research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and catalytic activity of tetra­kis­(μ2-ethyl 2,6-di-tert-butyl-4-methyl­phenyl phos­phato-κ2O:O′)bis­­(ethyl 2,6-di-tert-butyl-4-methyl­phenyl phosphato-κ2O,O′)dilutetium n-heptane disolvate

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991, Moscow, Russian Federation, bChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation, and cN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 March 2018; accepted 19 March 2018; online 23 March 2018)

The title complex, [Lu2(C17H28O4P)6]·2C7H16, was formed in the reaction between potassium 2,6-di-tert-butyl-4-methyl­phenyl ethyl phosphate, [K(2,6-tBu2-4-MeC6H2-O)(EtO)PO2], and LuCl3(H2O)6 in water, followed by vacuum drying and recrystallization from heptane. Its crystal structure has triclinic (P[\overline{1}]) symmetry at 120 K. The lutetium tris­(phosphate) complex has a binuclear [Lu2(μ-OPO)4] core and the organophosphate ligand exhibits κ2O,O′ terminal and μ2-κ1O:κ1O′ bridging coordination modes with the LuIII ion being sixfold coordinated. The complex is of inter­est as a precatalyst in the acrylo­nitrile polymerization process and displays good catalytic activity under mild conditions.

1. Chemical context

Over recent decades, rare-earth complexes bearing organic ligands have been widely used as reagents or catalysts in organic synthesis and especially as catalysts or precatalysts in various polymerization processes (Kobayashi & Anwander, 2001[Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1-307. Berlin, Heidelberg: Springer-Verlag.]; Kobayashi et al., 2002[Kobayashi, S., Sugiura, M., Kitagawa, H. & Lam, W. W.-L. (2002). Chem. Rev. 102, 2227-2302.]). Rare-earth organophosphates and carboxyl­ates have been successfully applied as catalyst precursors for 1,3-diene polymerization (see Friebe et al., 2006[Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1-154.]; Fischbach & Anwander, 2006[Fischbach, A. & Anwander, R. (2006). Adv. Polym. Sci. 204, 155-281.]; Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.], 2014[Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219-227.]; Zhang et al., 2010[Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137 49-108.]; Jang et al., 2000[Jang, Y., Kwag, G. & Lee, H. (2000). Polym. J. 32, 456-459.]; Kwag, 2002[Kwag, G. (2002). Macromolecules, 35, 4875-4879.]; Fischbach et al., 2006[Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626-1642.]; Evans et al., 2001[Evans, W. J., Giarikos, D. G. & Ziller, J. W. (2001). Organometallics, 20, 5751-5758.]; Evans & Giarikos, 2004[Evans, W. J. & Giarikos, D. G. (2004). Macromolecules, 37, 5130-5132.]; Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Yu. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.]; Wilson 1993[Wilson, D. J. (1993). Polymer, 34, 3504-3508.]). The use of organic phosphates is not limited to the stereoregular polymerization of conjugated dienes.

Various lanthanide complexes have been applied in the polymerization of heteroatomic polar monomers, including polymerization of methyl methacrylate (Jiang et al., 2000[Jiang, L., Shen, Z. & Zhang, Y. (2000). Eur. Polym. J. 36, 2513-2516.]), rac-dilactide (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.]) and acrylo­nitrile (Jiang et al., 1997[Jiang, L., Zhang, Y. & Shen, Z. (1997). Eur. Polym. J. 33, 577-578.]) under mild conditions. Polymerization methods of obtaining polyacrylo­nitrile or acrylo­nitrile copolymers with other polar monomers, e.g. methyl acrylate, may require rather hard conditions (supercritical CO2 medium) (Shlyakhtin et al., 2013[Shlyakhtin, A. V., Lemenovskii, D. A. & Nifant'ev, I. E. (2013). Mendeleev Commun. 23, 277-278.]; Shlyakhtin et al., 2014a[Shlyahtin, A. V., Nifant'ev, I. E., Bagrov, V. V., Lemenovskii, D. A., Tavtorkin, A. N. & Timashev, P. S. (2014a). Green Chem. 16, 1344-1350.],b[Shlyakhtin, A. V., Nifant'ev, I. E., Lemenovsky, D. A., Krut'ko, D. P., Bagrov, V. V., Timashev, P. S., Popov, V. K. & Bagratashvili, V. N. (2014b). Russ. J. Phys. Chem. B, 8, 1049-1053.],c[Shlyakhtin, A. V., Nifant'ev, I. E., Lemenovskii, D. A., Krut'ko, D. P., Bagrov, V. V., Timashev, P. S., Popov, V. K. & Bagratashvili, V. N. (2014c). Supercritical Fluids: Theory and Practice, 9, 4-11.]).

The title complex {Lu2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6}·2C7H16 (1), was prepared in the reaction between potassium 2,6-di-tert-butyl-4-methyl­phenyl ethyl phosphate, viz. [K(2,6-tBu2-4-MeC6H2-O)(EtO)PO2], and LuCl3(H2O)6 in a 3:1 molar ratio in water followed by vacuum drying and recrystallization from heptane (Fig. 1[link]), by analogy with the synthesis of {Ln2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6} [Ln = La, CSD refcode TEQCUP (2); Ln = Nd, TEQDAW (3)] and {Y2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6}(hexa­ne) [(4), TEQDEA] (Fig. 1[link]), which were earlier obtained by our group (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.]). 1H and 31P{1H} NMR studies showed that formation of a binuclear complex occurred upon drying of the aqueous lutetium tris­(phosphate).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of {Ln2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6} 1.

Herein, we report on the crystal structure of the title LuIII tris­(phosphate) complex (1), containing the disubstituted organophosphate ligand, and on the catalytic properties of 1 and its Nd analog 3 (see Fig. 1[link]) in polyacrylo­nitrile synthesis under mild conditions.

2. Structural commentary

The title compound, 1, is a binuclear LuIII tris­(phosphate) complex (Fig. 2[link]) that crystallized as an n-heptane disolvate. The mol­ecular structure of the complex is analogous to those of compounds 24. The organophosphate ligand demonstrates κ2O,O′ terminal and μ2-κ1O:κ1O′ bridging coordination modes (Figs. 2[link] and 3[link]). Most likely, the rather small coordination number for both Lu atoms (CNLu = 6, a distorted octa­hedron) is induced by steric hindrance of the bulky disubstituted organophosphate ligand. Probably for the same reason, all of the phenyl rings are slightly bent along the CO—CMe line with folding angles ranging from 7.9 (6)° (for the OAr substituent at P4) to 8.7 (4)° (OAr at P2) for the bridging phosphates, as well as 6 (1)° (for OAr at P5) and 7.4 (7)° (OAr at P6) for the terminal phosphates. Complex 1 possesses the [Ln2(μ-OPO)4] core (Fig. 4[link]) as do complexes 24. Ln—O bond distances are presented in Table 1[link]. As expected, the Lu—O bond distances for the terminal organophosphates are on average 0.07–0.08 Å longer than for the bridging phosphates. The Lu–O–P–O–Lu fragments for all four bridging phosphates are slightly skewed from a symmetrical μ2-κ1O:κ1O′ coordination mode, but not reaching a μ2-κ1O:κ2O,O′ semi-bridging coordination mode: e.g. Lu1—O1 and Lu2—O2 bond distances (Table 2[link]) are nearly identical within estimated standard uncertainties, but the Lu1—O2 [3.393 (6) Å] and Lu2—O1 [4.291 (6) Å] distances differ by 0.90 Å. The other bridging ligands demonstrate similar Lu—O distance differences.

Table 1
Selected bond lengths (Å)

Lu1—O1 2.222 (5) Lu2—O2 2.192 (5)
Lu1—O5 2.196 (5) Lu2—O6 2.216 (6)
Lu1—O9 2.193 (6) Lu2—O10 2.178 (5)
Lu1—O13 2.172 (6) Lu2—O14 2.200 (6)
Lu1—O17 2.280 (5) Lu2—O21 2.264 (5)
Lu1—O18 2.274 (6) Lu2—O22 2.276 (5)

Table 2
Catalytic activity of 1 or 3 in acrylo­nitrile polymerization

Mn and the polydispersity index (PDI) were determined from size-exclusion chromatography (SEC) measurements.

Entry Precatalyst Yield, % Mn calcd × 10−3 Mn found × 10−3 PDI
1a - 9.6 - 12 4.06
2 (1) 48.6 22 33 2.56
3 (3) 26.0 12 13 2.88
Note: (a) The blank experiment without a precatalyst.
[Figure 2]
Figure 2
Mol­ecular structure of compound 1 with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The solvent mol­ecules and hydrogen atoms have been omitted for clarity.
[Figure 3]
Figure 3
Core atoms in {Lu2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6} 1.
[Figure 4]
Figure 4
Acrylo­nitrile polymerization reaction.

The phospho­rous atoms adopt distorted octa­hedral environments. The P—OLu distances lie in the range of 1.493 (6) Å (P2—O5) to 1.504 (6) Å (P6—O21), whereas the P—OC distances are longer, varying from 1.544 (7) Å (P4—O16) to 1.590 (6) Å (P3—O12). Regardless of aryl steric hindrance, the OC—P—OC bond angles [102.2 (3)° for O23—P6—O24 to107.0 (3)° for O11—P3—O12] are generally slightly smaller than the other O—P—O angles [106.1 (4)° for O13—P4—O16 to 114.6 (3)° for O9—P3—O10] with the exceptions of the OLu—P—OLu angles for the terminal phosphates [105.1 (3)° for O17—P5—O18 and 105.7 (3)° for O21—P6—O22]. However, the OC—P—OC bond angle is the smallest within the same PO4 fragment for all phosphate ligands. Plausible explanations of these observations have been recently given for rare-earth complexes bearing another bulky disubstituted organophosphate ligand (Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]).

3. Catalytic activity

The catalytic activity of binuclear organophosphate precatalysts was studied in the acrylo­nitrile polymerization reaction. The catalytic system was prepared from either 1 or 3, n-Bu2Mg and TMEDA (tetra­methyl­ethylenedi­amine) in a 1:12:12 molar ratio (Fig. 4[link], Table 2[link]), in accordance with the published procedure (Jiang et al., 1997[Jiang, L., Zhang, Y. & Shen, Z. (1997). Eur. Polym. J. 33, 577-578.]).

The catalytic system based on 1 (Ln = Lu) demonstrated a higher catalytic activity, than the system formed using the precatalyst 3 (Ln = Nd). Under equivalent conditions, the polymer yield was twice as high (entries 2 and 3, Table 1[link]). The higher catalytic activity may be associated with the higher electrophilicity of the lutetium cation due to its smaller ionic radius. Obviously, electrophilic activation significantly accelerates the process, since in the absence of a substantial electrophilic influence (blank experiment, Table 1[link], entry 1), polymerization proceeds much more slowly, yielding only 9.6% of the polymer as compared to neodymium (26.0%) and lutetium (48.6%). In the case of 1, the productivity of the catalytic system is much higher than that for earlier published systems (Jiang et al., 1997[Jiang, L., Zhang, Y. & Shen, Z. (1997). Eur. Polym. J. 33, 577-578.]), as well as having polyacrylo­nitrile characteristics which are close to those of commercially available polymers (textile fibres) or of obtained copolymers that may be used in high-quality carbon fibre production (Shlyakhtin et al., 2014a[Shlyahtin, A. V., Nifant'ev, I. E., Bagrov, V. V., Lemenovskii, D. A., Tavtorkin, A. N. & Timashev, P. S. (2014a). Green Chem. 16, 1344-1350.]).

4. Database survey

Crystal structures of di-substituted organophosphates of rare earths are poorly explored (Minyaev et al., 2017[Minyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820-827.]). Usually, lanthanide organophosphates either do not have a definite composition but possess high catalytic activity or have established crystal structures but exhibit poor catalytic activity because of their coordination polymer structure. The crystal structures of tris­(dialk­yl/di­aryl­phosphate) complexes of rare earths are mainly coordination polymers bearing a dimeth­yl/di­ethyl­phosphate ligand (see the Cambridge Structural Database, V5.38, latest update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): {Ln[(MeO)2PO2]3} (Ln = La, CSD refcode: HEBDEX (Zeng et al., 1994[Zeng, G.-F., Guo, X., Wang, C.-Y., Lin, Y.-H. & Li, H. (1994). Jiegou Huaxue, 13, 24.]); Nd, LAHREU (Lumetta et al., 2016[Lumetta, G. J., Sinkov, S. I., Krause, J. A. & Sweet, L. E. (2016). Inorg. Chem. 55, 1633-1641.]); Sm, JEVVOV (Li et al., 1989[Li, L., Lin, Y., Zeng, G. & Ma, A. (1989). Yingyong Huaxue, 6, 53-56.]); Eu, KIXGON (Li et al., 1991[Li, L.-M., Lin, Y.-H., Zeng, G.-F. & Ma, A.-Z. (1991). Jiegou Huaxue, 10, 155-158.]); {La[(MeO)2PO2]3(H2O)} (JIGVEA; Liu et al., 1990[Liu, C.-M., Wu, G.-Q., Tang, Z.-J., Han, Y.-Z., Pan, Z.-H., Shi, N.-C. & Liao, L.-B. (1990). Huaxue Xuebao, 48, 116.]); {Ln[(EtO)2PO2]3} [Ln = Nd, BOVREJ and BOVREJ01 (Lebedev et al., 1982[Lebedev, V. G., Palkina, K. K, Maksimova, S. I., Lebedeva, E. N. & Galaktionova, O. V. (1982). Zh. Neorg. Khim. 27, 2980-2982.]); Ce, JOGJEU (Han et al., 1990[Han, Y., Pan, Z., Shi, N., Liao, L., Liu, C., Wu, G., Tang, Z. & Xiao, Y. (1990). Wuji Huaxue Xuebao, 6, 17.]) and KETWUC (Amani et al., 2006[Amani, V., Rafizadeh, M., Yousefi, M. & Zargar, N. S. (2006). Anal. Sci. X, 22, x303-x304.]); Pr, JOGJIY (Han et al., 1990[Han, Y., Pan, Z., Shi, N., Liao, L., Liu, C., Wu, G., Tang, Z. & Xiao, Y. (1990). Wuji Huaxue Xuebao, 6, 17.])]. Crystal structures of only three dimeric tris­(phosphate) complexes, 24 mentioned above, are known (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.]): {Ln2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6} [Ln = La (TEQCUP), Nd (TEQDAW)] and {Y2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6}(hexa­ne) (TEQDEA). With the exclusion of solvent mol­ecules, their structures are similar to that of 1.

5. Synthesis and crystallization

5.1. General experimental details

The synthesis of 1 and polymerization experiments were carried out under a purified argon atmosphere. n-Heptane and C6D6 were distilled over sodium wire. Acrylo­nitrile was distilled over CaH2 prior to use. 2,6-Di-tert-butyl-4-methyl­phenyl ethyl phospho­ric acid and complex 3 were synthesized according to literature procedures (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.]). C/H elemental analysis was performed with a Perkin Elmer 2400 Series II elemental analyser. 1H and 31P{1H} NMR spectra were recorded with a Bruker AVANCE 400 spectrometer at 298 K. Size-exclusion chromatography (SEC) measurements were recorded on an Agilent PL-GPC 220 chromatograph equipped with a PLgel Olexis column (eluent: di­methyl­formamide, 0.01% LiBr, 1 ml min−1, 323 K), using universal calibration with a poly(methyl methacrylate) standard. The SEC data were determined by using Kuhn–Mark–Houwink constants for polyacrylo­nitrile.

5.2. Synthesis of complex 1

An aqueous solution of KOH (0.19 g, 3.3 mmol in 5 ml) was added in small portions to a stirred suspension of 2,6-di-tert-butyl-4-methyl­phenyl ethyl phospho­ric acid (1.01 g, 3.09 mmol) in 10 ml of water until the pH = 7. The resulting solution was filtered. A solution of LuCl3(H2O)6 (0.39 g, 1.0 mmol) in 6 ml of water was added dropwise to the stirred solution of [K(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]. The formed white suspension was stirred for 3 h. The precipitate was filtered off and dried in air for two days. The yield of Lu[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]3(H2O)2 was 1.16 g (0.97 mmol, 97%). 1H NMR (400MHz, C6D6): δ 0.94 (9H, br s, OCH2CH3), 1.73 [54H, s, C(CH3)3], 2.16 (9H, s, Cipso—CH3), 4.00 (6H, br s, OCH2CH3), 5.57–6.6 (4H, br s, H2O), 7.17 (6H, s, CmetaH). 31P{1H} NMR (162MHz, C6D6): δ −7.5.

Vacuum drying of 1.11 g (0.93 mmol) over P2O5 resulted in Lu2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6. (1.04 g, 0.45 mmol) Calculated for C102H168Lu2O24P6: C, 52.94%; H, 7.32%. Found: C, 52.82%; H, 7.53%. 1H NMR (400MHz, C6D6): δ 0.67 (12H, br s, OCH2CH3), 1.06 (6H, br s, OCH2CH3), 1.77 [108H, s, C(CH3)3], 2.17 (18H, s, Cipso—CH3), 4.05 (12H, br s, OCH2CH3), 7.19 (12H, br s, Cmeta—H). 31P{1H} NMR (162 MHz, C6D6): δ −11.0 (4P, bridging), +0.9 (2P, terminal).

Recrystallization of 0.20 g (0.086 mmol) of Lu2[(2,6-tBu2-4-MeC6H2-O)(EtO)PO2]6 from 1 ml of hot heptane led to the formation of crystals of 1. Some of them were taken for X-ray studies. The remaining crystals were filtered off, washed with cold (273 K) heptane (2 × 0.5 ml) and dried under vacuum, yield 0.08 g. The mother liquor was concentrated to 0.5 ml and cooled to ca 253 K overnight. This allowed the isolation of 0.11 g of precipitated crystals. Total yield of 1 was 0.19 g (0.076 mmol, 87%). 1H NMR (400MHz, C6D6): δ 0.64–0.71 (12H, br m, OCH2CH3), 0.90 [12H, t, CH3(CH2)5CH3], 1.02–1.10 (6H, br m, OCH2CH3), 1.20–1.31 [20H, m, CH3(CH2)5CH3], 1.76 [108H, s, C(CH3)3], 2.17 (18H, s, Cipso—CH3), 3.96–4.15 (12H, br m, OCH2CH3), 7.19 (12H, br s, Cmeta—H). 31P{1H} NMR (162 MHz, C6D6): δ −11.0 (4P, s, bridging phosphate), +1.0 (2P, s, terminal phosphate). Calculated for C116H200Lu2O24P6: C, 55.41%; H, 8.02%. Found: C, 55.70%; H, 8.14%.

5.3. Polymerization experimental details

Catalytic system preparation. The catalyst was obtained by addition of a 1.0 M heptane solution of Bu2Mg (2.4 ml, 2.4 mmol) to a toluene (7 ml) solution containing 0.2 mmol of either 1 or 3 (which is 0.4 mmol of Ln) and TMEDA (0.36 ml, 2.4 mmol). The total volume of the mixture was 10 ml. The mixture was heated at 323 K for 45 min.

Acrylo­nitrile polymerization. A glass reactor was charged with toluene (11 ml), acrylo­nitrile (2.19 ml, 33.4 mmol) and the prepared catalytic system (1 ml, containing 0.04 mmol of Ln) while stirring at 273 K. The initial acrylo­nitrile/Ln molar ratio was 835:1. After 1 h, the reaction was stopped by adding 1 ml of methanol. The polymer was precipitated by 50 ml of acetone. The precipitate was washed with a 1 M hydro­chloric acid solution (2 × 10 ml), water (10 ml), acetone (2 × 20 ml), and dried under dynamic vacuum.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were positioned geometrically (C—H distance = 0.95 Å for aromatic, 0.98 Å for methyl, and 0.99 Å for methyl­ene H atoms) and refined as riding atoms with Uiso(H)= 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. A rotating group model was applied for the methyl groups. Twelve reflections ([\overline{1}] [\overline{1}] 1; [\overline{1}] 0 1; [\overline{1}] 1 0; 0 [\overline{1}] 1; 0 0 1; 0 0 2; 0 1 0; 0 1 1; 0 1 2; 1 0 1; 1 1 0; 1 1 1) were affected by the beam stop, and were therefore omitted from the final cycles of refinement. SADI and SIMU SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) instructions were applied to restrain carbon atoms in the two heptane mol­ecules. One heptane mol­ecule exhibits rather high thermal motions of carbon atoms (C110–C116). The associated disorder could be adequately modelled by using the residual electron density·As a result of these high thermal motions, the final crystallographic model displays rather small inter­molecular H⋯H distances for two neighbouring methyl groups (atoms C110) of inversion-heptane mol­ecules.

Table 3
Experimental details

Crystal data
Chemical formula [Lu2(C17H28O4P)6]·2C7H16
Mr 2514.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 14.8828 (15), 19.983 (2), 22.392 (2)
α, β, γ (°) 80.469 (2), 87.417 (2), 74.798 (2)
V3) 6337.8 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.69
Crystal size (mm) 0.15 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.786, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 46151, 24296, 13178
Rint 0.099
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.147, 0.96
No. of reflections 24296
No. of parameters 1386
No. of restraints 74
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.42, −1.50
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Tetrakis(µ2-ethyl 2,6-di-tert-butyl-4-methylphenyl phosphato-κ2O:O')\ bis(ethyl 2,6-di-tert-butyl-4-methylphenyl phosphato-κ2O,O')\ dilutetium n-heptane disolvate top
Crystal data top
[Lu2(C17H28O4P)6]·2C7H16Z = 2
Mr = 2514.51F(000) = 2640
Triclinic, P1Dx = 1.318 Mg m3
a = 14.8828 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 19.983 (2) ÅCell parameters from 3700 reflections
c = 22.392 (2) Åθ = 2.2–20.0°
α = 80.469 (2)°µ = 1.69 mm1
β = 87.417 (2)°T = 120 K
γ = 74.798 (2)°Needle, colourless
V = 6337.8 (11) Å30.15 × 0.02 × 0.01 mm
Data collection top
Bruker SMART APEXII
diffractometer
24296 independent reflections
Radiation source: fine-focus sealed tube13178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1816
Tmin = 0.786, Tmax = 0.983k = 2424
46151 measured reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
24296 reflectionsΔρmax = 1.42 e Å3
1386 parametersΔρmin = 1.50 e Å3
74 restraintsExtinction correction: (SHELXL-2017/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00024 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu10.84389 (3)0.20120 (2)0.15532 (2)0.02069 (11)
Lu20.65941 (3)0.20699 (2)0.29484 (2)0.02032 (11)
P10.83582 (16)0.05847 (12)0.25062 (10)0.0258 (5)
P20.60763 (16)0.17844 (12)0.16119 (10)0.0244 (5)
P30.69659 (18)0.34982 (12)0.18281 (11)0.0305 (6)
P40.87138 (18)0.22576 (14)0.30977 (11)0.0355 (6)
P50.96535 (16)0.20706 (12)0.05347 (10)0.0260 (6)
P60.53335 (16)0.21743 (12)0.39372 (10)0.0242 (5)
O10.8890 (4)0.0901 (3)0.2003 (3)0.0280 (14)
O20.7598 (4)0.1105 (3)0.2769 (2)0.0290 (14)
O30.7924 (4)0.0041 (3)0.2286 (3)0.0275 (14)
O40.9042 (4)0.0166 (3)0.3045 (2)0.0297 (15)
O50.7058 (4)0.1826 (3)0.1496 (3)0.0281 (14)
O60.5784 (4)0.1802 (3)0.2258 (2)0.0258 (14)
O70.5398 (4)0.2377 (3)0.1184 (3)0.0296 (15)
O80.5991 (4)0.1085 (3)0.1402 (2)0.0253 (14)
O90.7678 (4)0.3125 (3)0.1416 (3)0.0309 (15)
O100.6615 (4)0.3022 (3)0.2320 (3)0.0314 (15)
O110.7352 (4)0.4019 (3)0.2134 (3)0.0351 (16)
O120.6080 (4)0.3956 (3)0.1443 (3)0.0304 (15)
O130.8756 (4)0.2209 (3)0.2435 (3)0.0352 (16)
O140.7780 (4)0.2263 (3)0.3382 (2)0.0291 (15)
O150.9508 (4)0.1649 (4)0.3435 (3)0.051 (2)
O160.8977 (5)0.2943 (4)0.3153 (3)0.0443 (18)
O170.8781 (4)0.1818 (3)0.0584 (2)0.0253 (14)
O180.9759 (4)0.2266 (3)0.1142 (2)0.0289 (14)
O191.0542 (4)0.1521 (3)0.0350 (3)0.0296 (15)
O200.9555 (4)0.2702 (3)0.0007 (2)0.0262 (14)
O210.6107 (4)0.1548 (3)0.3834 (2)0.0263 (14)
O220.5349 (4)0.2728 (3)0.3401 (2)0.0264 (14)
O230.4355 (4)0.1997 (3)0.4048 (2)0.0279 (14)
O240.5478 (4)0.2435 (3)0.4540 (2)0.0267 (14)
C10.8424 (6)0.0465 (4)0.1899 (4)0.032 (2)
H1A0.9021500.0745240.2089440.039*
H1B0.8558370.0213980.1499650.039*
C20.7824 (7)0.0932 (5)0.1824 (4)0.043 (3)
H2A0.8101350.1231050.1523160.065*
H2B0.7204500.0646460.1687070.065*
H2C0.7767990.1227460.2212410.065*
C30.9307 (6)0.0581 (4)0.3247 (4)0.024 (2)
C41.0203 (6)0.0934 (5)0.3100 (4)0.028 (2)
C51.0389 (7)0.1661 (5)0.3210 (4)0.035 (2)
H51.0990600.1927770.3115240.042*
C60.9741 (7)0.2015 (5)0.3452 (4)0.038 (2)
C70.8913 (6)0.1625 (4)0.3646 (4)0.032 (2)
H70.8485240.1870640.3840660.038*
C80.8654 (6)0.0896 (4)0.3579 (4)0.028 (2)
C91.0990 (6)0.0584 (5)0.2866 (4)0.034 (2)
C101.0878 (7)0.0328 (5)0.2178 (4)0.047 (3)
H10A1.1436980.0188270.2017120.071*
H10B1.0333790.0075660.2102170.071*
H10C1.0793650.0707990.1978840.071*
C111.1942 (6)0.1116 (5)0.2955 (5)0.045 (3)
H11A1.2427860.0892150.2781760.067*
H11B1.1950340.1516100.2751720.067*
H11C1.2057950.1281240.3388550.067*
C121.1023 (7)0.0010 (5)0.3201 (5)0.056 (3)
H12A1.1602460.0150030.3100690.084*
H12B1.0998450.0148640.3638650.084*
H12C1.0490100.0412190.3081740.084*
C130.9962 (8)0.2806 (5)0.3515 (5)0.061 (3)
H13A0.9934360.3007400.3942790.092*
H13B1.0588790.2986290.3356660.092*
H13C0.9507300.2937160.3285200.092*
C140.7770 (6)0.0530 (5)0.3906 (4)0.033 (2)
C150.7909 (6)0.0093 (5)0.4155 (4)0.033 (2)
H15A0.8046260.0437320.3822250.049*
H15B0.8429580.0063070.4441500.049*
H15C0.7340830.0310520.4364010.049*
C160.7563 (7)0.1035 (5)0.4461 (4)0.041 (3)
H16A0.7100910.0771040.4719140.062*
H16B0.8137270.1260830.4690680.062*
H16C0.7317580.1395040.4325960.062*
C170.6904 (6)0.0308 (5)0.3505 (4)0.034 (2)
H17A0.6966030.0071200.3179210.051*
H17B0.6352100.0141570.3748720.051*
H17C0.6838540.0709930.3328450.051*
C180.4678 (7)0.2937 (6)0.1360 (5)0.050 (3)
H18A0.4876320.3378310.1268170.061*
H18B0.4581260.2839690.1803360.061*
C190.3807 (8)0.3029 (6)0.1056 (5)0.066 (4)
H19A0.3330990.3407770.1200700.098*
H19B0.3610030.2591380.1142550.098*
H19C0.3890560.3149100.0618300.098*
C200.5338 (6)0.1031 (4)0.0988 (4)0.023 (2)
C210.5565 (6)0.1102 (4)0.0373 (4)0.025 (2)
C220.4849 (7)0.1181 (5)0.0027 (4)0.036 (2)
H220.4976480.1253090.0448610.044*
C230.3967 (7)0.1159 (5)0.0155 (4)0.037 (2)
C240.3803 (6)0.1003 (5)0.0772 (4)0.034 (2)
H240.3200380.0966090.0904870.040*
C250.4495 (6)0.0899 (5)0.1204 (4)0.027 (2)
C260.6565 (6)0.1098 (5)0.0106 (4)0.031 (2)
C270.6684 (6)0.1848 (4)0.0007 (4)0.033 (2)
H27A0.7323520.1838040.0139950.049*
H27B0.6557960.2048560.0368370.049*
H27C0.6247910.2136580.0321380.049*
C280.7343 (6)0.0615 (5)0.0511 (4)0.037 (2)
H28A0.7934300.0554860.0289550.056*
H28B0.7208840.0156930.0632490.056*
H28C0.7386180.0822610.0872330.056*
C290.6683 (7)0.0821 (5)0.0500 (4)0.042 (3)
H29A0.7323150.0781420.0646150.063*
H29B0.6248460.1147560.0797250.063*
H29C0.6554410.0358640.0444140.063*
C300.3187 (7)0.1296 (6)0.0298 (4)0.051 (3)
H30A0.3329160.0930610.0555650.076*
H30B0.3126730.1756460.0549350.076*
H30C0.2601850.1290730.0080840.076*
C310.4268 (6)0.0666 (5)0.1879 (4)0.034 (2)
C320.3607 (7)0.0185 (5)0.1903 (4)0.047 (3)
H32A0.3537180.0028240.2323480.071*
H32B0.3865450.0184960.1658730.071*
H32C0.2997270.0462810.1742100.071*
C330.3757 (7)0.1302 (6)0.2167 (5)0.055 (3)
H33A0.4169340.1610840.2175650.082*
H33B0.3572680.1144780.2581060.082*
H33C0.3201070.1559960.1928340.082*
C340.5124 (7)0.0250 (6)0.2244 (4)0.053 (3)
H34A0.5471310.0571520.2342580.079*
H34B0.5520090.0084700.2007000.079*
H34C0.4933080.0005950.2619590.079*
C350.7983 (7)0.4396 (5)0.1820 (5)0.046 (3)
H35A0.7716630.4643310.1422100.055*
H35B0.8581480.4059000.1748390.055*
C360.8154 (10)0.4919 (7)0.2183 (7)0.108 (5)
H36A0.8497800.5221400.1935110.162*
H36B0.8519540.4669260.2543350.162*
H36C0.7556850.5206750.2306210.162*
C370.5900 (6)0.4687 (4)0.1233 (4)0.026 (2)
C380.6229 (6)0.4907 (4)0.0646 (4)0.026 (2)
C390.6142 (6)0.5629 (5)0.0507 (4)0.032 (2)
H390.6361600.5805230.0123730.038*
C400.5758 (7)0.6105 (5)0.0893 (4)0.036 (2)
C410.5370 (7)0.5857 (4)0.1428 (4)0.037 (3)
H410.5078270.6181750.1687520.045*
C420.5386 (6)0.5156 (5)0.1604 (4)0.033 (2)
C430.6628 (6)0.4448 (4)0.0168 (4)0.029 (2)
C440.6274 (6)0.3784 (4)0.0206 (4)0.032 (2)
H44A0.5594080.3910020.0244230.049*
H44B0.6548080.3444980.0560260.049*
H44C0.6454600.3574770.0161480.049*
C450.7703 (6)0.4244 (4)0.0211 (4)0.031 (2)
H45A0.7923040.4671340.0167220.046*
H45B0.7969520.3976580.0113220.046*
H45C0.7897960.3956680.0604440.046*
C460.6368 (7)0.4860 (5)0.0469 (4)0.038 (2)
H46A0.5688580.5008830.0509930.057*
H46B0.6632210.4559370.0771650.057*
H46C0.6616870.5274120.0532900.057*
C470.5721 (8)0.6866 (5)0.0715 (5)0.054 (3)
H47A0.5378110.7129310.1023150.082*
H47B0.5405820.7043950.0323950.082*
H47C0.6356070.6924680.0681790.082*
C480.4841 (7)0.4956 (5)0.2188 (4)0.038 (2)
C490.3979 (7)0.5554 (5)0.2232 (5)0.052 (3)
H49A0.3572440.5404810.2554530.079*
H49B0.3644020.5680840.1845630.079*
H49C0.4163440.5961750.2323920.079*
C500.5427 (8)0.4850 (6)0.2746 (5)0.064 (4)
H50A0.5044360.4786530.3108690.097*
H50B0.5665820.5263140.2745710.097*
H50C0.5949260.4433060.2746960.097*
C510.4496 (7)0.4296 (5)0.2173 (5)0.050 (3)
H51A0.4076180.4235400.2515790.076*
H51B0.5029570.3883180.2199500.076*
H51C0.4161500.4350560.1793140.076*
C520.9445 (8)0.1236 (6)0.4063 (5)0.061 (3)
H52A0.8851550.1445860.4259370.073*
H52B0.9463960.0743920.4032940.073*
C531.0243 (9)0.1257 (7)0.4425 (6)0.086 (5)
H53A1.0208010.1000620.4834820.129*
H53B1.0223210.1746560.4448010.129*
H53C1.0826800.1038470.4232960.129*
C540.9674 (7)0.3003 (5)0.3551 (4)0.041 (3)
C551.0617 (6)0.2896 (5)0.3354 (5)0.040 (3)
C561.1223 (6)0.2930 (5)0.3796 (4)0.034 (2)
H561.1859040.2873100.3684800.041*
C571.0994 (7)0.3034 (5)0.4364 (4)0.035 (2)
C581.0067 (8)0.3193 (6)0.4520 (5)0.053 (3)
H580.9899250.3280960.4919230.063*
C590.9355 (7)0.3230 (6)0.4113 (5)0.046 (3)
C601.0964 (6)0.2790 (5)0.2713 (4)0.035 (2)
C611.0278 (7)0.3276 (5)0.2230 (4)0.046 (3)
H61A0.9680210.3152770.2271500.069*
H61B1.0534150.3218270.1825060.069*
H61C1.0184420.3765490.2286410.069*
C621.1134 (7)0.2024 (5)0.2612 (4)0.045 (3)
H62A1.0535820.1907270.2601670.067*
H62B1.1513480.1711460.2944170.067*
H62C1.1461350.1965300.2227300.067*
C631.1899 (7)0.2986 (6)0.2588 (5)0.054 (3)
H63A1.2388540.2641630.2836290.081*
H63B1.1842200.3454250.2689290.081*
H63C1.2061200.2987590.2158540.081*
C641.1695 (8)0.3047 (6)0.4815 (5)0.053 (3)
H64A1.2308140.2765780.4709310.079*
H64B1.1515920.2851230.5219300.079*
H64C1.1720500.3532660.4811600.079*
C650.8319 (7)0.3478 (6)0.4287 (5)0.050 (3)
C660.7984 (7)0.2830 (6)0.4635 (5)0.054 (3)
H66A0.7978840.2502420.4355280.081*
H66B0.7355430.2995690.4794930.081*
H66C0.8411290.2591080.4970040.081*
C670.7704 (7)0.3870 (6)0.3761 (5)0.060 (3)
H67A0.7917140.4282850.3579230.090*
H67B0.7061100.4021080.3902230.090*
H67C0.7734080.3562440.3458470.090*
C680.8228 (10)0.3982 (7)0.4766 (7)0.095 (5)
H68A0.8505470.4368540.4603000.143*
H68B0.8552790.3720720.5137740.143*
H68C0.7568360.4172470.4855800.143*
C691.0917 (7)0.0871 (5)0.0743 (4)0.039 (3)
H69A1.0758260.0926990.1169030.047*
H69B1.1603760.0731050.0704440.047*
C701.0517 (7)0.0327 (5)0.0570 (5)0.051 (3)
H70A1.0749350.0116650.0844900.077*
H70B1.0700610.0259660.0153900.077*
H70C0.9836710.0475790.0597280.077*
C711.0134 (6)0.2818 (4)0.0495 (4)0.026 (2)
C720.9917 (6)0.2653 (4)0.1050 (4)0.031 (2)
C731.0527 (7)0.2730 (4)0.1528 (4)0.037 (2)
H731.0420730.2594620.1900480.044*
C741.1280 (8)0.2996 (5)0.1482 (5)0.044 (3)
C751.1420 (6)0.3204 (5)0.0943 (5)0.038 (3)
H751.1935770.3391990.0910620.046*
C761.0829 (6)0.3147 (5)0.0443 (4)0.033 (2)
C770.9036 (6)0.2416 (5)0.1166 (4)0.033 (2)
C780.8147 (6)0.2877 (5)0.0907 (4)0.035 (2)
H78A0.8105440.3373530.1055630.052*
H78B0.8175140.2790410.0464070.052*
H78C0.7597000.2757380.1039200.052*
C790.8871 (8)0.2479 (6)0.1846 (4)0.048 (3)
H79A0.8896440.2947010.2049790.072*
H79B0.8257430.2408040.1910100.072*
H79C0.9353320.2121710.2013100.072*
C800.9163 (7)0.1633 (4)0.0895 (4)0.038 (2)
H80A0.8641040.1472750.1017720.057*
H80B0.9181790.1576860.0452270.057*
H80C0.9747410.1352800.1043670.057*
C811.1943 (7)0.3064 (6)0.2018 (4)0.053 (3)
H81A1.2191600.2603820.2144850.080*
H81B1.2456980.3233970.1897190.080*
H81C1.1604430.3396810.2355880.080*
C821.1036 (6)0.3432 (5)0.0127 (4)0.035 (2)
C831.1596 (6)0.2834 (5)0.0592 (4)0.039 (2)
H83A1.1686040.3018550.0957510.058*
H83B1.2203290.2629680.0419410.058*
H83C1.1255790.2471680.0695670.058*
C841.1600 (7)0.3967 (5)0.0031 (5)0.047 (3)
H84A1.1640200.4186180.0324340.071*
H84B1.1296850.4329150.0363110.071*
H84C1.2227590.3733570.0155840.071*
C851.0129 (6)0.3813 (5)0.0410 (4)0.038 (2)
H85A1.0273480.4058760.0723250.058*
H85B0.9790130.3470440.0592820.058*
H85C0.9743150.4154230.0096520.058*
C860.4057 (6)0.1639 (6)0.3622 (4)0.041 (3)
H86A0.4590560.1276700.3496010.049*
H86B0.3794960.1975940.3257160.049*
C870.3325 (6)0.1303 (5)0.3929 (4)0.039 (3)
H87A0.3081070.1074600.3641050.059*
H87B0.2816520.1663310.4070450.059*
H87C0.3601930.0951280.4275170.059*
C880.4850 (6)0.2517 (5)0.5047 (4)0.025 (2)
C890.4951 (6)0.1942 (5)0.5514 (4)0.026 (2)
C900.4280 (6)0.2027 (4)0.5968 (4)0.028 (2)
H900.4278240.1643130.6281200.034*
C910.3613 (6)0.2660 (6)0.5976 (4)0.037 (3)
C920.3630 (6)0.3212 (5)0.5547 (4)0.031 (2)
H920.3188000.3646500.5570000.037*
C930.4267 (6)0.3176 (4)0.5070 (4)0.026 (2)
C940.5730 (6)0.1247 (5)0.5560 (4)0.032 (2)
C950.6675 (6)0.1372 (5)0.5382 (4)0.040 (3)
H95A0.6690570.1527440.4943610.059*
H95B0.7160390.0934270.5491680.059*
H95C0.6783930.1733940.5594460.059*
C960.5821 (7)0.0863 (5)0.6233 (4)0.047 (3)
H96A0.6339480.0439430.6266070.070*
H96B0.5241980.0732230.6358020.070*
H96C0.5936960.1178040.6495530.070*
C970.5482 (7)0.0748 (4)0.5184 (4)0.040 (3)
H97A0.5499890.0939330.4752710.060*
H97B0.4854920.0697340.5292410.060*
H97C0.5931570.0287550.5265750.060*
C980.2884 (7)0.2728 (6)0.6488 (4)0.047 (3)
H98A0.2258840.2906380.6312770.071*
H98B0.2992360.3055170.6741500.071*
H98C0.2938060.2266910.6736080.071*
C990.4251 (7)0.3849 (5)0.4606 (4)0.039 (2)
C1000.3710 (7)0.3885 (5)0.4039 (4)0.041 (3)
H10D0.3989420.3472130.3846470.062*
H10E0.3728200.4311910.3757260.062*
H10F0.3061820.3893100.4147000.062*
C1010.3761 (9)0.4520 (5)0.4879 (5)0.064 (4)
H10G0.3809320.4937900.4593510.096*
H10H0.4061640.4512770.5261240.096*
H10I0.3103060.4533340.4953270.096*
C1020.5242 (7)0.3926 (5)0.4446 (4)0.046 (3)
H10J0.5499890.3652440.4124580.069*
H10K0.5639030.3752400.4805850.069*
H10L0.5216590.4421930.4306830.069*
C1030.7304 (9)0.3673 (9)0.6413 (6)0.107 (6)
H13D0.7859220.3680610.6161590.161*
H13E0.7487630.3370290.6802070.161*
H13F0.6993170.4150240.6481730.161*
C1040.6660 (9)0.3395 (7)0.6099 (6)0.087 (5)
H14D0.7012280.2945540.5976750.104*
H14E0.6438240.3728880.5724910.104*
C1050.5830 (9)0.3274 (6)0.6458 (5)0.075 (4)
H15D0.5485360.3723670.6584130.089*
H15E0.5416470.3146470.6186980.089*
C1060.6007 (7)0.2728 (5)0.7006 (5)0.058 (3)
H16D0.6376400.2878100.7290490.070*
H16E0.6401110.2290310.6884140.070*
C1070.5190 (7)0.2555 (5)0.7344 (4)0.056 (3)
H17D0.4841640.2975600.7514370.068*
H17E0.4774950.2468350.7048280.068*
C1080.5373 (8)0.1946 (6)0.7845 (5)0.072 (4)
H18D0.5780360.1536440.7686480.086*
H18E0.5723940.2056030.8164220.086*
C1090.4545 (8)0.1737 (7)0.8130 (6)0.078 (4)
H19D0.4747940.1336480.8454440.118*
H19E0.4202870.1603850.7824250.118*
H19F0.4138700.2132210.8298510.118*
C1100.0023 (18)0.5193 (13)0.4373 (9)0.252 (8)
H10M0.0075770.4781070.4645080.378*
H10N0.0410760.5618510.4477760.378*
H10O0.0664410.5221430.4414530.378*
C1110.0145 (13)0.5127 (14)0.3718 (8)0.224 (7)
H11D0.0312740.4683650.3698140.269*
H11E0.0645750.5527610.3528800.269*
C1120.0790 (11)0.5132 (13)0.3412 (7)0.212 (7)
H12D0.1057260.5486180.3546570.255*
H12E0.1237890.4664630.3502350.255*
C1130.0558 (11)0.5319 (12)0.2743 (7)0.227 (7)
H13G0.0035830.5131120.2652070.272*
H13H0.0380840.5835260.2618090.272*
C1140.1423 (14)0.4991 (10)0.2421 (6)0.228 (7)
H14G0.1981730.4981250.2649860.273*
H14H0.1433630.4503840.2379750.273*
C1150.1409 (14)0.5431 (10)0.1813 (8)0.212 (7)
H15G0.1016650.5912650.1822980.254*
H15H0.2047000.5458300.1690750.254*
C1160.1020 (16)0.5095 (10)0.1376 (8)0.184 (7)
H16G0.0976010.5383700.0974220.276*
H16H0.0398360.5052150.1510240.276*
H16I0.1428760.4626560.1355330.276*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.0200 (2)0.0269 (2)0.0177 (2)0.01156 (18)0.00297 (17)0.00276 (17)
Lu20.0197 (2)0.0240 (2)0.0181 (2)0.00758 (17)0.00353 (17)0.00374 (17)
P10.0249 (14)0.0231 (13)0.0270 (13)0.0044 (10)0.0046 (10)0.0017 (10)
P20.0199 (13)0.0325 (13)0.0247 (13)0.0124 (10)0.0036 (10)0.0075 (10)
P30.0367 (16)0.0247 (13)0.0287 (14)0.0088 (11)0.0059 (12)0.0005 (11)
P40.0332 (16)0.0568 (18)0.0258 (14)0.0258 (14)0.0023 (11)0.0107 (12)
P50.0248 (14)0.0312 (14)0.0236 (13)0.0119 (11)0.0056 (10)0.0030 (10)
P60.0232 (13)0.0288 (13)0.0198 (12)0.0070 (10)0.0050 (10)0.0022 (10)
O10.018 (3)0.030 (3)0.032 (4)0.002 (3)0.007 (3)0.004 (3)
O20.032 (4)0.024 (3)0.027 (3)0.006 (3)0.010 (3)0.000 (3)
O30.023 (3)0.027 (3)0.031 (4)0.006 (3)0.007 (3)0.005 (3)
O40.035 (4)0.030 (4)0.023 (3)0.006 (3)0.000 (3)0.004 (3)
O50.022 (3)0.037 (4)0.029 (4)0.012 (3)0.002 (3)0.010 (3)
O60.020 (3)0.033 (3)0.027 (3)0.011 (3)0.008 (3)0.009 (3)
O70.029 (4)0.027 (3)0.030 (4)0.002 (3)0.004 (3)0.007 (3)
O80.023 (3)0.030 (3)0.023 (3)0.007 (3)0.001 (3)0.001 (3)
O90.030 (4)0.029 (3)0.035 (4)0.012 (3)0.009 (3)0.004 (3)
O100.024 (4)0.036 (4)0.031 (4)0.009 (3)0.014 (3)0.002 (3)
O110.041 (4)0.032 (4)0.034 (4)0.014 (3)0.002 (3)0.004 (3)
O120.027 (4)0.029 (4)0.033 (4)0.008 (3)0.010 (3)0.003 (3)
O130.033 (4)0.059 (4)0.021 (3)0.023 (3)0.006 (3)0.007 (3)
O140.032 (4)0.043 (4)0.022 (3)0.023 (3)0.003 (3)0.014 (3)
O150.027 (4)0.094 (6)0.031 (4)0.015 (4)0.003 (3)0.008 (4)
O160.054 (5)0.063 (5)0.031 (4)0.035 (4)0.000 (3)0.018 (3)
O170.017 (3)0.036 (3)0.027 (3)0.014 (3)0.009 (3)0.004 (3)
O180.033 (4)0.039 (4)0.019 (3)0.016 (3)0.003 (3)0.006 (3)
O190.025 (4)0.028 (3)0.030 (3)0.001 (3)0.008 (3)0.003 (3)
O200.027 (4)0.033 (3)0.019 (3)0.012 (3)0.012 (3)0.000 (3)
O210.028 (4)0.029 (3)0.019 (3)0.005 (3)0.007 (3)0.004 (3)
O220.024 (3)0.038 (4)0.015 (3)0.005 (3)0.007 (3)0.005 (3)
O230.016 (3)0.046 (4)0.024 (3)0.010 (3)0.002 (3)0.012 (3)
O240.021 (3)0.038 (4)0.023 (3)0.010 (3)0.004 (3)0.006 (3)
C10.036 (6)0.029 (5)0.032 (5)0.002 (4)0.001 (4)0.014 (4)
C20.049 (7)0.042 (6)0.045 (6)0.017 (5)0.006 (5)0.015 (5)
C30.028 (5)0.027 (5)0.020 (5)0.007 (4)0.002 (4)0.009 (4)
C40.024 (5)0.036 (6)0.025 (5)0.007 (4)0.001 (4)0.005 (4)
C50.037 (6)0.029 (5)0.031 (6)0.001 (5)0.000 (5)0.000 (4)
C60.043 (7)0.028 (5)0.037 (6)0.007 (5)0.015 (5)0.004 (4)
C70.029 (6)0.030 (5)0.034 (6)0.008 (4)0.015 (4)0.000 (4)
C80.031 (6)0.028 (5)0.019 (5)0.003 (4)0.002 (4)0.003 (4)
C90.036 (6)0.034 (5)0.032 (6)0.015 (5)0.007 (4)0.002 (4)
C100.026 (6)0.060 (7)0.051 (7)0.014 (5)0.009 (5)0.011 (6)
C110.017 (5)0.052 (7)0.059 (7)0.004 (5)0.000 (5)0.003 (5)
C120.039 (7)0.049 (7)0.087 (9)0.016 (5)0.004 (6)0.024 (6)
C130.053 (8)0.039 (7)0.077 (9)0.002 (6)0.021 (6)0.013 (6)
C140.027 (6)0.032 (5)0.034 (6)0.006 (4)0.009 (4)0.005 (4)
C150.028 (6)0.038 (6)0.025 (5)0.001 (4)0.010 (4)0.001 (4)
C160.037 (6)0.032 (6)0.045 (6)0.005 (5)0.013 (5)0.008 (5)
C170.033 (6)0.039 (6)0.034 (6)0.020 (5)0.015 (5)0.006 (4)
C180.034 (7)0.060 (7)0.043 (7)0.012 (5)0.007 (5)0.006 (6)
C190.069 (9)0.048 (7)0.070 (9)0.005 (6)0.030 (7)0.008 (6)
C200.018 (5)0.027 (5)0.028 (5)0.011 (4)0.001 (4)0.008 (4)
C210.035 (6)0.024 (5)0.021 (5)0.013 (4)0.002 (4)0.003 (4)
C220.044 (7)0.053 (6)0.026 (5)0.033 (5)0.006 (5)0.015 (5)
C230.044 (7)0.041 (6)0.033 (6)0.023 (5)0.008 (5)0.004 (5)
C240.027 (6)0.048 (6)0.031 (6)0.017 (5)0.007 (4)0.009 (5)
C250.036 (6)0.039 (6)0.015 (5)0.020 (5)0.000 (4)0.007 (4)
C260.039 (6)0.034 (5)0.022 (5)0.013 (5)0.005 (4)0.007 (4)
C270.029 (6)0.039 (6)0.034 (5)0.017 (4)0.011 (4)0.007 (4)
C280.038 (6)0.046 (6)0.028 (5)0.010 (5)0.003 (5)0.004 (5)
C290.043 (7)0.054 (7)0.031 (6)0.013 (5)0.008 (5)0.010 (5)
C300.047 (7)0.081 (8)0.033 (6)0.040 (6)0.011 (5)0.003 (6)
C310.029 (6)0.051 (6)0.031 (5)0.023 (5)0.001 (4)0.006 (5)
C320.059 (7)0.058 (7)0.035 (6)0.040 (6)0.016 (5)0.002 (5)
C330.042 (7)0.100 (9)0.042 (7)0.042 (7)0.017 (5)0.032 (6)
C340.058 (8)0.073 (8)0.028 (6)0.035 (6)0.001 (5)0.018 (5)
C350.039 (7)0.042 (6)0.056 (7)0.011 (5)0.004 (5)0.009 (5)
C360.113 (11)0.094 (10)0.143 (12)0.057 (9)0.050 (10)0.056 (9)
C370.028 (5)0.018 (5)0.029 (5)0.005 (4)0.004 (4)0.001 (4)
C380.017 (5)0.029 (5)0.034 (5)0.002 (4)0.008 (4)0.011 (4)
C390.033 (6)0.033 (5)0.030 (5)0.011 (4)0.001 (4)0.001 (4)
C400.034 (6)0.037 (6)0.035 (6)0.004 (5)0.002 (5)0.005 (5)
C410.049 (7)0.022 (5)0.037 (6)0.005 (5)0.002 (5)0.016 (4)
C420.025 (5)0.029 (5)0.040 (6)0.001 (4)0.005 (4)0.007 (4)
C430.027 (5)0.031 (5)0.032 (5)0.011 (4)0.013 (4)0.007 (4)
C440.031 (6)0.032 (5)0.035 (6)0.007 (4)0.006 (4)0.010 (4)
C450.028 (6)0.032 (5)0.034 (5)0.009 (4)0.009 (4)0.010 (4)
C460.052 (7)0.036 (6)0.024 (5)0.009 (5)0.001 (5)0.003 (4)
C470.056 (8)0.037 (6)0.070 (8)0.009 (6)0.001 (6)0.012 (6)
C480.040 (6)0.038 (6)0.033 (6)0.002 (5)0.007 (5)0.013 (5)
C490.044 (7)0.055 (7)0.052 (7)0.005 (6)0.005 (6)0.021 (6)
C500.058 (8)0.096 (10)0.035 (7)0.014 (7)0.012 (6)0.012 (6)
C510.039 (7)0.059 (7)0.042 (6)0.003 (5)0.026 (5)0.000 (5)
C520.056 (8)0.060 (8)0.062 (8)0.005 (6)0.012 (7)0.008 (6)
C530.097 (11)0.087 (10)0.071 (9)0.022 (9)0.054 (8)0.006 (8)
C540.040 (7)0.053 (7)0.034 (6)0.011 (5)0.003 (5)0.017 (5)
C550.020 (6)0.050 (7)0.054 (7)0.012 (5)0.003 (5)0.015 (5)
C560.020 (5)0.037 (6)0.042 (6)0.006 (4)0.005 (5)0.002 (5)
C570.031 (6)0.052 (7)0.033 (6)0.026 (5)0.005 (5)0.009 (5)
C580.053 (8)0.074 (8)0.040 (7)0.033 (6)0.003 (6)0.007 (6)
C590.044 (7)0.059 (7)0.041 (7)0.021 (6)0.003 (5)0.010 (5)
C600.025 (6)0.047 (6)0.038 (6)0.010 (5)0.011 (4)0.019 (5)
C610.041 (7)0.055 (7)0.049 (7)0.022 (5)0.002 (5)0.014 (5)
C620.036 (6)0.055 (7)0.038 (6)0.004 (5)0.005 (5)0.007 (5)
C630.024 (6)0.087 (9)0.051 (7)0.018 (6)0.017 (5)0.010 (6)
C640.056 (8)0.068 (8)0.044 (7)0.030 (6)0.018 (6)0.006 (6)
C650.025 (6)0.065 (8)0.061 (8)0.005 (5)0.011 (5)0.025 (6)
C660.053 (8)0.072 (8)0.047 (7)0.034 (6)0.022 (6)0.017 (6)
C670.036 (7)0.063 (8)0.064 (8)0.005 (6)0.009 (6)0.005 (6)
C680.089 (11)0.093 (11)0.124 (13)0.026 (9)0.016 (10)0.074 (10)
C690.037 (6)0.034 (6)0.040 (6)0.003 (5)0.003 (5)0.001 (5)
C700.046 (7)0.045 (7)0.054 (7)0.003 (5)0.004 (6)0.009 (6)
C710.027 (5)0.021 (5)0.026 (5)0.007 (4)0.012 (4)0.000 (4)
C720.036 (6)0.015 (5)0.034 (6)0.001 (4)0.009 (4)0.006 (4)
C730.051 (7)0.022 (5)0.029 (5)0.002 (5)0.013 (5)0.002 (4)
C740.055 (7)0.037 (6)0.039 (7)0.015 (5)0.020 (5)0.001 (5)
C750.026 (6)0.028 (5)0.055 (7)0.007 (4)0.014 (5)0.004 (5)
C760.032 (6)0.029 (5)0.036 (6)0.006 (4)0.006 (5)0.001 (4)
C770.038 (6)0.039 (6)0.023 (5)0.018 (5)0.009 (4)0.003 (4)
C780.040 (6)0.030 (5)0.037 (6)0.015 (5)0.001 (5)0.004 (4)
C790.061 (8)0.065 (7)0.018 (5)0.022 (6)0.004 (5)0.002 (5)
C800.046 (7)0.032 (6)0.037 (6)0.013 (5)0.013 (5)0.006 (5)
C810.059 (8)0.065 (8)0.034 (6)0.017 (6)0.032 (5)0.009 (5)
C820.024 (5)0.046 (6)0.038 (6)0.022 (5)0.007 (4)0.000 (5)
C830.033 (6)0.052 (7)0.037 (6)0.021 (5)0.003 (5)0.009 (5)
C840.044 (7)0.051 (7)0.053 (7)0.032 (5)0.010 (5)0.004 (5)
C850.040 (6)0.044 (6)0.038 (6)0.020 (5)0.004 (5)0.013 (5)
C860.029 (6)0.080 (8)0.024 (5)0.028 (5)0.010 (4)0.019 (5)
C870.032 (6)0.046 (6)0.037 (6)0.007 (5)0.000 (5)0.005 (5)
C880.026 (5)0.037 (5)0.015 (5)0.009 (4)0.006 (4)0.009 (4)
C890.025 (5)0.036 (5)0.019 (5)0.010 (4)0.003 (4)0.009 (4)
C900.032 (6)0.029 (5)0.025 (5)0.014 (4)0.002 (4)0.001 (4)
C910.028 (6)0.068 (7)0.021 (5)0.021 (5)0.012 (4)0.012 (5)
C920.017 (5)0.051 (6)0.026 (5)0.006 (4)0.002 (4)0.011 (5)
C930.017 (5)0.032 (5)0.029 (5)0.005 (4)0.005 (4)0.007 (4)
C940.035 (6)0.029 (5)0.034 (6)0.009 (4)0.004 (4)0.004 (4)
C950.035 (6)0.046 (6)0.035 (6)0.005 (5)0.008 (5)0.003 (5)
C960.062 (8)0.038 (6)0.035 (6)0.009 (5)0.010 (5)0.002 (5)
C970.055 (7)0.023 (5)0.036 (6)0.006 (5)0.010 (5)0.000 (4)
C980.035 (6)0.072 (8)0.036 (6)0.015 (6)0.015 (5)0.014 (6)
C990.044 (7)0.039 (6)0.033 (6)0.009 (5)0.006 (5)0.011 (5)
C1000.034 (6)0.042 (6)0.037 (6)0.003 (5)0.005 (5)0.006 (5)
C1010.090 (10)0.032 (6)0.065 (8)0.005 (6)0.016 (7)0.015 (6)
C1020.053 (7)0.054 (7)0.035 (6)0.021 (6)0.002 (5)0.008 (5)
C1030.078 (11)0.176 (17)0.076 (11)0.041 (11)0.011 (9)0.032 (11)
C1040.129 (14)0.077 (10)0.057 (9)0.032 (10)0.005 (9)0.010 (8)
C1050.088 (11)0.074 (9)0.064 (9)0.022 (8)0.018 (8)0.010 (8)
C1060.047 (8)0.058 (8)0.072 (9)0.008 (6)0.013 (7)0.023 (7)
C1070.060 (8)0.058 (8)0.052 (8)0.008 (6)0.011 (6)0.020 (6)
C1080.075 (10)0.093 (10)0.042 (7)0.014 (8)0.012 (7)0.008 (7)
C1090.072 (10)0.087 (10)0.072 (10)0.015 (8)0.009 (8)0.011 (8)
C1100.351 (19)0.195 (13)0.226 (17)0.100 (15)0.050 (17)0.022 (15)
C1110.325 (17)0.177 (11)0.196 (15)0.105 (13)0.051 (15)0.026 (13)
C1120.289 (16)0.160 (10)0.210 (14)0.089 (12)0.049 (14)0.026 (12)
C1130.277 (16)0.172 (11)0.237 (15)0.079 (12)0.016 (14)0.008 (12)
C1140.266 (15)0.179 (12)0.247 (15)0.091 (11)0.006 (13)0.006 (11)
C1150.244 (15)0.175 (12)0.230 (15)0.100 (11)0.018 (13)0.005 (11)
C1160.231 (16)0.154 (13)0.207 (16)0.129 (11)0.031 (14)0.022 (12)
Geometric parameters (Å, º) top
Lu1—O12.222 (5)C51—H51B0.9800
Lu1—O52.196 (5)C51—H51C0.9800
Lu1—O92.193 (6)C52—C531.483 (15)
Lu1—O132.172 (6)C52—H52A0.9900
Lu1—O172.280 (5)C52—H52B0.9900
Lu1—O182.274 (6)C53—H53A0.9800
Lu2—O22.192 (5)C53—H53B0.9800
Lu2—O62.216 (6)C53—H53C0.9800
Lu2—O102.178 (5)C54—C551.425 (13)
Lu2—O142.200 (6)C54—C591.426 (13)
Lu2—O212.264 (5)C55—C561.391 (13)
Lu2—O222.276 (5)C55—C601.532 (13)
P1—O21.494 (6)C56—C571.337 (12)
P1—O11.496 (6)C56—H560.9500
P1—O31.554 (6)C57—C581.375 (13)
P1—O41.589 (6)C57—C641.492 (13)
P2—O51.493 (6)C58—C591.408 (14)
P2—O61.496 (6)C58—H580.9500
P2—O71.557 (6)C59—C651.544 (14)
P2—O81.583 (6)C60—C621.536 (12)
P3—O101.500 (6)C60—C611.545 (13)
P3—O91.501 (6)C60—C631.546 (12)
P3—O111.571 (6)C61—H61A0.9800
P3—O121.590 (6)C61—H61B0.9800
P4—O141.500 (6)C61—H61C0.9800
P4—O131.500 (6)C62—H62A0.9800
P4—O161.544 (7)C62—H62B0.9800
P4—O151.571 (7)C62—H62C0.9800
P5—O181.502 (6)C63—H63A0.9800
P5—O171.505 (6)C63—H63B0.9800
P5—O201.561 (6)C63—H63C0.9800
P5—O191.570 (6)C64—H64A0.9800
P6—O221.496 (6)C64—H64B0.9800
P6—O211.504 (6)C64—H64C0.9800
P6—O241.568 (6)C65—C671.501 (14)
P6—O231.587 (6)C65—C681.567 (15)
O3—C11.471 (9)C65—C661.581 (14)
O4—C31.439 (10)C66—H66A0.9800
O7—C181.427 (10)C66—H66B0.9800
O8—C201.409 (10)C66—H66C0.9800
O11—C351.442 (11)C67—H67A0.9800
O12—C371.416 (9)C67—H67B0.9800
O15—C521.520 (12)C67—H67C0.9800
O16—C541.440 (11)C68—H68A0.9800
O19—C691.435 (10)C68—H68B0.9800
O20—C711.411 (9)C68—H68C0.9800
O23—C861.430 (10)C69—C701.479 (13)
O24—C881.439 (9)C69—H69A0.9900
C1—C21.483 (12)C69—H69B0.9900
C1—H1A0.9900C70—H70A0.9800
C1—H1B0.9900C70—H70B0.9800
C2—H2A0.9800C70—H70C0.9800
C2—H2B0.9800C71—C761.382 (12)
C2—H2C0.9800C71—C721.410 (12)
C3—C41.388 (11)C72—C731.387 (12)
C3—C81.412 (11)C72—C771.551 (13)
C4—C51.387 (12)C73—C741.375 (14)
C4—C91.546 (12)C73—H730.9500
C5—C61.380 (12)C74—C751.380 (14)
C5—H50.9500C74—C811.530 (12)
C6—C71.370 (12)C75—C761.401 (12)
C6—C131.512 (12)C75—H750.9500
C7—C81.391 (11)C76—C821.555 (13)
C7—H70.9500C77—C791.533 (12)
C8—C141.545 (12)C77—C801.547 (12)
C9—C121.519 (13)C77—C781.549 (12)
C9—C111.531 (12)C78—H78A0.9800
C9—C101.541 (13)C78—H78B0.9800
C10—H10A0.9800C78—H78C0.9800
C10—H10B0.9800C79—H79A0.9800
C10—H10C0.9800C79—H79B0.9800
C11—H11A0.9800C79—H79C0.9800
C11—H11B0.9800C80—H80A0.9800
C11—H11C0.9800C80—H80B0.9800
C12—H12A0.9800C80—H80C0.9800
C12—H12B0.9800C81—H81A0.9800
C12—H12C0.9800C81—H81B0.9800
C13—H13A0.9800C81—H81C0.9800
C13—H13B0.9800C82—C841.514 (12)
C13—H13C0.9800C82—C851.533 (12)
C14—C151.512 (12)C82—C831.534 (12)
C14—C171.529 (12)C83—H83A0.9800
C14—C161.540 (11)C83—H83B0.9800
C15—H15A0.9800C83—H83C0.9800
C15—H15B0.9800C84—H84A0.9800
C15—H15C0.9800C84—H84B0.9800
C16—H16A0.9800C84—H84C0.9800
C16—H16B0.9800C85—H85A0.9800
C16—H16C0.9800C85—H85B0.9800
C17—H17A0.9800C85—H85C0.9800
C17—H17B0.9800C86—C871.509 (12)
C17—H17C0.9800C86—H86A0.9900
C18—C191.446 (14)C86—H86B0.9900
C18—H18A0.9900C87—H87A0.9800
C18—H18B0.9900C87—H87B0.9800
C19—H19A0.9800C87—H87C0.9800
C19—H19B0.9800C88—C931.380 (11)
C19—H19C0.9800C88—C891.403 (11)
C20—C211.396 (11)C89—C901.391 (11)
C20—C251.398 (11)C89—C941.549 (12)
C21—C221.384 (12)C90—C911.390 (12)
C21—C261.577 (12)C90—H900.9500
C22—C231.366 (13)C91—C921.342 (12)
C22—H220.9500C91—C981.540 (12)
C23—C241.391 (12)C92—C931.395 (11)
C23—C301.514 (13)C92—H920.9500
C24—C251.396 (12)C93—C991.553 (12)
C24—H240.9500C94—C951.517 (12)
C25—C311.555 (12)C94—C971.529 (12)
C26—C281.521 (12)C94—C961.567 (12)
C26—C291.533 (12)C95—H95A0.9800
C26—C271.534 (11)C95—H95B0.9800
C27—H27A0.9800C95—H95C0.9800
C27—H27B0.9800C96—H96A0.9800
C27—H27C0.9800C96—H96B0.9800
C28—H28A0.9800C96—H96C0.9800
C28—H28B0.9800C97—H97A0.9800
C28—H28C0.9800C97—H97B0.9800
C29—H29A0.9800C97—H97C0.9800
C29—H29B0.9800C98—H98A0.9800
C29—H29C0.9800C98—H98B0.9800
C30—H30A0.9800C98—H98C0.9800
C30—H30B0.9800C99—C1001.517 (13)
C30—H30C0.9800C99—C1021.543 (13)
C31—C341.514 (13)C99—C1011.557 (12)
C31—C331.527 (13)C100—H10D0.9800
C31—C321.539 (12)C100—H10E0.9800
C32—H32A0.9800C100—H10F0.9800
C32—H32B0.9800C101—H10G0.9800
C32—H32C0.9800C101—H10H0.9800
C33—H33A0.9800C101—H10I0.9800
C33—H33B0.9800C102—H10J0.9800
C33—H33C0.9800C102—H10K0.9800
C34—H34A0.9800C102—H10L0.9800
C34—H34B0.9800C103—C1041.479 (8)
C34—H34C0.9800C103—H13D0.9800
C35—C361.501 (7)C103—H13E0.9800
C35—H35A0.9900C103—H13F0.9800
C35—H35B0.9900C104—C1051.494 (8)
C36—H36A0.9800C104—H14D0.9900
C36—H36B0.9800C104—H14E0.9900
C36—H36C0.9800C105—C1061.482 (8)
C37—C421.407 (11)C105—H15D0.9900
C37—C381.422 (12)C105—H15E0.9900
C38—C391.398 (11)C106—C1071.491 (8)
C38—C431.524 (11)C106—H16D0.9900
C39—C401.385 (12)C106—H16E0.9900
C39—H390.9500C107—C1081.488 (8)
C40—C411.380 (12)C107—H17D0.9900
C40—C471.495 (12)C107—H17E0.9900
C41—C421.385 (12)C108—C1091.487 (8)
C41—H410.9500C108—H18D0.9900
C42—C481.558 (12)C108—H18E0.9900
C43—C461.536 (12)C109—H19D0.9800
C43—C441.538 (11)C109—H19E0.9800
C43—C451.548 (12)C109—H19F0.9800
C44—H44A0.9800C110—C1111.530 (7)
C44—H44B0.9800C110—H10M0.9800
C44—H44C0.9800C110—H10N0.9800
C45—H45A0.9800C110—H10O0.9800
C45—H45B0.9800C111—C1121.524 (7)
C45—H45C0.9800C111—H11D0.9900
C46—H46A0.9800C111—H11E0.9900
C46—H46B0.9800C112—C1131.515 (7)
C46—H46C0.9800C112—H12D0.9900
C47—H47A0.9800C112—H12E0.9900
C47—H47B0.9800C113—C1141.495 (7)
C47—H47C0.9800C113—H13G0.9900
C48—C501.511 (14)C113—H13H0.9900
C48—C491.519 (12)C114—C1151.491 (7)
C48—C511.542 (13)C114—H14G0.9900
C49—H49A0.9800C114—H14H0.9900
C49—H49B0.9800C115—C1161.489 (7)
C49—H49C0.9800C115—H15G0.9900
C50—H50A0.9800C115—H15H0.9900
C50—H50B0.9800C116—H16G0.9800
C50—H50C0.9800C116—H16H0.9800
C51—H51A0.9800C116—H16I0.9800
O13—Lu1—O984.0 (2)C48—C51—H51C109.5
O13—Lu1—O5114.0 (2)H51A—C51—H51C109.5
O9—Lu1—O584.5 (2)H51B—C51—H51C109.5
O13—Lu1—O182.3 (2)C53—C52—O15108.3 (10)
O9—Lu1—O1158.5 (2)C53—C52—H52A110.0
O5—Lu1—O186.0 (2)O15—C52—H52A110.0
O13—Lu1—O1891.9 (2)C53—C52—H52B110.0
O9—Lu1—O1891.9 (2)O15—C52—H52B110.0
O5—Lu1—O18153.2 (2)H52A—C52—H52B108.4
O1—Lu1—O18105.0 (2)C52—C53—H53A109.5
O13—Lu1—O17154.3 (2)C52—C53—H53B109.5
O9—Lu1—O17102.0 (2)H53A—C53—H53B109.5
O5—Lu1—O1791.5 (2)C52—C53—H53C109.5
O1—Lu1—O1797.5 (2)H53A—C53—H53C109.5
O18—Lu1—O1763.25 (19)H53B—C53—H53C109.5
O10—Lu2—O2116.1 (2)C55—C54—C59123.3 (10)
O10—Lu2—O1485.0 (2)C55—C54—O16119.7 (8)
O2—Lu2—O1484.6 (2)C59—C54—O16116.8 (9)
O10—Lu2—O687.3 (2)C56—C55—C54113.5 (9)
O2—Lu2—O681.7 (2)C56—C55—C60121.0 (8)
O14—Lu2—O6159.44 (19)C54—C55—C60125.4 (9)
O10—Lu2—O21149.6 (2)C57—C56—C55126.0 (9)
O2—Lu2—O2193.77 (19)C57—C56—H56117.0
O14—Lu2—O2192.6 (2)C55—C56—H56117.0
O6—Lu2—O21103.4 (2)C56—C57—C58118.3 (9)
O10—Lu2—O2287.3 (2)C56—C57—C64122.5 (9)
O2—Lu2—O22156.3 (2)C58—C57—C64118.9 (10)
O14—Lu2—O22102.5 (2)C57—C58—C59122.8 (10)
O6—Lu2—O2296.2 (2)C57—C58—H58118.6
O21—Lu2—O2263.56 (19)C59—C58—H58118.6
O2—P1—O1114.5 (3)C58—C59—C54114.6 (10)
O2—P1—O3108.2 (3)C58—C59—C65121.0 (10)
O1—P1—O3110.3 (3)C54—C59—C65124.3 (9)
O2—P1—O4107.0 (3)C55—C60—C62112.6 (8)
O1—P1—O4110.0 (3)C55—C60—C61111.2 (8)
O3—P1—O4106.4 (3)C62—C60—C61109.5 (8)
O5—P2—O6113.3 (3)C55—C60—C63110.6 (8)
O5—P2—O7110.5 (3)C62—C60—C63106.6 (8)
O6—P2—O7110.6 (3)C61—C60—C63106.0 (8)
O5—P2—O8107.0 (3)C60—C61—H61A109.5
O6—P2—O8111.1 (3)C60—C61—H61B109.5
O7—P2—O8103.8 (3)H61A—C61—H61B109.5
O10—P3—O9114.6 (3)C60—C61—H61C109.5
O10—P3—O11107.9 (3)H61A—C61—H61C109.5
O9—P3—O11111.3 (4)H61B—C61—H61C109.5
O10—P3—O12106.3 (3)C60—C62—H62A109.5
O9—P3—O12109.4 (3)C60—C62—H62B109.5
O11—P3—O12107.0 (3)H62A—C62—H62B109.5
O14—P4—O13114.0 (4)C60—C62—H62C109.5
O14—P4—O16110.2 (4)H62A—C62—H62C109.5
O13—P4—O16106.1 (4)H62B—C62—H62C109.5
O14—P4—O15111.6 (4)C60—C63—H63A109.5
O13—P4—O15109.1 (4)C60—C63—H63B109.5
O16—P4—O15105.4 (4)H63A—C63—H63B109.5
O18—P5—O17105.1 (3)C60—C63—H63C109.5
O18—P5—O20112.9 (3)H63A—C63—H63C109.5
O17—P5—O20109.8 (3)H63B—C63—H63C109.5
O18—P5—O19112.2 (3)C57—C64—H64A109.5
O17—P5—O19114.1 (3)C57—C64—H64B109.5
O20—P5—O19103.0 (3)H64A—C64—H64B109.5
O22—P6—O21105.7 (3)C57—C64—H64C109.5
O22—P6—O24111.1 (3)H64A—C64—H64C109.5
O21—P6—O24111.5 (3)H64B—C64—H64C109.5
O22—P6—O23113.7 (3)C67—C65—C59113.4 (9)
O21—P6—O23112.9 (3)C67—C65—C68107.6 (10)
O24—P6—O23102.2 (3)C59—C65—C68108.7 (9)
P1—O1—Lu1123.5 (3)C67—C65—C66112.8 (9)
P1—O2—Lu2164.0 (3)C59—C65—C66109.3 (9)
C1—O3—P1123.2 (5)C68—C65—C66104.4 (9)
C3—O4—P1127.5 (5)C65—C66—H66A109.5
P2—O5—Lu1164.4 (4)C65—C66—H66B109.5
P2—O6—Lu2124.3 (3)H66A—C66—H66B109.5
C18—O7—P2126.7 (6)C65—C66—H66C109.5
C20—O8—P2126.2 (5)H66A—C66—H66C109.5
P3—O9—Lu1127.5 (3)H66B—C66—H66C109.5
P3—O10—Lu2158.5 (4)C65—C67—H67A109.5
C35—O11—P3121.6 (6)C65—C67—H67B109.5
C37—O12—P3124.7 (6)H67A—C67—H67B109.5
P4—O13—Lu1162.0 (4)C65—C67—H67C109.5
P4—O14—Lu2125.9 (3)H67A—C67—H67C109.5
C52—O15—P4126.3 (6)H67B—C67—H67C109.5
C54—O16—P4125.5 (6)C65—C68—H68A109.5
P5—O17—Lu195.6 (3)C65—C68—H68B109.5
P5—O18—Lu196.0 (3)H68A—C68—H68B109.5
C69—O19—P5121.0 (5)C65—C68—H68C109.5
C71—O20—P5131.2 (5)H68A—C68—H68C109.5
P6—O21—Lu295.5 (3)H68B—C68—H68C109.5
P6—O22—Lu295.2 (3)O19—C69—C70108.6 (8)
C86—O23—P6117.8 (5)O19—C69—H69A110.0
C88—O24—P6127.9 (5)C70—C69—H69A110.0
O3—C1—C2107.9 (7)O19—C69—H69B110.0
O3—C1—H1A110.1C70—C69—H69B110.0
C2—C1—H1A110.1H69A—C69—H69B108.4
O3—C1—H1B110.1C69—C70—H70A109.5
C2—C1—H1B110.1C69—C70—H70B109.5
H1A—C1—H1B108.4H70A—C70—H70B109.5
C1—C2—H2A109.5C69—C70—H70C109.5
C1—C2—H2B109.5H70A—C70—H70C109.5
H2A—C2—H2B109.5H70B—C70—H70C109.5
C1—C2—H2C109.5C76—C71—C72122.3 (8)
H2A—C2—H2C109.5C76—C71—O20119.4 (8)
H2B—C2—H2C109.5C72—C71—O20118.0 (8)
C4—C3—C8125.2 (8)C73—C72—C71117.0 (9)
C4—C3—O4116.3 (7)C73—C72—C77118.4 (8)
C8—C3—O4118.5 (7)C71—C72—C77124.6 (8)
C5—C4—C3115.0 (8)C74—C73—C72122.4 (9)
C5—C4—C9119.5 (8)C74—C73—H73118.8
C3—C4—C9125.4 (8)C72—C73—H73118.8
C6—C5—C4123.1 (9)C73—C74—C75118.4 (9)
C6—C5—H5118.4C73—C74—C81120.6 (10)
C4—C5—H5118.4C75—C74—C81120.9 (10)
C7—C6—C5117.6 (8)C74—C75—C76122.4 (9)
C7—C6—C13121.9 (9)C74—C75—H75118.8
C5—C6—C13120.5 (9)C76—C75—H75118.8
C6—C7—C8124.5 (8)C71—C76—C75116.7 (9)
C6—C7—H7117.7C71—C76—C82125.9 (8)
C8—C7—H7117.7C75—C76—C82117.3 (8)
C7—C8—C3113.2 (8)C79—C77—C80106.4 (8)
C7—C8—C14118.9 (8)C79—C77—C78106.6 (8)
C3—C8—C14127.7 (8)C80—C77—C78110.5 (7)
C12—C9—C11106.5 (8)C79—C77—C72110.9 (7)
C12—C9—C10111.3 (8)C80—C77—C72110.3 (7)
C11—C9—C10106.3 (8)C78—C77—C72111.9 (7)
C12—C9—C4112.2 (8)C77—C78—H78A109.5
C11—C9—C4110.7 (7)C77—C78—H78B109.5
C10—C9—C4109.6 (8)H78A—C78—H78B109.5
C9—C10—H10A109.5C77—C78—H78C109.5
C9—C10—H10B109.5H78A—C78—H78C109.5
H10A—C10—H10B109.5H78B—C78—H78C109.5
C9—C10—H10C109.5C77—C79—H79A109.5
H10A—C10—H10C109.5C77—C79—H79B109.5
H10B—C10—H10C109.5H79A—C79—H79B109.5
C9—C11—H11A109.5C77—C79—H79C109.5
C9—C11—H11B109.5H79A—C79—H79C109.5
H11A—C11—H11B109.5H79B—C79—H79C109.5
C9—C11—H11C109.5C77—C80—H80A109.5
H11A—C11—H11C109.5C77—C80—H80B109.5
H11B—C11—H11C109.5H80A—C80—H80B109.5
C9—C12—H12A109.5C77—C80—H80C109.5
C9—C12—H12B109.5H80A—C80—H80C109.5
H12A—C12—H12B109.5H80B—C80—H80C109.5
C9—C12—H12C109.5C74—C81—H81A109.5
H12A—C12—H12C109.5C74—C81—H81B109.5
H12B—C12—H12C109.5H81A—C81—H81B109.5
C6—C13—H13A109.5C74—C81—H81C109.5
C6—C13—H13B109.5H81A—C81—H81C109.5
H13A—C13—H13B109.5H81B—C81—H81C109.5
C6—C13—H13C109.5C84—C82—C85106.0 (8)
H13A—C13—H13C109.5C84—C82—C83107.4 (8)
H13B—C13—H13C109.5C85—C82—C83110.4 (8)
C15—C14—C17110.1 (7)C84—C82—C76111.6 (8)
C15—C14—C16105.3 (8)C85—C82—C76110.6 (7)
C17—C14—C16106.8 (7)C83—C82—C76110.6 (8)
C15—C14—C8111.3 (7)C82—C83—H83A109.5
C17—C14—C8112.9 (8)C82—C83—H83B109.5
C16—C14—C8110.0 (7)H83A—C83—H83B109.5
C14—C15—H15A109.5C82—C83—H83C109.5
C14—C15—H15B109.5H83A—C83—H83C109.5
H15A—C15—H15B109.5H83B—C83—H83C109.5
C14—C15—H15C109.5C82—C84—H84A109.5
H15A—C15—H15C109.5C82—C84—H84B109.5
H15B—C15—H15C109.5H84A—C84—H84B109.5
C14—C16—H16A109.5C82—C84—H84C109.5
C14—C16—H16B109.5H84A—C84—H84C109.5
H16A—C16—H16B109.5H84B—C84—H84C109.5
C14—C16—H16C109.5C82—C85—H85A109.5
H16A—C16—H16C109.5C82—C85—H85B109.5
H16B—C16—H16C109.5H85A—C85—H85B109.5
C14—C17—H17A109.5C82—C85—H85C109.5
C14—C17—H17B109.5H85A—C85—H85C109.5
H17A—C17—H17B109.5H85B—C85—H85C109.5
C14—C17—H17C109.5O23—C86—C87107.4 (7)
H17A—C17—H17C109.5O23—C86—H86A110.2
H17B—C17—H17C109.5C87—C86—H86A110.2
O7—C18—C19112.5 (9)O23—C86—H86B110.2
O7—C18—H18A109.1C87—C86—H86B110.2
C19—C18—H18A109.1H86A—C86—H86B108.5
O7—C18—H18B109.1C86—C87—H87A109.5
C19—C18—H18B109.1C86—C87—H87B109.5
H18A—C18—H18B107.8H87A—C87—H87B109.5
C18—C19—H19A109.5C86—C87—H87C109.5
C18—C19—H19B109.5H87A—C87—H87C109.5
H19A—C19—H19B109.5H87B—C87—H87C109.5
C18—C19—H19C109.5C93—C88—C89124.5 (7)
H19A—C19—H19C109.5C93—C88—O24117.9 (7)
H19B—C19—H19C109.5C89—C88—O24117.1 (7)
C21—C20—C25122.3 (8)C90—C89—C88114.9 (8)
C21—C20—O8118.5 (7)C90—C89—C94119.4 (8)
C25—C20—O8119.2 (7)C88—C89—C94125.8 (7)
C22—C21—C20116.6 (8)C91—C90—C89121.7 (8)
C22—C21—C26118.3 (8)C91—C90—H90119.1
C20—C21—C26125.1 (8)C89—C90—H90119.1
C23—C22—C21123.3 (9)C92—C91—C90119.5 (8)
C23—C22—H22118.3C92—C91—C98120.7 (9)
C21—C22—H22118.3C90—C91—C98119.8 (9)
C22—C23—C24117.8 (9)C91—C92—C93123.0 (9)
C22—C23—C30121.5 (9)C91—C92—H92118.5
C24—C23—C30120.6 (9)C93—C92—H92118.5
C23—C24—C25122.3 (9)C88—C93—C92115.2 (8)
C23—C24—H24118.9C88—C93—C99125.6 (7)
C25—C24—H24118.9C92—C93—C99119.2 (8)
C24—C25—C20116.2 (8)C95—C94—C97111.2 (8)
C24—C25—C31118.4 (8)C95—C94—C89112.2 (7)
C20—C25—C31125.4 (8)C97—C94—C89110.6 (7)
C28—C26—C29105.8 (7)C95—C94—C96106.4 (8)
C28—C26—C27110.0 (8)C97—C94—C96106.7 (7)
C29—C26—C27108.3 (7)C89—C94—C96109.6 (7)
C28—C26—C21112.9 (7)C94—C95—H95A109.5
C29—C26—C21109.9 (7)C94—C95—H95B109.5
C27—C26—C21109.8 (7)H95A—C95—H95B109.5
C26—C27—H27A109.5C94—C95—H95C109.5
C26—C27—H27B109.5H95A—C95—H95C109.5
H27A—C27—H27B109.5H95B—C95—H95C109.5
C26—C27—H27C109.5C94—C96—H96A109.5
H27A—C27—H27C109.5C94—C96—H96B109.5
H27B—C27—H27C109.5H96A—C96—H96B109.5
C26—C28—H28A109.5C94—C96—H96C109.5
C26—C28—H28B109.5H96A—C96—H96C109.5
H28A—C28—H28B109.5H96B—C96—H96C109.5
C26—C28—H28C109.5C94—C97—H97A109.5
H28A—C28—H28C109.5C94—C97—H97B109.5
H28B—C28—H28C109.5H97A—C97—H97B109.5
C26—C29—H29A109.5C94—C97—H97C109.5
C26—C29—H29B109.5H97A—C97—H97C109.5
H29A—C29—H29B109.5H97B—C97—H97C109.5
C26—C29—H29C109.5C91—C98—H98A109.5
H29A—C29—H29C109.5C91—C98—H98B109.5
H29B—C29—H29C109.5H98A—C98—H98B109.5
C23—C30—H30A109.5C91—C98—H98C109.5
C23—C30—H30B109.5H98A—C98—H98C109.5
H30A—C30—H30B109.5H98B—C98—H98C109.5
C23—C30—H30C109.5C100—C99—C102110.9 (8)
H30A—C30—H30C109.5C100—C99—C93112.3 (8)
H30B—C30—H30C109.5C102—C99—C93111.8 (8)
C34—C31—C33110.7 (8)C100—C99—C101105.8 (8)
C34—C31—C32107.2 (8)C102—C99—C101104.7 (8)
C33—C31—C32107.3 (8)C93—C99—C101110.9 (8)
C34—C31—C25112.8 (8)C99—C100—H10D109.5
C33—C31—C25110.3 (8)C99—C100—H10E109.5
C32—C31—C25108.3 (7)H10D—C100—H10E109.5
C31—C32—H32A109.5C99—C100—H10F109.5
C31—C32—H32B109.5H10D—C100—H10F109.5
H32A—C32—H32B109.5H10E—C100—H10F109.5
C31—C32—H32C109.5C99—C101—H10G109.5
H32A—C32—H32C109.5C99—C101—H10H109.5
H32B—C32—H32C109.5H10G—C101—H10H109.5
C31—C33—H33A109.5C99—C101—H10I109.5
C31—C33—H33B109.5H10G—C101—H10I109.5
H33A—C33—H33B109.5H10H—C101—H10I109.5
C31—C33—H33C109.5C99—C102—H10J109.5
H33A—C33—H33C109.5C99—C102—H10K109.5
H33B—C33—H33C109.5H10J—C102—H10K109.5
C31—C34—H34A109.5C99—C102—H10L109.5
C31—C34—H34B109.5H10J—C102—H10L109.5
H34A—C34—H34B109.5H10K—C102—H10L109.5
C31—C34—H34C109.5C104—C103—H13D109.5
H34A—C34—H34C109.5C104—C103—H13E109.5
H34B—C34—H34C109.5H13D—C103—H13E109.5
O11—C35—C36110.8 (9)C104—C103—H13F109.5
O11—C35—H35A109.5H13D—C103—H13F109.5
C36—C35—H35A109.5H13E—C103—H13F109.5
O11—C35—H35B109.5C103—C104—C105115.6 (11)
C36—C35—H35B109.5C103—C104—H14D108.4
H35A—C35—H35B108.1C105—C104—H14D108.4
C35—C36—H36A109.5C103—C104—H14E108.4
C35—C36—H36B109.5C105—C104—H14E108.4
H36A—C36—H36B109.5H14D—C104—H14E107.4
C35—C36—H36C109.5C106—C105—C104117.1 (11)
H36A—C36—H36C109.5C106—C105—H15D108.0
H36B—C36—H36C109.5C104—C105—H15D108.0
C42—C37—O12118.7 (7)C106—C105—H15E108.0
C42—C37—C38123.4 (8)C104—C105—H15E108.0
O12—C37—C38117.9 (7)H15D—C105—H15E107.3
C39—C38—C37114.2 (8)C105—C106—C107118.2 (10)
C39—C38—C43118.7 (8)C105—C106—H16D107.8
C37—C38—C43127.1 (8)C107—C106—H16D107.8
C40—C39—C38124.2 (9)C105—C106—H16E107.8
C40—C39—H39117.9C107—C106—H16E107.8
C38—C39—H39117.9H16D—C106—H16E107.1
C41—C40—C39117.7 (9)C108—C107—C106117.8 (10)
C41—C40—C47121.6 (9)C108—C107—H17D107.9
C39—C40—C47120.6 (9)C106—C107—H17D107.9
C40—C41—C42123.0 (8)C108—C107—H17E107.9
C40—C41—H41118.5C106—C107—H17E107.9
C42—C41—H41118.5H17D—C107—H17E107.2
C41—C42—C37116.2 (8)C109—C108—C107116.7 (11)
C41—C42—C48117.8 (8)C109—C108—H18D108.1
C37—C42—C48126.0 (8)C107—C108—H18D108.1
C38—C43—C46110.4 (7)C109—C108—H18E108.1
C38—C43—C44114.8 (7)C107—C108—H18E108.1
C46—C43—C44105.5 (8)H18D—C108—H18E107.3
C38—C43—C45108.7 (7)C108—C109—H19D109.5
C46—C43—C45107.1 (7)C108—C109—H19E109.5
C44—C43—C45110.1 (7)H19D—C109—H19E109.5
C43—C44—H44A109.5C108—C109—H19F109.5
C43—C44—H44B109.5H19D—C109—H19F109.5
H44A—C44—H44B109.5H19E—C109—H19F109.5
C43—C44—H44C109.5C111—C110—H10M109.5
H44A—C44—H44C109.5C111—C110—H10N109.5
H44B—C44—H44C109.5H10M—C110—H10N109.5
C43—C45—H45A109.5C111—C110—H10O109.5
C43—C45—H45B109.5H10M—C110—H10O109.5
H45A—C45—H45B109.5H10N—C110—H10O109.5
C43—C45—H45C109.5C112—C111—C110103.3 (8)
H45A—C45—H45C109.5C112—C111—H11D111.1
H45B—C45—H45C109.5C110—C111—H11D111.1
C43—C46—H46A109.5C112—C111—H11E111.1
C43—C46—H46B109.5C110—C111—H11E111.1
H46A—C46—H46B109.5H11D—C111—H11E109.1
C43—C46—H46C109.5C113—C112—C111104.0 (8)
H46A—C46—H46C109.5C113—C112—H12D111.0
H46B—C46—H46C109.5C111—C112—H12D111.0
C40—C47—H47A109.5C113—C112—H12E111.0
C40—C47—H47B109.5C111—C112—H12E111.0
H47A—C47—H47B109.5H12D—C112—H12E109.0
C40—C47—H47C109.5C114—C113—C112105.8 (8)
H47A—C47—H47C109.5C114—C113—H13G110.6
H47B—C47—H47C109.5C112—C113—H13G110.6
C50—C48—C49108.5 (8)C114—C113—H13H110.6
C50—C48—C51109.7 (9)C112—C113—H13H110.6
C49—C48—C51106.5 (8)H13G—C113—H13H108.7
C50—C48—C42111.0 (8)C115—C114—C113106.8 (8)
C49—C48—C42108.4 (8)C115—C114—H14G110.4
C51—C48—C42112.5 (7)C113—C114—H14G110.4
C48—C49—H49A109.5C115—C114—H14H110.4
C48—C49—H49B109.5C113—C114—H14H110.4
H49A—C49—H49B109.5H14G—C114—H14H108.6
C48—C49—H49C109.5C116—C115—C114107.6 (8)
H49A—C49—H49C109.5C116—C115—H15G110.2
H49B—C49—H49C109.5C114—C115—H15G110.2
C48—C50—H50A109.5C116—C115—H15H110.2
C48—C50—H50B109.5C114—C115—H15H110.2
H50A—C50—H50B109.5H15G—C115—H15H108.5
C48—C50—H50C109.5C115—C116—H16G109.5
H50A—C50—H50C109.5C115—C116—H16H109.5
H50B—C50—H50C109.5H16G—C116—H16H109.5
C48—C51—H51A109.5C115—C116—H16I109.5
C48—C51—H51B109.5H16G—C116—H16I109.5
H51A—C51—H51B109.5H16H—C116—H16I109.5
Catalytic activity of 1 or 3 in acrylonitrile polymerization top
Mn and the polydispersity index (PDI) were determined from size-exclusion chromatography (SEC) measurements.
EntryPrecatalystYield, %Mn calcd × 10-3Mn found × 10-3PDI
1a-9.6-124.06
2(1)48.622332.56
3(3)26.012132.88
Note: (a) The blank experiment without a precatalyst.
 

Funding information

Funding for this research was provided by: the State Program of TIPS RAS supported by FASO Russia.

References

First citationAmani, V., Rafizadeh, M., Yousefi, M. & Zargar, N. S. (2006). Anal. Sci. X, 22, x303–x304.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, W. J. & Giarikos, D. G. (2004). Macromolecules, 37, 5130–5132.  CrossRef CAS Google Scholar
First citationEvans, W. J., Giarikos, D. G. & Ziller, J. W. (2001). Organometallics, 20, 5751–5758.  CrossRef CAS Google Scholar
First citationFischbach, A. & Anwander, R. (2006). Adv. Polym. Sci. 204, 155–281.  CrossRef CAS Google Scholar
First citationFischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626–1642.  CrossRef CAS Google Scholar
First citationFriebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y., Pan, Z., Shi, N., Liao, L., Liu, C., Wu, G., Tang, Z. & Xiao, Y. (1990). Wuji Huaxue Xuebao, 6, 17.  Google Scholar
First citationJang, Y., Kwag, G. & Lee, H. (2000). Polym. J. 32, 456–459.  CrossRef CAS Google Scholar
First citationJiang, L., Shen, Z. & Zhang, Y. (2000). Eur. Polym. J. 36, 2513–2516.  CrossRef CAS Google Scholar
First citationJiang, L., Zhang, Y. & Shen, Z. (1997). Eur. Polym. J. 33, 577–578.  CrossRef CAS Google Scholar
First citationKobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationKobayashi, S., Sugiura, M., Kitagawa, H. & Lam, W. W.-L. (2002). Chem. Rev. 102, 2227–2302.  CrossRef CAS Google Scholar
First citationKwag, G. (2002). Macromolecules, 35, 4875–4879.  CrossRef CAS Google Scholar
First citationLebedev, V. G., Palkina, K. K, Maksimova, S. I., Lebedeva, E. N. & Galaktionova, O. V. (1982). Zh. Neorg. Khim. 27, 2980–2982.  CAS Google Scholar
First citationLi, L., Lin, Y., Zeng, G. & Ma, A. (1989). Yingyong Huaxue, 6, 53–56.  Google Scholar
First citationLi, L.-M., Lin, Y.-H., Zeng, G.-F. & Ma, A.-Z. (1991). Jiegou Huaxue, 10, 155–158.  CAS Google Scholar
First citationLiu, C.-M., Wu, G.-Q., Tang, Z.-J., Han, Y.-Z., Pan, Z.-H., Shi, N.-C. & Liao, L.-B. (1990). Huaxue Xuebao, 48, 116.  Google Scholar
First citationLumetta, G. J., Sinkov, S. I., Krause, J. A. & Sweet, L. E. (2016). Inorg. Chem. 55, 1633–1641.  CrossRef CAS Google Scholar
First citationMinyaev, M. E., Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Zeynalova, S. S., Ananyev, I. V. & Churakov, A. V. (2017). Acta Cryst. C73, 820–827.  CrossRef IUCr Journals Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.  CAS Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230.  Web of Science CAS PubMed Google Scholar
First citationRoitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Yu. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272–1286.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShlyahtin, A. V., Nifant'ev, I. E., Bagrov, V. V., Lemenovskii, D. A., Tavtorkin, A. N. & Timashev, P. S. (2014a). Green Chem. 16, 1344–1350.  CrossRef CAS Google Scholar
First citationShlyakhtin, A. V., Lemenovskii, D. A. & Nifant'ev, I. E. (2013). Mendeleev Commun. 23, 277–278.  CrossRef CAS Google Scholar
First citationShlyakhtin, A. V., Nifant'ev, I. E., Lemenovskii, D. A., Krut'ko, D. P., Bagrov, V. V., Timashev, P. S., Popov, V. K. & Bagratashvili, V. N. (2014c). Supercritical Fluids: Theory and Practice, 9, 4–11.  Google Scholar
First citationShlyakhtin, A. V., Nifant'ev, I. E., Lemenovsky, D. A., Krut'ko, D. P., Bagrov, V. V., Timashev, P. S., Popov, V. K. & Bagratashvili, V. N. (2014b). Russ. J. Phys. Chem. B, 8, 1049–1053.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, D. J. (1993). Polymer, 34, 3504–3508.  CrossRef CAS Google Scholar
First citationZeng, G.-F., Guo, X., Wang, C.-Y., Lin, Y.-H. & Li, H. (1994). Jiegou Huaxue, 13, 24.  Google Scholar
First citationZhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137 49–108.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds