research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two isotypic lanthanide(III) complexes: tri­aqua­[2,6-di­acetyl­pyridine bis­­(benzoyl­hydrazone)]methano­llanthanide(III) trichloride methanol disolvates (LnIII = Tb and Dy)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: chihiro.kachi@chem.sci.toho-u.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 March 2018; accepted 11 March 2018; online 16 March 2018)

The title lanthanide complexes, [Ln(DAPBH2)(CH3OH)(H2O)3]Cl3·2CH3OH [LnIII = Tb and Dy; DAPBH2 = 2,6-di­acetyl­pyridine bis­(benzoyl­hydrazone), C23H21N5O2], are isotypic. The central lanthanide ions are nine-coordinate, being ligated by three N and two O atoms from the penta­dentate DAPBH2 ligand, and four O atoms from the coordinated methanol mol­ecule and three coordinated water mol­ecules. The coordination geometry of the lanthanide ion is a distorted capped square anti­prism. In the crystals, the various components are linked by O—H⋯Cl, N—H⋯Cl and O—H⋯O hydrogen bonds, forming three-dimensional supra­molecular frameworks. Within the frameworks, there are C—H⋯Cl and C—H⋯O hydrogen bonds and offset ππ inter­actions (inter­centroid distance ca 3.81 Å).

1. Chemical context

Mol­ecule-based magnets based on lanthanide ions have attracted much attention because of their large magnetic moments and magnetic anisotropy. The design of building units, such as the coordination–acceptor or coordination–donor magnetic units, is a key process in the construction of multi-dimensional magnetic materials. Some lanthanide complexes with 2,6-di­acetyl­pyridine bis­(benzoyl­hydrazone as ligand (DAPBH2) have been reported, viz. for LaIII (Thomas et al., 1979[Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459-L460.]), YbIII (Pan et al., 1989[Pan, X. Y., Yan, S. P., Wang, G. L., Wang, H. G., Wang, R. J. & Yao, X. K. (1989). Acta Chim. Sinica, 47, 795-799.]), EuIII (Gao & Wang, 2012[Gao, X.-S. & Wang, J.-T. (2012). Inorg. Chim. Acta, 386, 1-7.]), DyIII (Batchelor et al., 2014[Batchelor, L. J., Cimatti, I., Guillot, R., Tuna, F., Wernsdorfer, W., Ungur, L., Chibotaru, L. F., Campbell, V. E. & Mallah, T. (2014). Dalton Trans. 43, 12146-12149.]) and for LaIII and DyIII (Gao et al., 2016[Gao, X.-S., Jiang, X. & Yao, C. (2016). J. Mol. Struct. 1126, 275-279.]). The Dy complexes having two DAPBH2 ligands (Batchelor et al., 2014[Batchelor, L. J., Cimatti, I., Guillot, R., Tuna, F., Wernsdorfer, W., Ungur, L., Chibotaru, L. F., Campbell, V. E. & Mallah, T. (2014). Dalton Trans. 43, 12146-12149.]) have demonstrated attractive single-mol­ecule magnet behaviour, indicating that DAPBH2 ligands are useful for constructing magnetic units. For the use of DAPBH2 complexes as building blocks, coordination active sites are needed. The DAPBH2 ligand is penta­dentate, thus it can make coordination sites in the axial positions of the lanthanide ion. These complexes have coordinated or non-coordinated nitrate ions, which can disturb the coordination of coordination–donor units. We report herein on the TbIII and DyIII complexes with the DAPBH2 ligand containing non-coordinating chloride ions as the coordination–acceptor building units.

2. Structural commentary

The title TbIII and DyIII complexes are isotypic, crystallizing in the same space group (P[\overline{1}]) with almost identical unit-cell parameters. The representative mol­ecular structure of the TbIII complex is shown in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the TbIII complex, showing the selected atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The lanthanide ion is surrounded by six oxygen atoms and three nitro­gen atoms, and the coordination polyhedron is a distorted capped square anti­prism. The equatorial coordin­ation site of the LnIII ion is occupied by an N3O2 atom set of a penta­dentate DAPBH2 ligand. Selected bond lengths and bond angles for both complexes are compared in Table 1[link]. The Ln–donor bond distances are in the range of 2.321 (2)–2.596 (2) Å for the TbIII complex and 2.313 (2)–2.584 (2) Å for the DyIII complex. The bond distances for the DyIII complex are slightly shorter than those of the TbIII complex as a result of the lanthanide contraction effect. The DAPBH2 ligand is approximately planar, and the LnIII ion lies out of the mean plane (O1/N2/N3/N4/O2) by a distance of 0.5754 (3) Å for the TbIII complex and 0.5702 (3) Å for the DyIII complex. The coordination of the DAPBH2 ligand to the lanthanide ion shows a bent arrangement [bond angles O1—Ln—N4 and O2—Ln—N2 are 149.40 (6) and 152.08 (7)°, respectively, for the TbIII complex, and 149.36 (7) and 151.76 (8)°, respectively, for the DyIII complex]. These coordination features are similar to those reported for the dysprosium DAPBH2 nitrate complex (Gao et al., 2016[Gao, X.-S., Jiang, X. & Yao, C. (2016). J. Mol. Struct. 1126, 275-279.]). Three water mol­ecules and one methanol mol­ecule are involved in the coordination sphere of the LnIII ion. The asymmetric unit consists of the LnIII complex, three chlorides as counter-ions, and two methanol solvent mol­ecules.

Table 1
Selected geometric parameters (Å, °) for the TbIII and DyIII complexes

Tb1—N2 2.5845 (19) Dy1—N2 2.577 (2)
Tb1—N3 2.596 (2) Dy1—N3 2.584 (2)
Tb1—N4 2.5685 (19) Dy1—N4 2.555 (2)
Tb1—O1 2.3660 (16) Dy1—O1 2.358 (2)
Tb1—O2 2.4074 (17) Dy1—O2 2.3961 (19)
Tb1—O3 2.4867 (18) Dy1—O3 2.472 (2)
Tb1—O5 2.3642 (19) Dy1—O4 2.420 (2)
Tb1—O4 2.428 (2) Dy1—O5 2.354 (2)
Tb1—O6 2.321 (2) Dy1—O6 2.313 (2)
       
O1—Tb1—N4 149.40 (6) O1—Dy1—N4 149.36 (7)
O2—Tb1—N2 152.08 (7) O2—Dy1—N2 151.76 (8)
O6—Tb1—N4 74.40 (7) O6—Dy1—N4 74.67 (8)
O6—Tb1—O2 76.48 (7) O6—Dy1—O2 76.31 (8)
O6—Tb1—N2 76.97 (7) O6—Dy1—N2 76.91 (8)
O6—Tb1—N3 79.68 (7) O6—Dy1—N3 80.29 (8)
O6—Tb1—O1 76.15 (7) O6—Dy1—O1 75.91 (8)

3. Supra­molecular features

In the crystals, the lanthanide complexes are connected by O—H⋯Cl, N—H⋯Cl, O—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds (Tables 2[link] and 3[link]). The representative crystal structure of the TbIII complex is discussed here and the crystal packing is shown in Figs. 2[link] and 3[link]. The various components are linked by O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming layers parallel to (101), as illustrated in Fig. 2[link] (see also Table 2[link]). Within the layers there are offset ππ inter­actions involving the benzoyl rings of neighbouring mol­ecules [Cg2⋯Cg3a,b = 3.813 (2) Å, α = 3.8 (1)°, inter­planar distance = 3.483 (1) Å, slippages = 1.77 and 1.55 Å; Cg2 and Cg3 are the centroids of C2–C7 and C18–C23 rings, respectively, symmetry codes: (a) x, y − 1, z; (b) x, y + 1, z]. The layers are linked by O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming a three-dimensional supra­molecular framework, which is reinforced by a series of C—H⋯Cl and C—H⋯O hydrogen bonds (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for the TbIII complex[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4SA⋯Cl3 0.64 (4) 2.61 (4) 3.213 (2) 159 (5)
N1—H1A⋯Cl2i 0.88 2.52 3.299 (2) 148
O6—H6SA⋯Cl1i 0.73 (4) 2.32 (4) 3.040 (2) 172 (4)
O3—H3S⋯Cl3ii 0.68 (5) 2.68 (5) 3.2998 (19) 153 (5)
O4—H4SB⋯Cl3iii 0.81 (4) 2.34 (4) 3.1323 (19) 169 (4)
O6—H6SB⋯Cl1iv 0.74 (4) 2.32 (4) 3.058 (2) 176 (3)
O7—H7S⋯Cl2v 0.72 (3) 2.34 (3) 3.050 (2) 174 (4)
O8—H8S⋯Cl3vi 0.91 (4) 2.23 (4) 3.110 (2) 163 (4)
O5—H5SA⋯O8vi 0.77 (4) 1.96 (4) 2.710 (3) 166 (4)
O5—H5SB⋯O7v 0.79 (4) 1.88 (4) 2.664 (3) 168 (4)
C7—H7⋯Cl2i 0.95 2.74 3.491 (3) 137
C11—H11⋯Cl1vii 0.95 2.80 3.731 (3) 167
C12—H12⋯Cl1viii 0.95 2.80 3.741 (3) 172
C16—H16B⋯Cl2 0.98 2.66 3.628 (3) 170
C16—H16C⋯Cl2viii 0.98 2.79 3.621 (3) 143
C19—H19⋯Cl2 0.95 2.73 3.515 (3) 140
C26—H26A⋯Cl3ix 0.98 2.80 3.774 (3) 174
C4—H4⋯O8x 0.95 2.59 3.397 (3) 143
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1; (vii) x-1, y-1, z; (viii) -x, -y+1, -z; (ix) x, y+1, z; (x) x+1, y-1, z.

Table 3
Hydrogen-bond geometry (Å, °) for the DyIII complex[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4SA⋯Cl3 0.77 (4) 2.45 (4) 3.211 (3) 170 (4)
N1—H1A⋯Cl2i 0.88 2.53 3.298 (2) 147
O6—H6SA⋯Cl1i 0.77 (4) 2.27 (4) 3.030 (3) 168 (4)
O3—H3S⋯Cl3ii 0.79 (3) 2.60 (3) 3.329 (2) 156 (3)
O4—H4SB⋯Cl3iii 0.73 (5) 2.42 (4) 3.133 (3) 165 (4)
O6—H6SB⋯Cl1iv 0.67 (3) 2.39 (3) 3.058 (3) 179 (5)
O7—H7S⋯Cl2v 0.78 (4) 2.29 (4) 3.049 (3) 165 (4)
O8—H8S⋯Cl3vi 0.77 (5) 2.34 (5) 3.104 (3) 174 (6)
O5—H5SA⋯O8vi 0.81 (4) 1.96 (4) 2.702 (4) 154 (4)
O5—H5SB⋯O7v 0.72 (5) 1.95 (5) 2.659 (3) 167 (6)
C7—H7⋯Cl2i 0.95 2.75 3.494 (3) 136
C11—H11⋯Cl1vii 0.95 2.80 3.730 (3) 167
C12—H12⋯Cl1viii 0.95 2.79 3.734 (3) 172
C16—H16B⋯Cl2 0.98 2.66 3.620 (3) 166
C16—H16C⋯Cl2viii 0.98 2.77 3.618 (3) 145
C19—H19⋯Cl2 0.95 2.74 3.522 (3) 140
C26—H26A⋯Cl3ix 0.98 2.79 3.761 (4) 171
C4—H4⋯O8x 0.95 2.60 3.406 (4) 143
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1; (iv) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1; (vii) x-1, y-1, z; (viii) -x, -y+1, -z; (ix) x, y+1, z; (x) x+1, y-1, z.
[Figure 2]
Figure 2
A view along the b axis of the hydrogen-bonded (dashed lines) layer structure of the TbIII complex. The Cl ions are shown as green balls and the C-bound H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view along the a axis of the hydrogen-bonded (dashed lines) supra­molecular framework of the TbIII complex. The Cl ions are shown as green balls and the C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the DAPBH2 ligand gave 59 hits. There are 12 lanthanide nitrate DAPBH2 complexes but no complexes with halogen ions as counter-ions. A number of halides of transition metal DAPBH2 complexes have been reported, viz. Mn (Lorenzini et al., 1983[Lorenzini, C., Pelizzi, C., Pelizzi, G. & Predieri, G. (1983). J. Chem. Soc. Dalton Trans. pp. 721-727.]), Fe (Bar et al., 2015[Bar, A. K., Pichon, C., Gogoi, N., Duhayon, C., Ramasesha, S. & Sutter, J.-P. (2015). Chem. Commun. 51, 3616-3619.]), Co (Batchelor et al., 2011[Batchelor, L. J., Sangalli, M., Guillot, R., Guihéry, N., Maurice, R., Tuna, F. & Mallah, T. (2011). Inorg. Chem. 50, 12045-12052.]), Cu (Neto et al., 2013[Neto, B. A. D., Viana, B. F. L., Rodrigues, T. S., Lalli, P. M., Eberlin, M. N., da Silva, W. A., de Oliveira, H. C. B. & Gatto, C. C. (2013). Dalton Trans. 42, 11497-11506.]), and Re (Al-Shihri et al., 1993[Al-Shihri, A. S. M., Dilworth, J. R., Howe, S. D., Silver, J., Thompson, R. M., Davies, J. & Povey, D. C. (1993). Polyhedron, 12, 2297-2305.]).

5. Synthesis and crystallization

A methanol solution (15 ml) of TbCl3·6H2O (0.178 g, 0.48 mmol), 2,6-di­acetyl­pyridine (0.075 g, 0.45 mmol), and benzoyl­hydrazine (0.127 g, 0.93 mmol) was refluxed for 2 h. The resulting mixture was filtered. Vapour diffusion of diethyl ether into the filtrate afforded colourless plate-like crystals of the TbIII complex (0.116 g, yield 30%). The synthetic procedure for the DyIII complex is similar, starting from dysprosium chloride (yield 43%).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4[link]. The O—H hydrogen atoms of the water and methanol mol­ecules were located in difference-Fourier maps and were refined isotropically. The O—H distance of the coordinated methanol mol­ecule in the DyIII complex was restrained to 0.82 Å. Other hydrogen atoms were generated geometrically and refined with a riding model: N—H = 0.88 Å, C–H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl, O-hydrox­yl) and 1.2 Ueq(C, N) for other H atoms.

Table 4
Experimental details

  TbIII complex DyIII complex
Crystal data
Chemical formula [Tb(C23H21N5O2)(CH4O)(H2O)3)]Cl3·2CH4O [Dy(C23H21N5O2)(CH4O)(H2O)3)]Cl3·2CH4O
Mr 814.89 818.47
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 8.9703 (7), 12.6433 (9), 14.4233 (11) 8.9852 (7), 12.6242 (10), 14.3887 (12)
α, β, γ (°) 87.004 (1), 88.752 (1), 81.980 (1) 87.062 (1), 88.810 (1), 82.068 (1)
V3) 1617.4 (2) 1614.2 (2)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.49 2.62
Crystal size (mm) 0.20 × 0.15 × 0.05 0.25 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.636, 0.886 0.561, 0.780
No. of measured, independent and observed [I > 2σ(I)] reflections 13292, 8926, 8227 13359, 8915, 8062
Rint 0.021 0.021
(sin θ/λ)max−1) 0.720 0.720
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.03 0.030, 0.073, 1.04
No. of reflections 8926 8915
No. of parameters 429 429
No. of restraints 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.48, −0.73 1.73, −0.79
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)]methanolterbium(III) trichloride methanol disolvate (TbDAPBH2) top
Crystal data top
[Tb(C23H21N5O2)(CH4O)(H2O)3)]Cl3·2CH4OZ = 2
Mr = 814.89F(000) = 820
Triclinic, P1Dx = 1.673 Mg m3
a = 8.9703 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6433 (9) ÅCell parameters from 7626 reflections
c = 14.4233 (11) Åθ = 2.3–30.4°
α = 87.004 (1)°µ = 2.49 mm1
β = 88.752 (1)°T = 100 K
γ = 81.980 (1)°Plate, colorless
V = 1617.4 (2) Å30.20 × 0.15 × 0.05 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8926 independent reflections
Radiation source: sealed tube8227 reflections with I > 2σ(I)
Detector resolution: 8.366 pixels mm-1Rint = 0.021
phi and ω scansθmax = 30.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.636, Tmax = 0.886k = 1217
13292 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3922P]
where P = (Fo2 + 2Fc2)/3
8926 reflections(Δ/σ)max = 0.001
429 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 0.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3931 (3)0.18034 (19)0.27986 (17)0.0141 (4)
C20.4840 (3)0.27866 (19)0.31946 (17)0.0145 (5)
C30.6288 (3)0.2707 (2)0.34747 (19)0.0185 (5)
H30.66900.20550.33650.022*
C40.7149 (3)0.3579 (2)0.3915 (2)0.0238 (6)
H40.81370.35230.41130.029*
C50.6563 (3)0.4533 (2)0.4066 (2)0.0232 (6)
H50.71540.51300.43670.028*
C60.5125 (3)0.4623 (2)0.3781 (2)0.0212 (5)
H60.47330.52800.38830.025*
C70.4255 (3)0.3752 (2)0.33454 (19)0.0186 (5)
H70.32660.38100.31510.022*
C80.0392 (3)0.08870 (19)0.18845 (17)0.0133 (4)
C90.0525 (3)0.1790 (2)0.2001 (2)0.0187 (5)
H9A0.01360.22730.25210.028*
H9B0.04610.21830.14310.028*
H9C0.15780.15040.21290.028*
C100.0267 (3)0.01568 (19)0.14391 (17)0.0136 (4)
C110.1615 (3)0.0250 (2)0.09601 (19)0.0183 (5)
H110.21970.03230.09760.022*
C120.2087 (3)0.1203 (2)0.0458 (2)0.0202 (5)
H120.30100.12960.01340.024*
C130.1197 (3)0.2013 (2)0.04380 (18)0.0171 (5)
H130.14840.26610.00840.021*
C140.0129 (3)0.18641 (18)0.09447 (17)0.0127 (4)
C150.1148 (3)0.26892 (18)0.09226 (17)0.0127 (4)
C160.0854 (3)0.36814 (19)0.03070 (19)0.0187 (5)
H16A0.15540.36280.02250.028*
H16B0.09980.43020.06570.028*
H16C0.01830.37650.00860.028*
C170.4647 (3)0.28258 (18)0.18861 (17)0.0136 (4)
C180.5814 (3)0.35476 (19)0.18763 (18)0.0162 (5)
C190.5606 (3)0.4577 (2)0.1460 (2)0.0205 (5)
H190.46900.48360.11540.025*
C200.6730 (3)0.5226 (2)0.1491 (2)0.0233 (6)
H200.65790.59320.12180.028*
C210.8076 (3)0.4835 (2)0.1924 (2)0.0237 (6)
H210.88540.52730.19380.028*
C220.8297 (3)0.3809 (2)0.2338 (2)0.0225 (5)
H220.92220.35480.26320.027*
C230.7164 (3)0.3164 (2)0.23211 (19)0.0185 (5)
H230.73080.24660.26110.022*
C240.4784 (3)0.1550 (2)0.4460 (2)0.0232 (6)
H24A0.38200.19040.46980.035*
H24B0.52820.20670.40800.035*
H24C0.54270.12680.49810.035*
C250.9063 (3)0.5147 (2)0.6159 (2)0.0274 (6)
H25A0.92430.56430.56370.041*
H25B0.86240.45440.59300.041*
H25C1.00180.48810.64630.041*
C260.1290 (3)0.7633 (2)0.5060 (2)0.0292 (6)
H26A0.15040.82870.53370.044*
H26B0.17360.75940.44350.044*
H26C0.17220.70090.54460.044*
Cl10.58645 (7)0.81886 (5)0.06470 (4)0.01793 (12)
Cl20.18932 (7)0.59026 (5)0.15256 (5)0.02071 (13)
Cl30.18676 (7)0.02722 (5)0.60038 (5)0.02070 (13)
H3S0.517 (5)0.035 (4)0.383 (3)0.059 (15)*
H7S0.804 (4)0.535 (3)0.722 (2)0.020 (9)*
H8S0.061 (5)0.822 (3)0.462 (3)0.055 (13)*
H4SA0.179 (5)0.011 (3)0.421 (3)0.044 (14)*
H5SA0.127 (4)0.217 (3)0.377 (3)0.036 (11)*
H6SA0.445 (4)0.021 (3)0.103 (3)0.035 (11)*
H4SB0.063 (4)0.003 (3)0.378 (3)0.034 (10)*
H5SB0.188 (4)0.283 (3)0.323 (3)0.045 (12)*
H6SB0.404 (4)0.070 (3)0.068 (3)0.021 (9)*
N10.2562 (2)0.18805 (16)0.24489 (15)0.0153 (4)
H1A0.22020.24920.24330.018*
N20.1773 (2)0.09152 (15)0.21167 (14)0.0126 (4)
N30.0574 (2)0.09586 (15)0.14648 (14)0.0124 (4)
N40.2332 (2)0.24464 (15)0.14258 (14)0.0117 (4)
N50.3365 (2)0.31596 (16)0.14172 (15)0.0152 (4)
H5A0.32000.37920.11250.018*
O10.43783 (19)0.09181 (13)0.28311 (13)0.0153 (3)
O20.48215 (19)0.19393 (14)0.23100 (13)0.0174 (4)
O30.4522 (2)0.06898 (15)0.39042 (13)0.0160 (4)
O40.1509 (2)0.00969 (16)0.38079 (15)0.0180 (4)
O50.1709 (2)0.22339 (15)0.33114 (14)0.0178 (4)
O60.4055 (2)0.03235 (16)0.10887 (15)0.0207 (4)
O70.8055 (2)0.56858 (16)0.68054 (16)0.0266 (5)
O80.0300 (2)0.76493 (16)0.50082 (15)0.0250 (4)
Tb10.29292 (2)0.07670 (2)0.25062 (2)0.01026 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (11)0.0136 (11)0.0133 (11)0.0022 (8)0.0007 (9)0.0008 (8)
C20.0168 (11)0.0127 (10)0.0137 (12)0.0008 (8)0.0007 (9)0.0004 (8)
C30.0171 (12)0.0157 (11)0.0225 (14)0.0015 (9)0.0025 (10)0.0005 (9)
C40.0174 (12)0.0234 (13)0.0302 (16)0.0006 (10)0.0073 (11)0.0029 (11)
C50.0251 (14)0.0204 (13)0.0223 (14)0.0033 (10)0.0060 (11)0.0020 (10)
C60.0262 (14)0.0153 (12)0.0218 (14)0.0034 (10)0.0033 (11)0.0032 (10)
C70.0199 (12)0.0163 (11)0.0197 (13)0.0038 (9)0.0028 (10)0.0025 (9)
C80.0143 (11)0.0136 (10)0.0124 (11)0.0031 (8)0.0017 (9)0.0010 (8)
C90.0161 (11)0.0159 (11)0.0251 (14)0.0061 (9)0.0023 (10)0.0006 (10)
C100.0119 (10)0.0148 (11)0.0138 (12)0.0010 (8)0.0010 (9)0.0001 (8)
C110.0160 (12)0.0158 (11)0.0242 (14)0.0056 (9)0.0049 (10)0.0001 (10)
C120.0145 (11)0.0215 (12)0.0254 (14)0.0049 (9)0.0075 (10)0.0011 (10)
C130.0154 (11)0.0167 (11)0.0189 (13)0.0016 (9)0.0047 (9)0.0025 (9)
C140.0125 (10)0.0135 (10)0.0124 (11)0.0022 (8)0.0014 (9)0.0003 (8)
C150.0152 (11)0.0115 (10)0.0112 (11)0.0008 (8)0.0004 (9)0.0005 (8)
C160.0209 (12)0.0148 (11)0.0205 (13)0.0038 (9)0.0066 (10)0.0050 (9)
C170.0111 (10)0.0140 (11)0.0155 (12)0.0014 (8)0.0023 (9)0.0006 (8)
C180.0130 (11)0.0165 (11)0.0192 (13)0.0032 (9)0.0009 (9)0.0004 (9)
C190.0154 (12)0.0198 (12)0.0262 (15)0.0042 (9)0.0001 (10)0.0044 (10)
C200.0219 (13)0.0185 (12)0.0303 (16)0.0082 (10)0.0037 (11)0.0042 (11)
C210.0206 (13)0.0243 (13)0.0289 (15)0.0119 (10)0.0050 (11)0.0040 (11)
C220.0157 (12)0.0260 (13)0.0267 (15)0.0047 (10)0.0031 (10)0.0035 (11)
C230.0181 (12)0.0190 (12)0.0189 (13)0.0039 (9)0.0005 (10)0.0004 (9)
C240.0266 (14)0.0210 (13)0.0230 (14)0.0045 (10)0.0070 (11)0.0047 (10)
C250.0277 (15)0.0273 (14)0.0280 (16)0.0054 (11)0.0015 (12)0.0058 (12)
C260.0270 (15)0.0222 (14)0.0377 (18)0.0024 (11)0.0050 (13)0.0004 (12)
Cl10.0197 (3)0.0156 (3)0.0175 (3)0.0001 (2)0.0012 (2)0.0021 (2)
Cl20.0225 (3)0.0190 (3)0.0211 (3)0.0038 (2)0.0071 (2)0.0001 (2)
Cl30.0164 (3)0.0262 (3)0.0203 (3)0.0051 (2)0.0007 (2)0.0022 (2)
N10.0158 (10)0.0113 (9)0.0185 (11)0.0019 (7)0.0043 (8)0.0029 (8)
N20.0155 (9)0.0094 (9)0.0130 (10)0.0019 (7)0.0054 (8)0.0010 (7)
N30.0130 (9)0.0118 (9)0.0119 (10)0.0014 (7)0.0011 (7)0.0015 (7)
N40.0109 (9)0.0123 (9)0.0127 (10)0.0044 (7)0.0011 (7)0.0001 (7)
N50.0143 (10)0.0131 (9)0.0186 (11)0.0053 (7)0.0033 (8)0.0044 (8)
O10.0165 (8)0.0101 (8)0.0199 (9)0.0033 (6)0.0035 (7)0.0004 (6)
O20.0148 (8)0.0149 (8)0.0222 (10)0.0037 (6)0.0032 (7)0.0061 (7)
O30.0161 (9)0.0166 (9)0.0154 (9)0.0018 (7)0.0042 (7)0.0019 (7)
O40.0172 (10)0.0227 (10)0.0155 (10)0.0082 (7)0.0003 (8)0.0003 (7)
O50.0225 (9)0.0137 (9)0.0164 (10)0.0010 (7)0.0055 (8)0.0001 (7)
O60.0290 (11)0.0130 (9)0.0180 (10)0.0023 (8)0.0052 (8)0.0030 (8)
O70.0355 (12)0.0171 (9)0.0272 (12)0.0061 (8)0.0056 (9)0.0039 (8)
O80.0275 (10)0.0252 (10)0.0230 (11)0.0079 (8)0.0033 (8)0.0012 (8)
Tb10.01062 (6)0.00929 (6)0.01094 (6)0.00193 (4)0.00114 (4)0.00083 (4)
Geometric parameters (Å, º) top
C1—O11.244 (3)C20—C211.388 (4)
C1—N11.355 (3)C20—H200.9500
C1—C21.483 (3)C21—C221.390 (4)
C2—C31.387 (4)C21—H210.9500
C2—C71.399 (3)C22—C231.390 (4)
C3—C41.388 (4)C22—H220.9500
C3—H30.9500C23—H230.9500
C4—C51.387 (4)C24—O31.432 (3)
C4—H40.9500C24—H24A0.9800
C5—C61.384 (4)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.388 (3)C25—O71.417 (4)
C6—H60.9500C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—N21.286 (3)C25—H25C0.9800
C8—C101.488 (3)C26—O81.427 (4)
C8—C91.498 (3)C26—H26A0.9800
C9—H9A0.9800C26—H26B0.9800
C9—H9B0.9800C26—H26C0.9800
C9—H9C0.9800N1—N21.390 (3)
C10—N31.348 (3)N1—H1A0.8800
C10—C111.393 (3)N2—Tb12.5845 (19)
C11—C121.390 (4)N3—Tb12.596 (2)
C11—H110.9500N4—N51.380 (3)
C12—C131.383 (4)N4—Tb12.5685 (19)
C12—H120.9500N5—H5A0.8800
C13—C141.394 (3)O1—Tb12.3660 (16)
C13—H130.9500O2—Tb12.4074 (17)
C14—N31.352 (3)O3—Tb12.4867 (18)
C14—C151.479 (3)O3—H3S0.68 (4)
C15—N41.291 (3)O4—Tb12.428 (2)
C15—C161.494 (3)O4—H4SA0.64 (5)
C16—H16A0.9800O4—H4SB0.80 (4)
C16—H16B0.9800O5—Tb12.3642 (19)
C16—H16C0.9800O5—H5SA0.78 (4)
C17—O21.240 (3)O5—H5SB0.80 (4)
C17—N51.351 (3)O6—Tb12.321 (2)
C17—C181.481 (3)O6—H6SA0.73 (4)
C18—C191.395 (3)O6—H6SB0.74 (4)
C18—C231.397 (4)O7—H7S0.72 (3)
C19—C201.389 (4)O8—H8S0.91 (4)
C19—H190.9500
O1—C1—N1120.6 (2)H24B—C24—H24C109.5
O1—C1—C2120.8 (2)O7—C25—H25A109.5
N1—C1—C2118.6 (2)O7—C25—H25B109.5
C3—C2—C7119.9 (2)H25A—C25—H25B109.5
C3—C2—C1117.5 (2)O7—C25—H25C109.5
C7—C2—C1122.4 (2)H25A—C25—H25C109.5
C2—C3—C4120.1 (2)H25B—C25—H25C109.5
C2—C3—H3120.0O8—C26—H26A109.5
C4—C3—H3120.0O8—C26—H26B109.5
C5—C4—C3119.8 (3)H26A—C26—H26B109.5
C5—C4—H4120.1O8—C26—H26C109.5
C3—C4—H4120.1H26A—C26—H26C109.5
C6—C5—C4120.5 (2)H26B—C26—H26C109.5
C6—C5—H5119.7C1—N1—N2114.57 (19)
C4—C5—H5119.7C1—N1—H1A122.7
C5—C6—C7119.9 (2)N2—N1—H1A122.7
C5—C6—H6120.0C8—N2—N1118.8 (2)
C7—C6—H6120.0C8—N2—Tb1123.18 (15)
C6—C7—C2119.7 (2)N1—N2—Tb1115.06 (14)
C6—C7—H7120.1C10—N3—C14117.6 (2)
C2—C7—H7120.1C10—N3—Tb1120.64 (15)
N2—C8—C10113.4 (2)C14—N3—Tb1121.71 (15)
N2—C8—C9126.2 (2)C15—N4—N5118.17 (19)
C10—C8—C9120.4 (2)C15—N4—Tb1126.08 (15)
C8—C9—H9A109.5N5—N4—Tb1115.71 (14)
C8—C9—H9B109.5C17—N5—N4115.84 (19)
H9A—C9—H9B109.5C17—N5—H5A122.1
C8—C9—H9C109.5N4—N5—H5A122.1
H9A—C9—H9C109.5C1—O1—Tb1126.00 (15)
H9B—C9—H9C109.5C17—O2—Tb1125.09 (15)
N3—C10—C11123.1 (2)C24—O3—Tb1128.24 (16)
N3—C10—C8116.1 (2)C24—O3—H3S112 (4)
C11—C10—C8120.6 (2)Tb1—O3—H3S108 (4)
C12—C11—C10118.4 (2)Tb1—O4—H4SA116 (4)
C12—C11—H11120.8Tb1—O4—H4SB123 (3)
C10—C11—H11120.8H4SA—O4—H4SB118 (5)
C13—C12—C11119.2 (2)Tb1—O5—H5SA123 (3)
C13—C12—H12120.4Tb1—O5—H5SB125 (3)
C11—C12—H12120.4H5SA—O5—H5SB110 (4)
C12—C13—C14119.0 (2)Tb1—O6—H6SA120 (3)
C12—C13—H13120.5Tb1—O6—H6SB124 (3)
C14—C13—H13120.5H6SA—O6—H6SB116 (4)
N3—C14—C13122.5 (2)C25—O7—H7S109 (3)
N3—C14—C15116.2 (2)C26—O8—H8S105 (3)
C13—C14—C15121.3 (2)O6—Tb1—O5142.11 (7)
N4—C15—C14114.7 (2)O6—Tb1—O176.15 (7)
N4—C15—C16123.8 (2)O5—Tb1—O1139.14 (7)
C14—C15—C16121.4 (2)O6—Tb1—O276.48 (7)
C15—C16—H16A109.5O5—Tb1—O281.03 (7)
C15—C16—H16B109.5O1—Tb1—O2102.60 (6)
H16A—C16—H16B109.5O6—Tb1—O4143.61 (7)
C15—C16—H16C109.5O5—Tb1—O471.13 (7)
H16A—C16—H16C109.5O1—Tb1—O479.33 (7)
H16B—C16—H16C109.5O2—Tb1—O4135.63 (7)
O2—C17—N5120.2 (2)O6—Tb1—O3119.22 (7)
O2—C17—C18121.8 (2)O5—Tb1—O378.63 (7)
N5—C17—C18118.1 (2)O1—Tb1—O365.79 (6)
C19—C18—C23119.8 (2)O2—Tb1—O368.37 (6)
C19—C18—C17123.0 (2)O4—Tb1—O372.66 (7)
C23—C18—C17117.2 (2)O6—Tb1—N474.40 (7)
C20—C19—C18120.3 (2)O5—Tb1—N468.22 (7)
C20—C19—H19119.8O1—Tb1—N4149.40 (6)
C18—C19—H19119.8O2—Tb1—N462.41 (6)
C21—C20—C19119.5 (2)O4—Tb1—N4130.58 (7)
C21—C20—H20120.2O3—Tb1—N4123.50 (6)
C19—C20—H20120.2O6—Tb1—N276.97 (7)
C20—C21—C22120.6 (2)O5—Tb1—N2126.12 (7)
C20—C21—H21119.7O1—Tb1—N262.47 (6)
C22—C21—H21119.7O2—Tb1—N2152.08 (7)
C23—C22—C21120.0 (3)O4—Tb1—N267.93 (7)
C23—C22—H22120.0O3—Tb1—N2118.85 (6)
C21—C22—H22120.0N4—Tb1—N2117.64 (6)
C22—C23—C18119.7 (2)O6—Tb1—N379.68 (7)
C22—C23—H23120.1O5—Tb1—N387.34 (7)
C18—C23—H23120.1O1—Tb1—N3121.25 (6)
O3—C24—H24A109.5O2—Tb1—N3122.36 (6)
O3—C24—H24B109.5O4—Tb1—N390.74 (7)
H24A—C24—H24B109.5O3—Tb1—N3160.96 (6)
O3—C24—H24C109.5N4—Tb1—N360.86 (6)
H24A—C24—H24C109.5N2—Tb1—N360.23 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4SA···Cl30.64 (4)2.61 (4)3.213 (2)159 (5)
N1—H1A···Cl2i0.882.523.299 (2)148
O6—H6SA···Cl1i0.73 (4)2.32 (4)3.040 (2)172 (4)
O3—H3S···Cl3ii0.68 (5)2.68 (5)3.2998 (19)153 (5)
O4—H4SB···Cl3iii0.81 (4)2.34 (4)3.1323 (19)169 (4)
O6—H6SB···Cl1iv0.74 (4)2.32 (4)3.058 (2)176 (3)
O7—H7S···Cl2v0.72 (3)2.34 (3)3.050 (2)174 (4)
O8—H8S···Cl3vi0.91 (4)2.23 (4)3.110 (2)163 (4)
O5—H5SA···O8vi0.77 (4)1.96 (4)2.710 (3)166 (4)
O5—H5SB···O7v0.79 (4)1.88 (4)2.664 (3)168 (4)
C7—H7···Cl2i0.952.743.491 (3)137
C11—H11···Cl1vii0.952.803.731 (3)167
C12—H12···Cl1viii0.952.803.741 (3)172
C16—H16B···Cl20.982.663.628 (3)170
C16—H16C···Cl2viii0.982.793.621 (3)143
C19—H19···Cl20.952.733.515 (3)140
C26—H26A···Cl3ix0.982.803.774 (3)174
C4—H4···O8x0.952.593.397 (3)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x1, y1, z; (viii) x, y+1, z; (ix) x, y+1, z; (x) x+1, y1, z.
Triaqua[2,6-diacetylpyridine bis(benzoylhydrazone)]methanoldysprosium(III) trichloride methanol disolvate (DyDAPBH2) top
Crystal data top
[Dy(C23H21N5O2)(CH4O)(H2O)3)]Cl3·2CH4OZ = 2
Mr = 818.47F(000) = 822
Triclinic, P1Dx = 1.684 Mg m3
a = 8.9852 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6242 (10) ÅCell parameters from 7204 reflections
c = 14.3887 (12) Åθ = 2.2–30.5°
α = 87.062 (1)°µ = 2.62 mm1
β = 88.810 (1)°T = 100 K
γ = 82.068 (1)°Plate, colorless
V = 1614.2 (2) Å30.25 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8915 independent reflections
Radiation source: sealed tube8062 reflections with I > 2σ(I)
Detector resolution: 8.366 pixels mm-1Rint = 0.021
phi and ω scansθmax = 30.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 129
Tmin = 0.561, Tmax = 0.780k = 1718
13359 measured reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: mixed
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.3922P]
where P = (Fo2 + 2Fc2)/3
8915 reflections(Δ/σ)max = 0.001
429 parametersΔρmax = 1.73 e Å3
1 restraintΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3923 (3)0.1799 (2)0.27938 (19)0.0130 (5)
C20.4831 (3)0.2781 (2)0.3189 (2)0.0138 (5)
C30.6283 (3)0.2700 (2)0.3466 (2)0.0184 (6)
H30.66860.20470.33540.022*
C40.7142 (4)0.3572 (2)0.3906 (2)0.0242 (7)
H40.81290.35160.41020.029*
C50.6554 (4)0.4525 (2)0.4057 (2)0.0237 (7)
H50.71410.51220.43610.028*
C60.5134 (4)0.4617 (2)0.3774 (2)0.0213 (6)
H60.47480.52780.38690.026*
C70.4259 (3)0.3743 (2)0.3347 (2)0.0183 (6)
H70.32660.38020.31630.022*
C80.0387 (3)0.0891 (2)0.1879 (2)0.0128 (5)
C90.0519 (3)0.1800 (2)0.1998 (2)0.0192 (6)
H9A0.00960.23000.24990.029*
H9B0.04940.21740.14170.029*
H9C0.15610.15210.21570.029*
C100.0273 (3)0.0146 (2)0.1440 (2)0.0137 (5)
C110.1621 (3)0.0250 (2)0.0962 (2)0.0191 (6)
H110.22070.03220.09790.023*
C120.2094 (3)0.1199 (2)0.0463 (2)0.0202 (6)
H120.30200.12930.01420.024*
C130.1196 (3)0.2009 (2)0.0437 (2)0.0178 (6)
H130.14740.26540.00750.021*
C140.0122 (3)0.1862 (2)0.0949 (2)0.0131 (5)
C150.1153 (3)0.2686 (2)0.09186 (19)0.0125 (5)
C160.0853 (3)0.3676 (2)0.0306 (2)0.0185 (6)
H16A0.15810.36410.02120.028*
H16B0.09470.43010.06660.028*
H16C0.01670.37370.00610.028*
C170.4641 (3)0.2816 (2)0.1881 (2)0.0137 (5)
C180.5818 (3)0.3531 (2)0.1874 (2)0.0156 (5)
C190.5607 (3)0.4565 (2)0.1457 (2)0.0208 (6)
H190.46930.48240.11500.025*
C200.6734 (4)0.5213 (3)0.1491 (2)0.0241 (7)
H200.65860.59210.12200.029*
C210.8072 (4)0.4819 (3)0.1924 (2)0.0231 (7)
H210.88520.52550.19380.028*
C220.8286 (3)0.3798 (3)0.2334 (2)0.0225 (6)
H220.92120.35380.26270.027*
C230.7156 (3)0.3146 (2)0.2322 (2)0.0179 (6)
H230.72970.24500.26160.022*
C240.4765 (4)0.1551 (3)0.4457 (2)0.0251 (7)
H24A0.38060.19130.46920.038*
H24B0.52740.20640.40780.038*
H24C0.54010.12660.49820.038*
C250.9067 (4)0.5157 (3)0.6162 (3)0.0275 (7)
H25A0.92370.56490.56340.041*
H25B0.86350.45460.59400.041*
H25C1.00260.49010.64650.041*
C260.1282 (4)0.7637 (3)0.5053 (3)0.0318 (8)
H26A0.15110.82750.53500.048*
H26B0.17050.76260.44190.048*
H26C0.17210.69940.54130.048*
Cl10.58557 (8)0.81884 (5)0.06449 (5)0.01935 (14)
Cl20.18964 (8)0.58963 (6)0.15245 (5)0.02133 (15)
Cl30.18672 (8)0.02676 (6)0.60011 (6)0.02261 (15)
Dy10.29156 (2)0.07637 (2)0.24991 (2)0.01098 (4)
H3S0.525 (3)0.029 (3)0.387 (3)0.038 (12)*
H7S0.804 (4)0.539 (3)0.729 (3)0.024 (11)*
H8S0.063 (6)0.819 (4)0.476 (4)0.058 (17)*
H4SA0.167 (5)0.019 (3)0.431 (3)0.028 (11)*
H5SA0.126 (5)0.206 (3)0.377 (3)0.034 (12)*
H6SA0.452 (4)0.024 (3)0.106 (3)0.025 (11)*
H4SB0.069 (5)0.011 (3)0.379 (3)0.026 (11)*
H5SB0.190 (6)0.276 (4)0.327 (4)0.061 (17)*
H6SB0.406 (4)0.064 (3)0.071 (2)0.006 (9)*
N10.2557 (3)0.18801 (18)0.24483 (17)0.0147 (5)
H1A0.21960.24930.24400.018*
N20.1772 (3)0.09208 (18)0.21085 (17)0.0142 (5)
N30.0566 (3)0.09572 (18)0.14657 (17)0.0126 (4)
N40.2328 (3)0.24374 (18)0.14232 (17)0.0132 (4)
N50.3360 (3)0.31481 (19)0.14179 (18)0.0152 (5)
H5A0.31920.37840.11290.018*
O10.4364 (2)0.09136 (15)0.28269 (15)0.0154 (4)
O20.4808 (2)0.19244 (16)0.23072 (15)0.0182 (4)
O30.4493 (2)0.06843 (16)0.38954 (15)0.0168 (4)
O40.1507 (3)0.00937 (18)0.38004 (17)0.0188 (4)
O50.1698 (3)0.22245 (18)0.33018 (16)0.0188 (4)
O60.4048 (3)0.0315 (2)0.10881 (18)0.0217 (5)
O70.8064 (3)0.56962 (18)0.6807 (2)0.0279 (5)
O80.0309 (3)0.7659 (2)0.50160 (19)0.0277 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (13)0.0129 (12)0.0126 (13)0.0026 (10)0.0019 (10)0.0017 (10)
C20.0163 (13)0.0100 (12)0.0150 (13)0.0015 (10)0.0015 (10)0.0002 (10)
C30.0185 (14)0.0142 (13)0.0232 (16)0.0042 (11)0.0026 (11)0.0003 (11)
C40.0193 (15)0.0196 (15)0.0332 (19)0.0011 (12)0.0074 (13)0.0029 (13)
C50.0287 (17)0.0162 (14)0.0240 (17)0.0048 (12)0.0069 (13)0.0028 (12)
C60.0265 (16)0.0132 (13)0.0242 (17)0.0038 (11)0.0000 (12)0.0030 (12)
C70.0190 (14)0.0170 (14)0.0201 (15)0.0067 (11)0.0032 (11)0.0007 (11)
C80.0128 (13)0.0104 (12)0.0152 (13)0.0015 (9)0.0006 (10)0.0021 (10)
C90.0160 (14)0.0136 (13)0.0289 (17)0.0064 (11)0.0007 (12)0.0001 (12)
C100.0126 (13)0.0128 (12)0.0161 (14)0.0031 (10)0.0013 (10)0.0014 (10)
C110.0167 (14)0.0154 (13)0.0261 (16)0.0050 (11)0.0046 (11)0.0012 (12)
C120.0146 (14)0.0200 (14)0.0265 (17)0.0038 (11)0.0063 (11)0.0009 (12)
C130.0171 (14)0.0155 (13)0.0198 (15)0.0007 (11)0.0061 (11)0.0024 (11)
C140.0142 (13)0.0105 (12)0.0146 (13)0.0019 (10)0.0005 (10)0.0007 (10)
C150.0137 (13)0.0110 (12)0.0127 (13)0.0007 (9)0.0004 (10)0.0019 (10)
C160.0203 (15)0.0120 (13)0.0236 (16)0.0054 (11)0.0061 (12)0.0051 (11)
C170.0133 (13)0.0130 (12)0.0152 (14)0.0033 (10)0.0011 (10)0.0006 (10)
C180.0128 (13)0.0163 (13)0.0185 (14)0.0041 (10)0.0019 (10)0.0028 (11)
C190.0153 (14)0.0182 (14)0.0290 (17)0.0044 (11)0.0005 (12)0.0027 (12)
C200.0238 (16)0.0179 (14)0.0315 (18)0.0091 (12)0.0042 (13)0.0042 (13)
C210.0179 (15)0.0249 (16)0.0291 (18)0.0110 (12)0.0078 (12)0.0063 (13)
C220.0117 (14)0.0304 (17)0.0261 (17)0.0046 (12)0.0009 (11)0.0051 (13)
C230.0151 (14)0.0179 (14)0.0214 (15)0.0042 (11)0.0001 (11)0.0016 (11)
C240.0273 (17)0.0250 (16)0.0246 (17)0.0059 (13)0.0059 (13)0.0078 (13)
C250.0276 (18)0.0260 (17)0.0298 (19)0.0058 (13)0.0024 (14)0.0051 (14)
C260.0294 (19)0.0232 (16)0.042 (2)0.0022 (14)0.0068 (16)0.0011 (15)
Cl10.0215 (3)0.0153 (3)0.0201 (4)0.0007 (3)0.0019 (3)0.0010 (3)
Cl20.0219 (4)0.0179 (3)0.0246 (4)0.0033 (3)0.0068 (3)0.0004 (3)
Cl30.0184 (3)0.0265 (4)0.0237 (4)0.0050 (3)0.0007 (3)0.0035 (3)
Dy10.01102 (6)0.00864 (6)0.01337 (7)0.00194 (4)0.00055 (4)0.00032 (4)
N10.0149 (11)0.0099 (10)0.0194 (13)0.0026 (8)0.0030 (9)0.0014 (9)
N20.0167 (12)0.0105 (10)0.0154 (12)0.0017 (9)0.0031 (9)0.0002 (9)
N30.0127 (11)0.0108 (10)0.0146 (12)0.0020 (8)0.0019 (9)0.0013 (9)
N40.0127 (11)0.0105 (10)0.0167 (12)0.0028 (8)0.0008 (9)0.0009 (9)
N50.0152 (12)0.0108 (10)0.0200 (13)0.0039 (9)0.0041 (9)0.0027 (9)
O10.0145 (10)0.0109 (9)0.0213 (11)0.0031 (7)0.0029 (8)0.0019 (8)
O20.0146 (10)0.0142 (9)0.0259 (12)0.0034 (8)0.0037 (8)0.0040 (8)
O30.0172 (11)0.0143 (10)0.0192 (11)0.0022 (8)0.0036 (8)0.0035 (8)
O40.0186 (12)0.0211 (11)0.0181 (12)0.0082 (9)0.0020 (9)0.0000 (9)
O50.0241 (12)0.0130 (10)0.0181 (11)0.0004 (8)0.0071 (9)0.0016 (9)
O60.0306 (13)0.0151 (11)0.0179 (12)0.0001 (10)0.0056 (9)0.0031 (10)
O70.0355 (14)0.0161 (11)0.0316 (15)0.0042 (10)0.0083 (11)0.0005 (10)
O80.0306 (13)0.0260 (13)0.0272 (14)0.0070 (10)0.0048 (10)0.0000 (11)
Geometric parameters (Å, º) top
C1—O11.239 (3)C20—C211.384 (5)
C1—N11.352 (4)C20—H200.9500
C1—C21.481 (4)C21—C221.380 (5)
C2—C71.388 (4)C21—H210.9500
C2—C31.391 (4)C22—C231.393 (4)
C3—C41.386 (4)C22—H220.9500
C3—H30.9500C23—H230.9500
C4—C51.386 (4)C24—O31.444 (4)
C4—H40.9500C24—H24A0.9800
C5—C61.369 (5)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.387 (4)C25—O71.414 (4)
C6—H60.9500C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—N21.289 (4)C25—H25C0.9800
C8—C101.478 (4)C26—O81.427 (4)
C8—C91.497 (4)C26—H26A0.9800
C9—H9A0.9800C26—H26B0.9800
C9—H9B0.9800C26—H26C0.9800
C9—H9C0.9800Dy1—O62.313 (2)
C10—N31.355 (3)Dy1—O52.354 (2)
C10—C111.392 (4)Dy1—O12.358 (2)
C11—C121.384 (4)Dy1—O22.3961 (19)
C11—H110.9500Dy1—O42.420 (2)
C12—C131.386 (4)Dy1—O32.472 (2)
C12—H120.9500Dy1—N42.555 (2)
C13—C141.393 (4)Dy1—N22.577 (2)
C13—H130.9500Dy1—N32.584 (2)
C14—N31.348 (4)N1—N21.386 (3)
C14—C151.484 (4)N1—H1A0.8800
C15—N41.287 (4)N4—N51.376 (3)
C15—C161.488 (4)N5—H5A0.8800
C16—H16A0.9800O3—H3S0.792 (19)
C16—H16B0.9800O4—H4SA0.77 (4)
C16—H16C0.9800O4—H4SB0.73 (4)
C17—O21.246 (3)O5—H5SA0.81 (5)
C17—N51.347 (4)O5—H5SB0.73 (5)
C17—C181.481 (4)O6—H6SA0.77 (4)
C18—C231.392 (4)O6—H6SB0.66 (4)
C18—C191.398 (4)O7—H7S0.77 (4)
C19—C201.390 (4)O8—H8S0.77 (5)
C19—H190.9500
O1—C1—N1120.6 (3)H24B—C24—H24C109.5
O1—C1—C2120.9 (3)O7—C25—H25A109.5
N1—C1—C2118.4 (2)O7—C25—H25B109.5
C7—C2—C3119.5 (3)H25A—C25—H25B109.5
C7—C2—C1122.8 (3)O7—C25—H25C109.5
C3—C2—C1117.5 (2)H25A—C25—H25C109.5
C4—C3—C2120.0 (3)H25B—C25—H25C109.5
C4—C3—H3120.0O8—C26—H26A109.5
C2—C3—H3120.0O8—C26—H26B109.5
C5—C4—C3119.7 (3)H26A—C26—H26B109.5
C5—C4—H4120.1O8—C26—H26C109.5
C3—C4—H4120.1H26A—C26—H26C109.5
C6—C5—C4120.6 (3)H26B—C26—H26C109.5
C6—C5—H5119.7O6—Dy1—O5142.37 (9)
C4—C5—H5119.7O6—Dy1—O175.91 (8)
C5—C6—C7119.9 (3)O5—Dy1—O1139.05 (8)
C5—C6—H6120.0O6—Dy1—O276.31 (8)
C7—C6—H6120.0O5—Dy1—O281.41 (8)
C6—C7—C2120.2 (3)O1—Dy1—O2102.05 (7)
C6—C7—H7119.9O6—Dy1—O4143.55 (8)
C2—C7—H7119.9O5—Dy1—O471.08 (8)
N2—C8—C10113.6 (2)O1—Dy1—O479.30 (8)
N2—C8—C9125.8 (3)O2—Dy1—O4135.51 (8)
C10—C8—C9120.5 (2)O6—Dy1—O3118.98 (8)
C8—C9—H9A109.5O5—Dy1—O378.77 (8)
C8—C9—H9B109.5O1—Dy1—O365.49 (7)
H9A—C9—H9B109.5O2—Dy1—O368.35 (7)
C8—C9—H9C109.5O4—Dy1—O372.39 (8)
H9A—C9—H9C109.5O6—Dy1—N474.67 (8)
H9B—C9—H9C109.5O5—Dy1—N468.20 (8)
N3—C10—C11122.3 (3)O1—Dy1—N4149.36 (7)
N3—C10—C8116.2 (2)O2—Dy1—N462.61 (7)
C11—C10—C8121.3 (2)O4—Dy1—N4130.72 (8)
C12—C11—C10119.0 (3)O3—Dy1—N4123.55 (7)
C12—C11—H11120.5O6—Dy1—N276.91 (8)
C10—C11—H11120.5O5—Dy1—N2126.14 (8)
C11—C12—C13119.0 (3)O1—Dy1—N262.53 (7)
C11—C12—H12120.5O2—Dy1—N2151.76 (8)
C13—C12—H12120.5O4—Dy1—N268.03 (8)
C12—C13—C14119.0 (3)O3—Dy1—N2118.59 (7)
C12—C13—H13120.5N4—Dy1—N2117.86 (7)
C14—C13—H13120.5O6—Dy1—N380.29 (8)
N3—C14—C13122.5 (2)O5—Dy1—N386.94 (8)
N3—C14—C15116.2 (2)O1—Dy1—N3121.65 (7)
C13—C14—C15121.3 (3)O2—Dy1—N3122.71 (7)
N4—C15—C14114.3 (2)O4—Dy1—N390.64 (8)
N4—C15—C16124.5 (2)O3—Dy1—N3160.57 (7)
C14—C15—C16121.1 (2)N4—Dy1—N360.99 (7)
C15—C16—H16A109.5N2—Dy1—N360.48 (7)
C15—C16—H16B109.5C1—N1—N2114.6 (2)
H16A—C16—H16B109.5C1—N1—H1A122.7
C15—C16—H16C109.5N2—N1—H1A122.7
H16A—C16—H16C109.5C8—N2—N1119.1 (2)
H16B—C16—H16C109.5C8—N2—Dy1122.84 (18)
O2—C17—N5119.6 (2)N1—N2—Dy1114.88 (16)
O2—C17—C18121.6 (3)C14—N3—C10117.9 (2)
N5—C17—C18118.8 (2)C14—N3—Dy1121.69 (17)
C23—C18—C19120.2 (3)C10—N3—Dy1120.38 (18)
C23—C18—C17117.4 (3)C15—N4—N5117.9 (2)
C19—C18—C17122.4 (3)C15—N4—Dy1126.39 (18)
C20—C19—C18120.1 (3)N5—N4—Dy1115.65 (17)
C20—C19—H19120.0C17—N5—N4116.2 (2)
C18—C19—H19120.0C17—N5—H5A121.9
C21—C20—C19119.4 (3)N4—N5—H5A121.9
C21—C20—H20120.3C1—O1—Dy1125.95 (18)
C19—C20—H20120.3C17—O2—Dy1125.06 (18)
C22—C21—C20120.7 (3)C24—O3—Dy1128.33 (19)
C22—C21—H21119.7C24—O3—H3S107 (3)
C20—C21—H21119.7Dy1—O3—H3S115 (3)
C21—C22—C23120.6 (3)Dy1—O4—H4SA122 (3)
C21—C22—H22119.7Dy1—O4—H4SB122 (3)
C23—C22—H22119.7H4SA—O4—H4SB104 (4)
C18—C23—C22119.0 (3)Dy1—O5—H5SA115 (3)
C18—C23—H23120.5Dy1—O5—H5SB125 (4)
C22—C23—H23120.5H5SA—O5—H5SB116 (5)
O3—C24—H24A109.5Dy1—O6—H6SA118 (3)
O3—C24—H24B109.5Dy1—O6—H6SB126 (3)
H24A—C24—H24B109.5H6SA—O6—H6SB116 (4)
O3—C24—H24C109.5C25—O7—H7S114 (3)
H24A—C24—H24C109.5C26—O8—H8S107 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4SA···Cl30.77 (4)2.45 (4)3.211 (3)170 (4)
N1—H1A···Cl2i0.882.533.298 (2)147
O6—H6SA···Cl1i0.77 (4)2.27 (4)3.030 (3)168 (4)
O3—H3S···Cl3ii0.79 (3)2.60 (3)3.329 (2)156 (3)
O4—H4SB···Cl3iii0.73 (5)2.42 (4)3.133 (3)165 (4)
O6—H6SB···Cl1iv0.67 (3)2.39 (3)3.058 (3)179 (5)
O7—H7S···Cl2v0.78 (4)2.29 (4)3.049 (3)165 (4)
O8—H8S···Cl3vi0.77 (5)2.34 (5)3.104 (3)174 (6)
O5—H5SA···O8vi0.81 (4)1.96 (4)2.702 (4)154 (4)
O5—H5SB···O7v0.72 (5)1.95 (5)2.659 (3)167 (6)
C7—H7···Cl2i0.952.753.494 (3)136
C11—H11···Cl1vii0.952.803.730 (3)167
C12—H12···Cl1viii0.952.793.734 (3)172
C16—H16B···Cl20.982.663.620 (3)166
C16—H16C···Cl2viii0.982.773.618 (3)145
C19—H19···Cl20.952.743.522 (3)140
C26—H26A···Cl3ix0.982.793.761 (4)171
C4—H4···O8x0.952.603.406 (4)143
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x1, y1, z; (viii) x, y+1, z; (ix) x, y+1, z; (x) x+1, y1, z.
Selected geometric parameters (Å, °) for the TbIII and DyIII complexes top
Tb1—N22.5845 (19)Dy1—N22.577 (2)
Tb1—N32.596 (2)Dy1—N32.584 (2)
Tb1—N42.5685 (19)Dy1—N42.555 (2)
Tb1—O12.3660 (16)Dy1—O12.358 (2)
Tb1—O22.4074 (17)Dy1—O22.3961 (19)
Tb1—O32.4867 (18)Dy1—O32.472 (2)
Tb1—O52.3642 (19)Dy1—O42.420 (2)
Tb1—O42.428 (2)Dy1—O52.354 (2)
Tb1—O62.321 (2)Dy1—O62.313 (2)
O1—Tb1—N4149.40 (6)O1—Dy1—N4149.36 (7)
O2—Tb1—N2152.08 (7)O2—Dy1—N2151.76 (8)
O6—Tb1—N474.40 (7)O6—Dy1—N474.67 (8)
O6—Tb1—O276.48 (7)O6—Dy1—O276.31 (8)
O6—Tb1—N276.97 (7)O6—Dy1—N276.91 (8)
O6—Tb1—N379.68 (7)O6—Dy1—N380.29 (8)
O6—Tb1—O176.15 (7)O6—Dy1—O175.91 (8)
 

Funding information

This work was supported by MEXT KAKENHI (grant No. JP 20750051) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

First citationAl-Shihri, A. S. M., Dilworth, J. R., Howe, S. D., Silver, J., Thompson, R. M., Davies, J. & Povey, D. C. (1993). Polyhedron, 12, 2297–2305.  Google Scholar
First citationBar, A. K., Pichon, C., Gogoi, N., Duhayon, C., Ramasesha, S. & Sutter, J.-P. (2015). Chem. Commun. 51, 3616–3619.  CSD CrossRef Google Scholar
First citationBatchelor, L. J., Cimatti, I., Guillot, R., Tuna, F., Wernsdorfer, W., Ungur, L., Chibotaru, L. F., Campbell, V. E. & Mallah, T. (2014). Dalton Trans. 43, 12146–12149.  CSD CrossRef Google Scholar
First citationBatchelor, L. J., Sangalli, M., Guillot, R., Guihéry, N., Maurice, R., Tuna, F. & Mallah, T. (2011). Inorg. Chem. 50, 12045–12052.  CSD CrossRef Google Scholar
First citationBruker (2014). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X.-S., Jiang, X. & Yao, C. (2016). J. Mol. Struct. 1126, 275–279.  CSD CrossRef Google Scholar
First citationGao, X.-S. & Wang, J.-T. (2012). Inorg. Chim. Acta, 386, 1–7.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLorenzini, C., Pelizzi, C., Pelizzi, G. & Predieri, G. (1983). J. Chem. Soc. Dalton Trans. pp. 721–727.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeto, B. A. D., Viana, B. F. L., Rodrigues, T. S., Lalli, P. M., Eberlin, M. N., da Silva, W. A., de Oliveira, H. C. B. & Gatto, C. C. (2013). Dalton Trans. 42, 11497–11506.  CSD CrossRef Google Scholar
First citationPan, X. Y., Yan, S. P., Wang, G. L., Wang, H. G., Wang, R. J. & Yao, X. K. (1989). Acta Chim. Sinica, 47, 795–799.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459–L460.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds