue, centroid Cg2 is green and centroid Cg4 is red (see Table 2[link]). Only the H atoms involved in these inter­actions have been included.
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 2[link]) and only the H atoms involved in these inter­actions have been included.

3. Database survey

The structures of Schiff bases derived from hydroxyaryl aldehydes have recently been the subject of a general survey, in which a number of structural errors, often involving misplaced H atoms, were pointed out (Blagus et al., 2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Meced. J. Chem. Chem. Eng. 29, 117-138.]). A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Schiff bases substituted by a phenol group gave over 900 hits. Of these only three compounds with a benzyl­oxyphenol group resemble the title compounds. They include, (Z)-3-benz­yloxy-6-[(2-hy­droxy­phenyl­amino)­methyl­ene]cyclo­hexa-2,4-dienone (KOS­CUS; Ghichi et al., 2014a[Ghichi, N., Benboudiaf, A. & Merazig, H. (2014a). Acta Cryst. E70, o1292.]), (E)-5-benz­yloxy-2-[(4-nitro­phenyl)carbonoimido­yl]phenol (RUTQOO; Ghichi et al., 2015[Ghichi, N., Benaouida, M. A., Benboudiaf, A. & Merazig, H. (2015). Acta Cryst. E71, o1000-o1001.]) and 5-benz­yloxy-2-{[(2-hy­droxy-5-methylphen­yl)iminio]methyl}phenolate (WOJBEE; Ghichi et al., 2014b[Ghichi, N., Benosmane, A., Benboudiaf, A. & Merazig, H. (2014b). Acta Cryst. E70, o957-o958.]). In RUTQOO there is an intra­molecular O—H⋯O hydrogen bond, as in compound (I)[link]. In KOSCUS and WOJBEE there are intra­molecular charge-assisted N+-H⋯O hydrogen bonds, as observed for compound (II)[link].

4. Anti­oxidant activity

The anti­oxidant activity profile of the synthesized compound (I)[link] was determined by utilizing the copper(II)–neocuprine (CuII–Nc) (CUPRAC) method (Apak et al., 2004[Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970-7981.]). The CUPRAC method (cupric ion reducing anti­oxidant capacity) is based on the follow-up of the decrease in the increased absorbance of the neocuproene (Nc), copper (Cu+2)Nc2–Cu+2 complex. Indeed, in the presence of an anti­oxidant agent, the copper–neocuproene complex is reduced and this reaction is qu­anti­fied spectrophotometrically at a wavelength of 450 nm.

The current results indicate that Schiff base compound (I)[link] has a low cupric ion reducing anti­oxidant capacity, because the absorbance in the CUPRAC assay is large (A0.50 > 100) for a 4 mg dosage (see Table 3[link]). The current results indicate that the Schiff base compound (II)[link], has a low free-radical scavenging activity (Blois, 1958[Blois, M. S. (1958). Nature, 181, 1199-1200.]), because the percentage inhibition in the DPPH assay is large (IC50 > 100) for a 1 mg dosage, by comparison with buthylated toluene (BHT) IC50 = 22.32 ±1.19, used as a positive control (see Table 3[link]).

Table 3
Cupric ion reducing anti­oxidant capacity of compound (I)

  Absorbances
  12.5 µg 25 µg 50 µg 100 µg 200 µg 400 µg 800 µg A0.50 (μg/ml)
Compound (I) 0.18±0.00 0.23±0.01 0.31±0.01 0.47±0.01 0.67±0.07 1.14±0.14 2.38±0.25 >100
BHT 1.41±0.03 2.22±0.05 2.42±0.02 2.50±0.01 2.56±0.05 2.86±0.07 3.38±0.13 8.97±3.94

Note: Compound (I)[link]: the activity is cupric ion reducing anti­oxidant capacity (CUPRAC) with the BHT (positive control). Compound (II)[link]: the BHT positive control or standard reference is different for each anti­oxidant activity test (percentage inhibition).

5. Synthesis and crystallization

Compound (I)[link]:

2-Amino-4-chloro­phenol (1 equiv.) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (1 equiv.) in ethanol (15 ml) were refluxed for 1 h. On completion of the reaction (monitored by thin layer chromatography), the solvent was evaporated in vacuo. The residue was recrystallized from methanol, yielding green block-like crystals of (I)[link] on slow evaporation of the solvent. The purity of the compound was characterized by its NMR spectrum (250 MHz, CDCl3). In the 1H NMR spectrum, the azomethine proton appears in the 8.5–8.6 p.p.m. range, while the imine bond is characterized in the 13C MNR spectrum with the imine C signal in the 158–162 p.p.m. range. 1H NMR: δ 6.5–7.6 (m, 12H; H-ar), 13.8–14.0 (s, 1H; OH). 13C NMR: 70.22, 127.6, 128.8, 129.5 133.8, 136.2, 147.1.

Compound (II)[link]:

2-(2,3-Di­hydro-1H-indol-3-yl)ethan-1-amine (1 equiv.) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (1 equiv.) in methanol (15 ml) were refluxed for 1 h. On completion of the reaction (monitored by thin layer chromatography), the solvent was evaporated in vacuo and the residue recrystallized from methanol, yielding orange block-like crystals of (II)[link] on slow evaporation of the solvent. In the 1H NMR spectrum, the azomethine proton appears in the 8.5–8.6 p.p.m. range, while the imine bond is characterized in the 13C NMR spectrum with the imine C signal in the 163.3–168.4 p.p.m. range. 1H NMR: δ 6.5–7.7 (m, 14H; H-ar), 13.8–14.0 (s, 1H; OH). 13C NMR: 56.9, 128.2, 128.7, 132.9, 136.4, 163.3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In compound (I)[link], the hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinement it was positioned geometrically (O—H = 0.82 Å) and refined with Uiso(H)= 1.5Ueq(O). In compound (II)[link], an H atom was located in a difference-Fourier map close to atom N1 of the C11=N1 bond, and was freely refined, as was the indole NH H atom. For both compounds, the C-bound H atoms were positioned geometrically (C—H = 0.93–0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H16ClNO2 C24H22N2O2
Mr 337.79 370.43
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 6.056 (2), 7.363 (3), 36.761 (12) 5.5265 (6), 20.1714 (19), 17.027 (2)
β (°) 91.30 (2) 97.216 (5)
V3) 1638.6 (10) 1883.1 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.08
Crystal size (mm) 0.03 × 0.02 × 0.01 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 13108, 3161, 2066 17491, 4255, 2304
Rint 0.053 0.053
(sin θ/λ)max−1) 0.617 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.05 0.047, 0.124, 1.00
No. of reflections 3161 4255
No. of parameters 221 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.22 0.14, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 and, SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015) for (I); SHELXL2014 (Sheldrick, 2015) for (II). For both structures, molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-5-Benzyloxy-2-{[(4-chlorophenyl)imino]methyl}phenol (I) top
Crystal data top
C20H16ClNO2F(000) = 704
Mr = 337.79Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.056 (2) ÅCell parameters from 2596 reflections
b = 7.363 (3) Åθ = 3.0–22.7°
c = 36.761 (12) ŵ = 0.25 mm1
β = 91.30 (2)°T = 293 K
V = 1638.6 (10) Å3Block, green
Z = 40.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.053
Detector resolution: 18.4 pixels mm-1θmax = 26.0°, θmin = 2.2°
φ and ω scansh = 76
13108 measured reflectionsk = 99
3161 independent reflectionsl = 4545
2066 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.6069P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.14818 (15)0.25490 (13)0.48315 (2)0.0818 (3)
O10.2926 (3)0.2500 (3)0.30360 (5)0.0557 (7)
O20.3778 (3)0.3501 (2)0.17647 (4)0.0492 (6)
N10.6324 (3)0.3275 (3)0.34598 (5)0.0424 (7)
C10.7583 (4)0.3110 (3)0.37880 (6)0.0397 (8)
C20.9632 (4)0.2267 (3)0.37907 (7)0.0436 (8)
C31.0823 (4)0.2078 (3)0.41147 (7)0.0480 (8)
C40.9972 (5)0.2739 (4)0.44320 (7)0.0504 (9)
C50.7914 (4)0.3564 (4)0.44332 (7)0.0514 (9)
C60.6721 (4)0.3727 (3)0.41101 (6)0.0464 (8)
C70.7282 (4)0.3864 (3)0.31744 (6)0.0411 (8)
C80.6226 (4)0.3874 (3)0.28193 (6)0.0367 (7)
C90.4121 (4)0.3121 (3)0.27590 (6)0.0389 (7)
C100.3232 (4)0.2973 (3)0.24089 (6)0.0402 (8)
C110.4436 (4)0.3603 (3)0.21186 (6)0.0393 (8)
C120.6490 (4)0.4408 (3)0.21739 (6)0.0435 (8)
C130.7361 (4)0.4520 (3)0.25213 (6)0.0445 (8)
C140.1774 (4)0.2582 (4)0.16730 (7)0.0530 (9)
C150.1428 (4)0.2742 (3)0.12690 (6)0.0440 (8)
C160.0498 (4)0.3482 (4)0.11281 (7)0.0538 (9)
C170.0834 (5)0.3639 (4)0.07556 (8)0.0638 (11)
C180.0762 (5)0.3076 (4)0.05245 (7)0.0613 (10)
C190.2689 (5)0.2336 (4)0.06624 (8)0.0597 (10)
C200.3032 (4)0.2173 (4)0.10328 (7)0.0517 (9)
H1O0.361100.266250.322830.0830*
H21.020530.182920.357510.0520*
H31.219310.150700.411760.0580*
H50.734350.400130.464900.0620*
H60.532660.425710.410930.0560*
H70.889 (4)0.431 (3)0.3166 (6)0.055 (7)*
H100.184490.245780.236970.0480*
H120.726410.486430.197840.0520*
H130.874660.504220.255810.0530*
H14A0.054970.313030.179840.0640*
H14B0.187480.131430.174340.0640*
H160.158210.387990.128460.0650*
H170.214640.412680.066280.0760*
H180.054540.319390.027440.0730*
H190.376940.194330.050460.0720*
H200.434460.167930.112410.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0886 (6)0.1109 (7)0.0449 (5)0.0212 (5)0.0232 (4)0.0042 (4)
O10.0456 (10)0.0844 (14)0.0369 (10)0.0174 (9)0.0005 (7)0.0024 (9)
O20.0542 (10)0.0571 (11)0.0359 (10)0.0125 (9)0.0058 (8)0.0028 (8)
N10.0414 (11)0.0466 (12)0.0390 (12)0.0013 (9)0.0041 (9)0.0028 (9)
C10.0422 (13)0.0400 (13)0.0367 (13)0.0024 (10)0.0045 (10)0.0001 (10)
C20.0442 (13)0.0491 (15)0.0374 (13)0.0005 (11)0.0001 (10)0.0041 (11)
C30.0438 (13)0.0526 (16)0.0474 (15)0.0030 (12)0.0018 (11)0.0024 (12)
C40.0576 (16)0.0536 (16)0.0396 (14)0.0001 (13)0.0095 (12)0.0003 (12)
C50.0613 (16)0.0562 (17)0.0368 (14)0.0057 (13)0.0048 (12)0.0068 (12)
C60.0484 (14)0.0505 (15)0.0402 (14)0.0064 (12)0.0016 (11)0.0051 (11)
C70.0430 (13)0.0366 (13)0.0437 (14)0.0017 (11)0.0018 (11)0.0021 (11)
C80.0380 (12)0.0356 (12)0.0364 (13)0.0008 (10)0.0034 (10)0.0024 (10)
C90.0382 (12)0.0406 (13)0.0379 (13)0.0004 (10)0.0032 (10)0.0003 (10)
C100.0373 (12)0.0433 (14)0.0398 (13)0.0020 (10)0.0051 (10)0.0016 (11)
C110.0465 (13)0.0358 (13)0.0354 (13)0.0021 (11)0.0036 (10)0.0010 (10)
C120.0463 (13)0.0440 (14)0.0403 (14)0.0076 (11)0.0013 (11)0.0038 (11)
C130.0423 (13)0.0447 (14)0.0464 (15)0.0094 (11)0.0026 (11)0.0024 (11)
C140.0505 (15)0.0669 (18)0.0413 (14)0.0079 (13)0.0051 (11)0.0009 (12)
C150.0474 (14)0.0449 (14)0.0392 (14)0.0025 (11)0.0070 (11)0.0000 (11)
C160.0528 (15)0.0557 (17)0.0527 (17)0.0055 (13)0.0036 (12)0.0050 (13)
C170.0638 (18)0.0645 (19)0.062 (2)0.0034 (15)0.0239 (15)0.0037 (15)
C180.077 (2)0.0672 (19)0.0389 (15)0.0091 (16)0.0153 (14)0.0024 (14)
C190.0669 (18)0.0667 (19)0.0459 (16)0.0072 (15)0.0083 (13)0.0092 (14)
C200.0486 (14)0.0564 (17)0.0497 (16)0.0035 (12)0.0049 (12)0.0003 (13)
Geometric parameters (Å, º) top
Cl1—C41.718 (3)C15—C201.383 (3)
O1—C91.343 (3)C15—C161.378 (4)
O2—C111.354 (3)C16—C171.385 (4)
O2—C141.423 (3)C17—C181.366 (4)
N1—C11.418 (3)C18—C191.374 (4)
N1—C71.286 (3)C19—C201.378 (4)
O1—H1O0.8200C2—H20.9300
C1—C21.387 (3)C3—H30.9300
C1—C61.382 (3)C5—H50.9300
C2—C31.385 (4)C6—H60.9300
C3—C41.375 (4)C7—H71.03 (2)
C4—C51.387 (4)C10—H100.9300
C5—C61.381 (3)C12—H120.9300
C7—C81.441 (3)C13—H130.9300
C8—C131.390 (3)C14—H14A0.9700
C8—C91.403 (3)C14—H14B0.9700
C9—C101.388 (3)C16—H160.9300
C10—C111.386 (3)C17—H170.9300
C11—C121.389 (3)C18—H180.9300
C12—C131.373 (3)C19—H190.9300
C14—C151.500 (3)C20—H200.9300
C11—O2—C14118.99 (18)C18—C19—C20120.5 (3)
C1—N1—C7118.7 (2)C15—C20—C19120.1 (2)
C9—O1—H1O109.00C1—C2—H2120.00
N1—C1—C2120.5 (2)C3—C2—H2120.00
C2—C1—C6119.8 (2)C2—C3—H3120.00
N1—C1—C6119.7 (2)C4—C3—H3120.00
C1—C2—C3120.0 (2)C4—C5—H5120.00
C2—C3—C4119.7 (2)C6—C5—H5120.00
Cl1—C4—C3119.6 (2)C1—C6—H6120.00
Cl1—C4—C5119.6 (2)C5—C6—H6120.00
C3—C4—C5120.8 (2)N1—C7—H7125.3 (12)
C4—C5—C6119.2 (2)C8—C7—H7111.9 (12)
C1—C6—C5120.5 (2)C9—C10—H10120.00
N1—C7—C8122.8 (2)C11—C10—H10120.00
C7—C8—C13119.9 (2)C11—C12—H12120.00
C9—C8—C13118.3 (2)C13—C12—H12120.00
C7—C8—C9121.6 (2)C8—C13—H13119.00
O1—C9—C10118.2 (2)C12—C13—H13119.00
C8—C9—C10120.6 (2)O2—C14—H14A110.00
O1—C9—C8121.2 (2)O2—C14—H14B110.00
C9—C10—C11119.2 (2)C15—C14—H14A110.00
O2—C11—C12114.0 (2)C15—C14—H14B110.00
C10—C11—C12121.0 (2)H14A—C14—H14B109.00
O2—C11—C10124.9 (2)C15—C16—H16120.00
C11—C12—C13119.1 (2)C17—C16—H16120.00
C8—C13—C12121.7 (2)C16—C17—H17120.00
O2—C14—C15107.2 (2)C18—C17—H17120.00
C14—C15—C16120.1 (2)C17—C18—H18120.00
C16—C15—C20119.0 (2)C19—C18—H18120.00
C14—C15—C20120.9 (2)C18—C19—H19120.00
C15—C16—C17120.6 (2)C20—C19—H19120.00
C16—C17—C18120.0 (3)C15—C20—H20120.00
C17—C18—C19119.9 (3)C19—C20—H20120.00
C14—O2—C11—C104.3 (3)C13—C8—C9—C102.1 (3)
C14—O2—C11—C12175.4 (2)C7—C8—C13—C12174.2 (2)
C11—O2—C14—C15178.00 (19)C9—C8—C13—C121.1 (3)
C7—N1—C1—C247.9 (3)O1—C9—C10—C11179.9 (2)
C7—N1—C1—C6134.8 (2)C8—C9—C10—C110.9 (3)
C1—N1—C7—C8172.3 (2)C9—C10—C11—O2178.4 (2)
N1—C1—C2—C3178.5 (2)C9—C10—C11—C121.3 (3)
C6—C1—C2—C31.2 (3)O2—C11—C12—C13177.5 (2)
N1—C1—C6—C5179.4 (2)C10—C11—C12—C132.2 (3)
C2—C1—C6—C52.1 (4)C11—C12—C13—C81.0 (3)
C1—C2—C3—C40.4 (4)O2—C14—C15—C16124.0 (2)
C2—C3—C4—Cl1178.50 (19)O2—C14—C15—C2055.3 (3)
C2—C3—C4—C51.2 (4)C14—C15—C16—C17179.9 (3)
Cl1—C4—C5—C6179.4 (2)C20—C15—C16—C170.6 (4)
C3—C4—C5—C60.4 (4)C14—C15—C20—C19179.8 (3)
C4—C5—C6—C11.3 (4)C16—C15—C20—C190.5 (4)
N1—C7—C8—C94.4 (4)C15—C16—C17—C180.7 (4)
N1—C7—C8—C13179.6 (2)C16—C17—C18—C190.7 (4)
C7—C8—C9—O15.8 (3)C17—C18—C19—C200.6 (5)
C7—C8—C9—C10173.2 (2)C18—C19—C20—C150.5 (4)
C13—C8—C9—O1178.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C8–C13 and C15–C20, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.892.616 (3)147
C3—H3···Cg3i0.932.853.593 (3)138
C6—H6···Cg3ii0.932.823.520 (3)133
C13—H13···Cg2iii0.932.793.419 (3)126
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
(E)-5-Benzyloxy-2-({[2-(1H-indol-3-yl)ethyl]iminiumyl}methyl)phenolate (II) top
Crystal data top
C24H22N2O2F(000) = 784
Mr = 370.43Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5265 (6) ÅCell parameters from 2857 reflections
b = 20.1714 (19) Åθ = 3.2–23.1°
c = 17.027 (2) ŵ = 0.08 mm1
β = 97.216 (5)°T = 293 K
V = 1883.1 (4) Å3Block, orange
Z = 40.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.053
Detector resolution: 18.4 pixels mm-1θmax = 27.5°, θmin = 3.7°
φ and ω scansh = 67
17491 measured reflectionsk = 2026
4255 independent reflectionsl = 2221
2304 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
4255 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4706 (2)0.02601 (6)0.07995 (7)0.0650 (5)
O20.2598 (2)0.07547 (6)0.33695 (7)0.0583 (4)
N10.8488 (3)0.05404 (7)0.07254 (10)0.0556 (6)
N21.3886 (3)0.23680 (8)0.09864 (10)0.0562 (6)
C11.0855 (3)0.20232 (8)0.03230 (10)0.0472 (6)
C21.2742 (3)0.18243 (9)0.07135 (11)0.0541 (6)
C31.3252 (3)0.35979 (9)0.08998 (10)0.0553 (6)
C41.1802 (4)0.40612 (10)0.06064 (11)0.0599 (7)
C50.9873 (4)0.38760 (9)0.02008 (10)0.0598 (7)
C60.9357 (3)0.32199 (9)0.00793 (10)0.0529 (6)
C71.0829 (3)0.27313 (8)0.03608 (9)0.0436 (5)
C81.2754 (3)0.29322 (9)0.07754 (10)0.0456 (6)
C90.9184 (3)0.16023 (9)0.00909 (12)0.0554 (6)
C101.0162 (3)0.09284 (9)0.03068 (12)0.0614 (7)
C110.8718 (4)0.04992 (9)0.14913 (13)0.0550 (7)
C120.7144 (3)0.01537 (8)0.19354 (10)0.0479 (6)
C130.5134 (3)0.02203 (8)0.15551 (10)0.0488 (6)
C140.3631 (3)0.05484 (9)0.20536 (10)0.0514 (6)
C150.4034 (3)0.04853 (8)0.28556 (10)0.0482 (6)
C160.6007 (4)0.01132 (9)0.32228 (11)0.0553 (6)
C170.7519 (4)0.01853 (9)0.27684 (11)0.0557 (7)
C180.0976 (3)0.12825 (9)0.30843 (11)0.0555 (6)
C190.2329 (3)0.19171 (9)0.29849 (10)0.0468 (6)
C200.4546 (3)0.20537 (10)0.34351 (10)0.0551 (7)
C210.5697 (3)0.26495 (10)0.33539 (12)0.0633 (7)
C220.4657 (4)0.31237 (10)0.28371 (12)0.0650 (7)
C230.2467 (4)0.29912 (10)0.23859 (12)0.0639 (8)
C240.1331 (3)0.23922 (10)0.24611 (11)0.0562 (7)
H2N1.506 (4)0.2359 (10)0.1260 (11)0.069 (6)*
H21.318820.138590.078440.0650*
H1N0.692 (5)0.0289 (12)0.0442 (16)0.124 (9)*
H31.453100.372320.117400.0660*
H41.210880.450890.067890.0720*
H50.891460.420230.000840.0720*
H60.804930.310230.018610.0630*
H9A0.885530.182810.056920.0670*
H9B0.764690.155570.024830.0670*
H10A1.044990.069480.017070.0740*
H10B1.171180.097130.063980.0740*
H111.010 (3)0.0728 (8)0.1783 (9)0.050 (5)*
H140.234680.081140.182690.0620*
H160.626820.007300.377100.0660*
H170.885350.041990.301360.0670*
H18A0.008440.115560.257950.0670*
H18B0.019740.135370.345430.0670*
H200.525530.174060.379340.0660*
H210.719460.273290.365140.0760*
H220.542580.352970.279330.0780*
H230.175560.330640.203060.0770*
H240.014360.230620.215120.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0792 (9)0.0719 (9)0.0439 (8)0.0150 (7)0.0081 (7)0.0055 (6)
O20.0718 (8)0.0555 (8)0.0511 (7)0.0016 (7)0.0216 (6)0.0004 (6)
N10.0630 (10)0.0418 (9)0.0651 (11)0.0024 (8)0.0200 (8)0.0074 (8)
N20.0456 (9)0.0539 (10)0.0714 (10)0.0000 (8)0.0165 (8)0.0095 (8)
C10.0403 (9)0.0470 (11)0.0526 (10)0.0021 (8)0.0007 (8)0.0092 (8)
C20.0458 (10)0.0463 (11)0.0696 (12)0.0011 (9)0.0047 (9)0.0089 (9)
C30.0506 (10)0.0559 (12)0.0593 (11)0.0095 (9)0.0069 (9)0.0097 (9)
C40.0704 (12)0.0451 (11)0.0626 (12)0.0082 (10)0.0016 (10)0.0040 (9)
C50.0717 (13)0.0520 (12)0.0561 (11)0.0035 (10)0.0093 (10)0.0014 (9)
C60.0526 (10)0.0593 (12)0.0466 (10)0.0031 (9)0.0058 (8)0.0031 (9)
C70.0415 (9)0.0470 (10)0.0407 (9)0.0025 (8)0.0010 (7)0.0053 (8)
C80.0394 (9)0.0485 (11)0.0479 (10)0.0015 (8)0.0017 (8)0.0055 (8)
C90.0445 (10)0.0519 (11)0.0695 (12)0.0050 (8)0.0058 (9)0.0122 (9)
C100.0643 (12)0.0468 (11)0.0775 (13)0.0016 (10)0.0257 (10)0.0093 (10)
C110.0576 (12)0.0395 (11)0.0685 (13)0.0035 (9)0.0105 (10)0.0014 (9)
C120.0552 (10)0.0349 (9)0.0546 (11)0.0021 (8)0.0107 (9)0.0049 (8)
C130.0584 (11)0.0403 (10)0.0485 (11)0.0053 (8)0.0101 (9)0.0025 (8)
C140.0555 (10)0.0516 (11)0.0469 (11)0.0051 (9)0.0054 (8)0.0002 (8)
C150.0571 (11)0.0409 (10)0.0486 (10)0.0050 (9)0.0147 (9)0.0008 (8)
C160.0718 (12)0.0478 (11)0.0463 (10)0.0030 (10)0.0075 (10)0.0037 (8)
C170.0617 (11)0.0449 (11)0.0588 (12)0.0043 (9)0.0013 (10)0.0025 (9)
C180.0518 (10)0.0597 (12)0.0575 (11)0.0010 (9)0.0162 (9)0.0061 (9)
C190.0458 (9)0.0527 (11)0.0434 (10)0.0029 (8)0.0111 (8)0.0072 (8)
C200.0528 (11)0.0596 (12)0.0524 (11)0.0043 (9)0.0047 (9)0.0010 (9)
C210.0525 (11)0.0713 (14)0.0644 (12)0.0054 (11)0.0003 (10)0.0095 (11)
C220.0689 (13)0.0560 (12)0.0708 (13)0.0090 (11)0.0114 (11)0.0046 (11)
C230.0703 (13)0.0573 (13)0.0636 (13)0.0063 (11)0.0060 (11)0.0024 (10)
C240.0507 (10)0.0630 (13)0.0537 (11)0.0023 (10)0.0023 (9)0.0067 (9)
Geometric parameters (Å, º) top
O1—C131.281 (2)C19—C241.376 (3)
O2—C151.366 (2)C19—C201.389 (2)
O2—C181.437 (2)C20—C211.375 (3)
N1—C101.464 (2)C21—C221.376 (3)
N1—C111.297 (3)C22—C231.376 (3)
N2—C21.376 (2)C23—C241.375 (3)
N2—C81.368 (2)C2—H20.9300
C1—C21.366 (2)C3—H30.9300
C1—C71.430 (2)C4—H40.9300
C1—C91.495 (2)C5—H50.9300
N1—H1N1.07 (3)C6—H60.9300
N2—H2N0.85 (2)C9—H9A0.9700
C3—C81.392 (3)C9—H9B0.9700
C3—C41.366 (3)C10—H10A0.9700
C4—C51.392 (3)C10—H10B0.9700
C5—C61.375 (3)C11—H110.974 (16)
C6—C71.400 (2)C14—H140.9300
C7—C81.408 (2)C16—H160.9300
C9—C101.492 (3)C17—H170.9300
C11—C121.407 (3)C18—H18A0.9700
C12—C171.409 (3)C18—H18B0.9700
C12—C131.429 (2)C20—H200.9300
C13—C141.423 (2)C21—H210.9300
C14—C151.362 (2)C22—H220.9300
C15—C161.404 (3)C23—H230.9300
C16—C171.350 (3)C24—H240.9300
C18—C191.503 (3)
C15—O2—C18117.81 (13)C19—C24—C23121.45 (17)
C10—N1—C11122.40 (17)N2—C2—H2125.00
C2—N2—C8109.25 (15)C1—C2—H2125.00
C2—C1—C7106.00 (15)C4—C3—H3121.00
C2—C1—C9128.14 (16)C8—C3—H3121.00
C7—C1—C9125.83 (15)C3—C4—H4119.00
C10—N1—H1N124.2 (15)C5—C4—H4119.00
C11—N1—H1N113.3 (15)C4—C5—H5119.00
N2—C2—C1109.98 (16)C6—C5—H5119.00
C2—N2—H2N125.9 (14)C5—C6—H6120.00
C8—N2—H2N124.8 (14)C7—C6—H6120.00
C4—C3—C8117.90 (16)C1—C9—H9A109.00
C3—C4—C5121.26 (18)C1—C9—H9B109.00
C4—C5—C6121.28 (18)C10—C9—H9A109.00
C5—C6—C7119.05 (16)C10—C9—H9B109.00
C6—C7—C8118.49 (15)H9A—C9—H9B108.00
C1—C7—C8107.82 (15)N1—C10—H10A109.00
C1—C7—C6133.69 (16)N1—C10—H10B109.00
N2—C8—C7106.94 (15)C9—C10—H10A109.00
C3—C8—C7122.01 (16)C9—C10—H10B109.00
N2—C8—C3131.04 (16)H10A—C10—H10B108.00
C1—C9—C10114.06 (14)N1—C11—H11117.0 (9)
N1—C10—C9112.07 (14)C12—C11—H11117.3 (9)
N1—C11—C12125.67 (19)C13—C14—H14119.00
C11—C12—C13121.06 (16)C15—C14—H14119.00
C11—C12—C17119.73 (17)C15—C16—H16120.00
C13—C12—C17119.20 (16)C17—C16—H16120.00
O1—C13—C14121.46 (15)C12—C17—H17119.00
C12—C13—C14117.00 (15)C16—C17—H17119.00
O1—C13—C12121.55 (15)O2—C18—H18A109.00
C13—C14—C15121.36 (16)O2—C18—H18B109.00
C14—C15—C16121.10 (16)C19—C18—H18A109.00
O2—C15—C14124.77 (15)C19—C18—H18B109.00
O2—C15—C16114.12 (15)H18A—C18—H18B108.00
C15—C16—C17119.03 (17)C19—C20—H20120.00
C12—C17—C16122.24 (18)C21—C20—H20120.00
O2—C18—C19111.79 (13)C20—C21—H21120.00
C18—C19—C20121.59 (16)C22—C21—H21120.00
C18—C19—C24120.10 (15)C21—C22—H22120.00
C20—C19—C24118.26 (17)C23—C22—H22120.00
C19—C20—C21120.34 (17)C22—C23—H23120.00
C20—C21—C22120.71 (17)C24—C23—H23120.00
C21—C22—C23119.32 (19)C19—C24—H24119.00
C22—C23—C24119.91 (19)C23—C24—H24119.00
C18—O2—C15—C1418.0 (2)C1—C9—C10—N1178.76 (15)
C18—O2—C15—C16163.17 (15)N1—C11—C12—C132.9 (3)
C15—O2—C18—C1972.73 (18)N1—C11—C12—C17175.88 (18)
C11—N1—C10—C996.7 (2)C11—C12—C13—O10.7 (3)
C10—N1—C11—C12177.96 (17)C11—C12—C13—C14179.48 (16)
C8—N2—C2—C10.1 (2)C17—C12—C13—O1179.48 (16)
C2—N2—C8—C3178.73 (18)C17—C12—C13—C140.7 (2)
C2—N2—C8—C70.4 (2)C11—C12—C17—C16177.17 (18)
C7—C1—C2—N20.3 (2)C13—C12—C17—C161.6 (3)
C9—C1—C2—N2177.68 (17)O1—C13—C14—C15177.50 (16)
C2—C1—C7—C6179.80 (18)C12—C13—C14—C152.7 (2)
C2—C1—C7—C80.48 (19)C13—C14—C15—O2176.31 (15)
C9—C1—C7—C62.2 (3)C13—C14—C15—C162.4 (3)
C9—C1—C7—C8177.52 (16)O2—C15—C16—C17178.82 (17)
C2—C1—C9—C1020.0 (3)C14—C15—C16—C170.0 (3)
C7—C1—C9—C10157.53 (17)C15—C16—C17—C122.0 (3)
C8—C3—C4—C50.5 (3)O2—C18—C19—C2027.2 (2)
C4—C3—C8—N2179.09 (19)O2—C18—C19—C24155.53 (16)
C4—C3—C8—C70.1 (3)C18—C19—C20—C21177.42 (17)
C3—C4—C5—C60.1 (3)C24—C19—C20—C210.1 (3)
C4—C5—C6—C70.9 (3)C18—C19—C24—C23176.71 (17)
C5—C6—C7—C1178.23 (18)C20—C19—C24—C230.7 (3)
C5—C6—C7—C81.5 (2)C19—C20—C21—C221.1 (3)
C1—C7—C8—N20.52 (19)C20—C21—C22—C231.4 (3)
C1—C7—C8—C3178.67 (16)C21—C22—C23—C240.7 (3)
C6—C7—C8—N2179.71 (15)C22—C23—C24—C190.4 (3)
C6—C7—C8—C31.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of rings N2/C1/C2/C7/C8, C3–C8 and C19–C24, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O11.07 (3)1.81 (3)2.657 (2)133 (2)
N1—H1N···O1i1.07 (3)2.19 (3)3.004 (2)131 (2)
C2—H2···O1ii0.932.553.467 (2)167
C23—H23···Cg2i0.932.953.716 (2)141
C24—H24···Cg1i0.932.703.465 (3)140
N2—H2N···Cg4ii0.85 (2)3.03 (2)3.75 (3)145 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Cupric ion reducing antioxidant capacity of compound (I) top
Absorbances
12.5 µg25 µg50 µg100 µg200 µg400 µg800 µgA0.50 (µg/ml)
Compound (I)0.18±0.000.23±0.010.31±0.010.47±0.010.67±0.071.14±0.142.38±0.25>100
BHT1.41±0.032.22±0.052.42±0.022.50±0.012.56±0.052.86±0.073.38±0.138.97±3.94
 

Funding information

We are grateful to the Department of Higher Scientific Research and CHEMS Research Unit, University of Constantine 1, Algeria, for funding this research project.

References

First citationAlam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103–4108.  Web of Science CrossRef CAS Google Scholar
First citationApak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970–7981.  Web of Science CrossRef CAS Google Scholar
First citationBlagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Meced. J. Chem. Chem. Eng. 29, 117–138.  CAS Google Scholar
First citationBlois, M. S. (1958). Nature, 181, 1199–1200.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationGhichi, N., Benaouida, M. A., Benboudiaf, A. & Merazig, H. (2015). Acta Cryst. E71, o1000–o1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhichi, N., Benboudiaf, A. & Merazig, H. (2014a). Acta Cryst. E70, o1292.  CSD CrossRef IUCr Journals Google Scholar
First citationGhichi, N., Benosmane, A., Benboudiaf, A. & Merazig, H. (2014b). Acta Cryst. E70, o957–o958.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, K. C., Kumar Sutar, A. & Lin, C.-C. (2009). Coord. Chem. Rev. 253, 1926–1946.  Web of Science CrossRef CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJia, Y. & Li, J. (2015). Chem. Rev. 115, 1597–1621.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109–112.  Web of Science CAS PubMed Google Scholar
First citationKannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMishra, A. P., Tiwari, A. & Jain, R. K. (2012). Adv. Mat. Lett. 3, 213–219.  CrossRef CAS Google Scholar
First citationRefat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898–906.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L., Hou, Q., Sui, D., Wang, Y. & Jiang, S. (2007). Spectrochim. Acta Part A, 67, 1120–1125.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds