research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 5,12-di­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane cobalt(III) mono-phenyl­acetyl­ide and bis-phenyl­acetyl­ide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA
*Correspondence e-mail: zeller4@purdue.edu, tren@purdue.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 20 February 2018; accepted 7 March 2018; online 13 March 2018)

Reported in this contribution are the synthesis and crystal structures of new mono- and bis-phenyl­acetyl­ides based on CoIII(DMC) (DMC is 5,12-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne). Chlorido­(5,12-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)(phenyl­ethyn­yl)cobalt(III) chloride–aceto­nitrile–methanol (1/1/1), [Co(C8H5)Cl(C12H28N4)]Cl·CH3CN·CH3OH, 1, and (5,12-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)bis­(phenyl­ethyn­yl)cobalt(III) tri­fluoro­methane­sulfonate–di­chloro­methane (2/1), [Co(C8H5)2(C12H28N4)]2(CF3SO3)2·CH2Cl2, 2, were prepared under weak-base conditions in satisfactory yields. Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octa­hedral symmetry in which the Cl—Co—C angles of 1 and C—Co—C of 2 range from 177.7 (2) to 178.0 (2)° and from 177.67 (9) to 179.67 (9)°, respectively. In both structures, the CoIII metal center is coordinated in the equatorial plane by four N atoms, in which the N—Co—N angles range from 85.6 (3) to 94.4 (3)°. The structure of 1 features two crystallographically independent mol­ecules in its triclinic cell (Z′ = 2), which are related to each other by pseudo-monoclinic symmetry. The crystal investigated was twinned by a symmetry operator of the approximate double-volume C-centered cell (180° rotation around [201] of the actual triclinic cell), with a refined twin ratio of 0.798 (3) to 0.202 (3). Both methanol solvent mol­ecules in 1 are disordered, the major occupancy rates refined to 0.643 (16) and 0.357 (16). Compound 2 also contains two mol­ecules in the asymmetric unit, together with two tri­fluoro­methane­sulfonate anions [of which one is disordered; occupancy values of 0.503 (16) and 0.497 (16)] and a disordered di­chloro­methane [occupancy values of 0.545 (12) and 0.455 (12)].

1. Chemical context

Alkynyl complexes of 3d metals supported by cyclam (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) and its C-functionalized derivatives have received intense attention in recent years (Ren, 2016[Ren, T. (2016). Chem. Commun. 52, 3271-3279.]). Inter­esting examples include magnetic couplings between Cr(cyclam) species mediated by ethynyl­tetra­thia­fulvalene ligands (Nishijo et al., 2011[Nishijo, J., Judai, K. & Nishi, N. (2011). Inorg. Chem. 50, 3464-3470.]), formation of CoIII(cyclam) dimers and trimers through 1,4-diethynyl­benzene and 1,3,5-triethynyl­benzene bridges, respectively (Hoffert et al., 2012[Hoffert, W. A., Kabir, M. K., Hill, E. A., Mueller, S. M. & Shores, M. P. (2012). Inorg. Chim. Acta, 380, 174-180.]), and phospho­rescence from [Cr(cyclam')(C­2R)2] type complexes with cyclam' as either 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (HMC; Tyler et al., 2016[Tyler, S. F., Judkins, E. C., Song, Y., Cao, F., McMillin, D. R., Fanwick, P. E. & Ren, T. (2016). Inorg. Chem. 55, 8736-8743.]) or 5,12-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (DMC; Judkins et al., 2017[Judkins, E. C., Tyler, S. F., Zeller, M., Fanwick, P. E. & Ren, T. (2017). Eur. J. Inorg. Chem. pp. 4068-4076.]). A number of CoIII-containing species have been elaborated in our laboratories, including the series [Co(cyclam)Cl]2(m-C2m) (m = 2 – 6; Cook et al., 2015[Cook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2015). Organometallics, 34, 686-689.], 2016[Cook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2016). Organometallics, 35, 1329-1338.]), the species containing cross-conjugated gem-DEE ligands (Natoli et al., 2015[Natoli, S. N., Cook, T. D., Abraham, T. R., Kiernicki, J. J., Fanwick, P. E. & Ren, T. (2015). Organometallics, 34, 5207-5209.], 2016[Natoli, S. N., Azbell, T. J., Fanwick, P. E., Zeller, M. & Ren, T. (2016). Organometallics, 35, 3594-3603.]), and the unsymmetric trans-[Co(cyclam)(C2Ar)(C2Ar')] type complexes (Banziger et al., 2015[Banziger, S. D., Cook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2015). J. Organomet. Chem. 799-800, 1-6.]). Described in this contribution are the structural characterization of [CoIII(DMC)(C2Ph)Cl]Cl (1) and [CoIII(DMC)(C2Ph)2]OTf (2), which were prepared from [CoIII(DMC)Cl2]Cl under weak-base conditions.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in P[\overline{1}] with two crystallographically independent moieties, Fig. 1[link]. Each moiety consists of one complex [CoIII(DMC)(C2Ph)(Cl)]+ cation, a chloride counter-ion, and one aceto­nitrile and methanol solvate mol­ecule, for a total composition of C20H33ClCoN4·C2H3N·CH4O·Cl. The two unique moieties, labeled A and B, are related by a pseudo-glide plane (see the Supra­molecular features section for a more detailed discussion), and a common atom-naming scheme was used for the contents of the two unique halves of the structure. Both methanol mol­ecules are disordered, with a common refined occupancy ratio of 0.643 (16):0.357 (16).

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability setting) for one of the two pseudo-symmetry-related halves of the asymmetric unit of compound 1, showing the atom-naming scheme and some of the hydrogen-bonding inter­actions (turquoise dashed lines). Shown is the `B-moiety', the atom-naming scheme for the `A-moiety' is equivalent. Labels for H atoms are omitted for clarity.

Compound 2 crystallizes in P21, Fig. 2[link]. Similar to 1, 2 also features two unique cations and anions in its asymmetric unit, but they are not related by any crystallographic pseudo-symmetry. Each complex cation [CoIII(DMC)(C2Ph)2]+ is paired with a triflate anion. The asymmetric unit is completed by a single methyl­ene chloride solvate mol­ecule, yielding a formula of 2(C28H38CoN4)·2(CF3O3S)·CH2Cl2. One of the triflate anions as well as the methyl­ene chloride mol­ecule were refined as disordered, with occupancy rates of 0.503 (22) and 0.545 (12) for the major components.

[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability setting) for compound 2, showing the atom-naming scheme and some of the hydrogen-bonding inter­actions (turquoise dashed lines). The OTf molecule comprising S2 is in position x − 1, y, z. The carbon-bound H atoms and H-atom labels are omitted for clarity.

The mol­ecular geometries of the cations in 1 and 2 are similar (Tables 1[link] and 2[link]). Both structures feature a central cobalt(III) ion with a pseudo-octa­hedral geometry. The metal ion is coordinated in the equatorial plane by the four amine nitro­gen atoms of a 5,12-dimethyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (DMC) ligand. For compounds 1 and 2 respect­ively, the nearly linear C—Co—Cl [177.7 (2) and 178.0 (2)°] and C—Co—C [177.67 (9) and 179.67 (9)°] units are close to normal to the equatorial plane created by the coordinated amines of the macrocyclic ligand, confirming octa­hedral geometries. The C—Co—N and Cl—Co—N angles are all tightly clustered around 90°. The actual values range from 87.1 (1) to 92.9 (1)° (Tables 1[link] and 2[link]). The N—Co—N angles are more variable, caused by the difference in size of the ethyl­ene and 1-methyl-propyl­ene bridges of the DMC ligand. They range from 85.6 (3) to 94.4 (3)°, with the smaller values being associated with the shorter ethyl­ene N–CH2–CH2–N chelates, and the larger with the wider N–CH(CH3)–CH2–CH2–N connections (Tables 1[link] and 2[link]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Co1A—C1A 1.893 (7) Co2B—C1B 1.905 (7)
Co1A—N3A 1.968 (7) Co2B—N1B 1.960 (6)
Co1A—N1A 1.973 (7) Co2B—N3B 1.960 (7)
Co1A—N2A 1.979 (6) Co2B—N2B 1.996 (7)
Co1A—N4A 1.982 (7) Co2B—N4B 1.999 (7)
Co1A—Cl1A 2.3270 (18) Co2B—Cl1B 2.3233 (18)
C1A—C2A 1.189 (10) C1B—C2B 1.168 (9)
C2A—C3A 1.444 (10) C2B—C3B 1.437 (9)
       
C1A—Co1A—N3A 89.8 (3) C1B—Co2B—N1B 89.9 (2)
C1A—Co1A—N1A 89.6 (3) C1B—Co2B—N3B 89.3 (3)
N3A—Co1A—N1A 179.1 (3) N1B—Co2B—N3B 179.3 (3)
C1A—Co1A—N2A 91.7 (3) C1B—Co2B—N2B 92.2 (3)
N3A—Co1A—N2A 94.4 (3) N1B—Co2B—N2B 86.7 (3)
N1A—Co1A—N2A 86.2 (3) N3B—Co2B—N2B 93.4 (3)
C1A—Co1A—N4A 88.2 (3) C1B—Co2B—N4B 88.0 (3)
N3A—Co1A—N4A 85.6 (3) N1B—Co2B—N4B 92.9 (3)
N1A—Co1A—N4A 93.9 (3) N3B—Co2B—N4B 87.1 (3)
N2A—Co1A—N4A 179.8 (3) N2B—Co2B—N4B 179.5 (3)
C1A—Co1A—Cl1A 177.7 (2) C1B—Co2B—Cl1B 178.0 (2)
N3A—Co1A—Cl1A 88.0 (2) N1B—Co2B—Cl1B 92.08 (17)
N1A—Co1A—Cl1A 92.66 (18) N3B—Co2B—Cl1B 88.6 (2)
N2A—Co1A—Cl1A 88.08 (18) N2B—Co2B—Cl1B 87.81 (18)
N4A—Co1A—Cl1A 92.09 (18) N4B—Co2B—Cl1B 92.00 (17)
C2A—C1A—Co1A 171.3 (7) C2B—C1B—Co2B 171.8 (6)

Table 2
Selected geometric parameters (Å, °) for 2[link]

Co1—C9 1.926 (2) Co2—C37 1.9262 (19)
Co1—C1 1.927 (2) Co2—C29 1.9273 (19)
Co1—N1 1.9768 (19) Co2—N7 1.9789 (18)
Co1—N3 1.982 (2) Co2—N5 1.9835 (18)
Co1—N4 1.9985 (18) Co2—N6 2.0067 (17)
Co1—N2 2.0126 (18) Co2—N8 2.0071 (16)
C1—C2 1.215 (3) C29—C30 1.214 (3)
C2—C3 1.438 (3) C30—C31 1.441 (3)
C9—C10 1.206 (3) C37—C38 1.212 (3)
C10—C11 1.435 (3) C38—C39 1.440 (3)
       
C9—Co1—C1 179.67 (9) C37—Co2—C29 177.67 (9)
C9—Co1—N1 87.08 (9) C37—Co2—N7 92.41 (8)
C1—Co1—N1 92.91 (8) C29—Co2—N7 88.10 (8)
C9—Co1—N3 91.84 (9) C37—Co2—N5 87.84 (8)
C1—Co1—N3 88.17 (9) C29—Co2—N5 91.66 (8)
N1—Co1—N3 178.87 (8) N7—Co2—N5 179.53 (8)
C9—Co1—N4 89.79 (8) C37—Co2—N6 90.34 (8)
C1—Co1—N4 90.54 (8) C29—Co2—N6 87.36 (8)
N1—Co1—N4 93.92 (8) N7—Co2—N6 94.17 (8)
N3—Co1—N4 86.43 (8) N5—Co2—N6 86.23 (8)
C9—Co1—N2 90.20 (8) C37—Co2—N8 89.93 (8)
C1—Co1—N2 89.47 (8) C29—Co2—N8 92.37 (8)
N1—Co1—N2 86.35 (8) N7—Co2—N8 86.38 (7)
N3—Co1—N2 93.30 (8) N5—Co2—N8 93.23 (8)
N4—Co1—N2 179.73 (9) N6—Co2—N8 179.38 (8)
C2—C1—Co1 174.06 (19) C30—C29—Co2 171.40 (19)

Some of the Co—C≡C angles deviate from perfect linearity, likely due to steric forces resulting from packing effects. The values range from 171.3 (7) to 174.2 (2)°, with the latter extreme value belonging to one of the Co—C≡C units of 2. All Co—C≡C angles are given in Tables 1[link] and 2[link]. Each macrocycle exhibits a trans-III RRSS conformation, characterized by two neighboring N—H amine units pointing upwards, while their two trans N—H counterparts point in the opposing direction. Other conformations, such as trans-I, II, IV, or cis conformations, are much less prevalent for both the DMC and other cyclam ligands when coordinated to transition metals. (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]; Hoffert et al., 2012[Hoffert, W. A., Kabir, M. K., Hill, E. A., Mueller, S. M. & Shores, M. P. (2012). Inorg. Chim. Acta, 380, 174-180.]; Cook et al., 2016[Cook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2016). Organometallics, 35, 1329-1338.]).

The Co—C bond lengths [1.893 (7) and 1.905 (7) Å] for compound 1 are as expected for this class of compounds and compare well to values observed by Shores for the cyclam macrocyclic counterpart of 1. (Hoffert et al., 2012[Hoffert, W. A., Kabir, M. K., Hill, E. A., Mueller, S. M. & Shores, M. P. (2012). Inorg. Chim. Acta, 380, 174-180.]) Compound 2 shows characteristics of a trans-influence with elongated Co—C bond lengths [1.927 (2) Å avg.] relative to compound 1. This effect is a result of the stronger π-donation from phenyl­acetyl­ide compared to chloride. The C—C and C≡C bond lengths of the phenyl­acetyl­ene ligands fall in the expected region for single and triple bonds respectively. The acetyl­ides in compound 2 show a slightly cumulenic character with elongated C≡C and shortened C—C bond lengths with respect to compound 1, as was also seen by Shores and coworkers (Hoffert et al., 2012[Hoffert, W. A., Kabir, M. K., Hill, E. A., Mueller, S. M. & Shores, M. P. (2012). Inorg. Chim. Acta, 380, 174-180.]). The Co—N bond lengths for each compound are presented in Tables 1[link] and 2[link] and do not deviate significantly from those in previously reported Co tetra­aza­macrocyclic compounds.

3. Supra­molecular features

The structure of the chlorine salt exhibits monoclinic pseudo-symmetry, emulating a double-volume C-centered unit cell with parameters a = 34.721, b = 9.690, c = 15.668 Å, and β = 93.41°. The α and γ angles in the monoclinic cell deviate substanti­ally from 90°, being 88.97 and 89.52° when not constrained during data integration. In the crystal structure, the monoclinic pseudo-symmetry manifests itself by the presence of a pseudo b-glide operation along the a-axis of the triclinic cell, Fig. 3[link]. Fig. 4[link] shows a least-squares overlay of one set of cations A and B, of the surrounding chloride anions and solvate mol­ecules and of a second cation. The pseudo-glide symmetry is mostly obeyed by the constituents of the asymmetric unit; the root-mean-square deviation for one overlaid pair of A and B cations is 0.138 Å. For the surrounding solvate mol­ecules, for the chloride anions and neighboring cations this is no longer the case. This can especially be seen for a second cation shown in Fig. 4[link] (on the left), which was not included in the calculation of the least-squares overlay fit, and shows easily recognizable positional shifts for its atoms related by pseudo-symmetry. The substantial deviation of the lattice from the ideal monoclinic symmetry (by 1.03 and 0.48° for α and γ, respectively) leads to an insufficient match and the increased deviations of atoms of the next and second next ions and solvate mol­ecules break the higher symmetry. The crystal under investigation did, however, show signs of slight twinning by pseudo-monoclinic symmetry. The application of a 180° rotation around reciprocal (2 0 1) (command `TWIN 1 0 0 0 [\overline{1}] 0 1 0 [\overline{1}]′ in SHELXL) resulted in a twinning ratio of 0.798 (3):0.202 (3), and R1 does increase by 2.6% if twinning is ignored during structure refinement.

[Figure 3]
Figure 3
Displacement ellipsoid plot (set to a 20% probability setting for clarity) for compound 1, showing the pseudo-glide plane perpendicular to the a axis. The shift direction is along b.
[Figure 4]
Figure 4
Least-squares overlay of one set of cations A and B (to the right) of compound 1. Also shown are the surrounding chloride anions and solvate mol­ecules and a second cation (on the left). Atoms color coded red belong to the original structure and atoms in blue were inverted prior to the least-squares overlay. The least-squares fit is based on all atoms of the cation pair on the right (r.m.s. deviation = 0.138 Å). For this pair, labels are shown only for the A cation. Labels for atoms of the second pair of cations and for all carbon atoms are omitted for clarity.

Overlays of a larger segment of the lattice, along the a and c-axes, are shown in Figs. 5[link] and 6[link] (one of the overlaid cells was inverted for this purpose). The overlays are based on a least-squares fit of the four cobalt ions common to the overlaid structures.

[Figure 5]
Figure 5
Overlays of a larger segment of the lattice of compound 1. One of the overlaid cells was inverted for this purpose. The view is along the a axis of the original cell (blue atoms). The overlay is based on a least-squares fit of the four cobalt ions common to the overlaid structures.
[Figure 6]
Figure 6
Overlays of a larger segment of the lattice of compound 1. One of the overlaid cells was inverted for this purpose. The view is along the c axis of the original cell (blue atoms). The overlay is based on a least-squares fit of the four cobalt ions common to the overlaid structures.

The cations, anions, and solvate mol­ecules in each structure are connected through a series of inter­molecular hydrogen bonds (Figs. 7[link]–10[link][link][link], see Tables 3[link] and 4[link] for metrical details and symmetry operators). In the chloride salt 1 of the mono­acetyl­ide, the ammonium N—H units of the macrocycle form N—H⋯N hydrogen bonds with the aceto­nitrile nitro­gen atom, N—H⋯O hydrogen bonds to the methanol oxygen, and N—H⋯Cl hydrogen bonds to both the inter­stitial chloride anions as well as the cobalt-bound chlorine. The chloride anions are also acceptors for O—H⋯Cl hydrogen bonds originating from the disordered methanol mol­ecules and for a series of weaker C—H⋯Cl hydrogen bonds from macrocyclic carbon atoms. The type and number of hydrogen bonds is essentially the same between the two halves of the structure related by pseudo-symmetry, but the exact metrics and numbers are slightly modulated. The N—H⋯N, N—H⋯O, and N—H⋯Cl hydrogen bonds, when combined, connect the cations, anions and solvate mol­ecules into ribbons that extend infinitely along the b-axis and are perpendicular to the a-axis, and exactly one unit cell thick in the a- and c-axis directions (Fig. 7[link]). Perpendicular to the a-axis, the ribbons are terminated by methanol O atoms and chloride anions, which at their open sides are surrounded by hydrogen atoms from aliphatic C—H, CH2 and CH3 groups, thus connecting parallel ribbons with each other. Perpendicular to the c-axis, ribbons are lined by phenyl and methyl groups from the phenyl­acetyl­ide and the aceto­nitrile mol­ecules, respectively. Inter­actions with neighboring ribbons are van der Waals in nature.

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯Cl2Bi 1.00 2.40 3.265 (6) 144
N2A—H2NA⋯Cl1Aii 1.00 2.91 3.684 (7) 134
N3A—H3N⋯O1A 1.00 2.02 2.844 (16) 138
N3A—H3N⋯O1C 1.00 2.14 3.10 (3) 160
N4A—H4N⋯N5A 1.00 2.30 3.185 (10) 147
N1B—H1BN⋯Cl2A 1.00 2.40 3.251 (6) 143
N2B—H2BN⋯Cl1Biii 1.00 2.83 3.607 (6) 135
N3B—H3BN⋯O1B 1.00 2.06 2.863 (13) 136
N3B—H3BN⋯O1D 1.00 2.08 3.03 (3) 158
N4B—H4BN⋯N5B 1.00 2.26 3.148 (10) 147
O1A—H1OA⋯Cl2A 0.84 2.09 2.899 (18) 163
O1B—H1OB⋯Cl2B 0.84 2.19 2.979 (13) 157
O1C—H1OC⋯Cl2A 0.84 2.40 3.16 (4) 152
O1D—H1OD⋯Cl2B 0.84 2.30 3.13 (3) 168
C9A—H9A⋯Cl1Aii 0.99 2.92 3.631 (9) 130
C10A—H10A⋯Cl1Aii 0.99 2.96 3.531 (8) 118
C14A—H14B⋯Cl2A 0.99 2.98 3.884 (10) 152
C16A—H16A⋯Cl1A 1.00 2.81 3.373 (9) 116
C17A—H17B⋯O1Aiv 0.99 2.46 3.44 (2) 169
C18A—H18A⋯Cl1A 0.99 2.78 3.339 (9) 116
C20A—H20B⋯Cl2Aiv 0.98 2.88 3.834 (11) 164
C22A—H22A⋯Cl2Bv 0.98 2.82 3.669 (11) 146
C9B—H9C⋯Cl2A 0.99 2.97 3.498 (8) 114
C10B—H10C⋯Cl1Biii 0.99 2.89 3.485 (7) 120
C16B—H16B⋯Cl1B 1.00 2.85 3.407 (9) 116
C17B—H17C⋯O1Bvi 0.99 2.63 3.479 (18) 144
C18B—H18C⋯Cl1B 0.99 2.83 3.358 (9) 114
C22B—H22E⋯Cl2Avii 0.98 2.81 3.583 (12) 137
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) -x+2, -y+1, -z; (vi) x-1, y, z; (vii) -x+1, -y+1, -z.

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯F2i 1.00 2.43 3.298 (9) 145
N1—H1N⋯F2Bi 1.00 2.59 3.504 (14) 151
N2—H2N⋯F1ii 1.00 2.61 3.482 (13) 146
N2—H2N⋯F1Bii 1.00 2.61 3.491 (11) 148
N3—H3N⋯O2iii 1.00 2.06 2.947 (15) 147
N3—H3N⋯O2Biii 1.00 2.13 3.053 (18) 153
N4—H4N⋯O3 1.00 2.14 3.001 (11) 143
N4—H4N⋯O3B 1.00 2.31 3.183 (12) 145
C21—H21B⋯Cl1B 0.99 2.94 3.779 (9) 144
C22—H22B⋯O3iii 0.99 2.49 3.401 (14) 152
C23—H23B⋯F2 0.99 2.59 3.419 (11) 142
C23—H23B⋯F2B 0.99 2.64 3.543 (12) 152
N5—H5N⋯O4iv 1.00 2.92 3.523 (4) 119
N6—H6N⋯F5 1.00 2.29 3.211 (2) 153
N7—H7N⋯O6v 1.00 2.69 3.575 (4) 148
N8—H8N⋯O5ii 1.00 2.05 2.960 (2) 150
C46—H46B⋯O6 0.99 2.52 3.483 (3) 163
C49—H49B⋯O5v 0.99 2.57 3.408 (3) 142
C51—H51A⋯F4ii 0.99 2.62 3.590 (3) 167
C52—H52⋯Cl1B 1.00 2.86 3.637 (8) 136
C54—H54A⋯O4iv 0.99 2.59 3.307 (4) 129
C59—H59B⋯O1 0.99 2.24 3.169 (13) 155
C59B—H59C⋯O1B 0.99 2.39 3.027 (12) 122
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z]; (v) [-x+1, y-{\script{1\over 2}}, -z].
[Figure 7]
Figure 7
Hydrogen-bonding inter­actions in 1, showing a segment of the ribbons formed by N—H⋯N, N—H⋯O, and N—H⋯Cl hydrogen bonds (symbolized by dashed turquois lines). Views are slightly tilted down the a axis (left) and the b axis (right). C—H⋯O inter­actions, omitted for clarity, connect parallel ribbons along the a-axis direction. Disorder of methanol mol­ecules is omitted for clarity.
[Figure 8]
Figure 8
Hydrogen-bonding inter­actions in 2, showing both layers connected by N—H⋯O, N—H⋯F hydrogen bonds. The top layer contains cations and anions of Co1 and S1, respectively, the bottom layer those of Co2 and S2. Hydrogen bonds are shown as dashed turquoise lines. Disorder of one of the tri­fluoro­methane­sulfonate anions and methyl­ene chloride is omitted for clarity. View is down the a-axis direction.
[Figure 9]
Figure 9
Hydrogen-bonding inter­actions in 2, showing the hydrogen-bonded layer formed by cations and anions of Co1 and S1, respectively. Hydrogen bonds are depicted as dashed turquoise lines. View is slightly tilted down the c axis. Disorder of the tri­fluoro­methane­sulfonate anion is omitted for clarity.
[Figure 10]
Figure 10
Hydrogen-bonding inter­actions in 2, showing the hydrogen-bonded layer formed by cations and anions of Co2 and S2, respectively. Hydrogen bonds are depicted as dashed turquoise lines. View is slightly tilted down the c axis.

In the triflate salt 2 of the bis­acetyl­ide complex, the two cations form N—H⋯O and N—H⋯F hydrogen bonds with the two triflate anions (Fig. 8[link]). The two mol­ecules have a distinctively different set of hydrogen bonds. The number of hydrogen bonds, their type (N—H⋯O versus N—H⋯F), and their strength varies substanti­ally between the ion pairs. The first of the two cations, involving nitro­gen atoms N1 through N4, features each two N—H⋯O and N—H⋯F hydrogen bonds (not counting duplicates from triflate disorder), Fig. 9[link]. The second cation, involving nitro­gen atoms N5 through N8, makes three N—H⋯O hydrogen bonds, and one N—H⋯F (Fig. 10[link]). On average, the hydrogen bonds involving this second mol­ecule are much weaker than those involving the first mol­ecule, with two of the N—H⋯O bonds and the N—H⋯F bond having donor–acceptor distances longer than 3.52 Å. For the first mol­ecule, only one exceeds a value of 3.5 Å, and this one is towards the minor moiety of the disordered triflate anion. The methyl­ene chloride halogen atoms do not act as acceptors for hydrogen bonds, but are involved in weak C—H⋯O hydrogen bonds towards one of the triflate anions.

4. Synthesis and crystallization

All reactions were carried out under ambient conditions. [CoIII(DMC)Cl2]Cl was synthesized according to literature procedures (Hay et al., 1984[Hay, R. W., House, D. A. & Bembi, R. (1984). J. Chem. Soc. Dalton Trans. pp. 1927-1930.]).

[Scheme 2]

Preparation of [CoIII(DMC)(C2Ph)Cl]Cl (1). [CoIII(DMC)Cl2]Cl (200 mg, 0.51 mmol) was dissolved in 40 mL of methanol. Phenyl­acetyl­ene (0.12 mmol, 1.1 mmol) and Et3N (0.77 mL, 5.6 mmol) were added and the solution was refluxed overnight. Solvent was removed via rotary evaporation, and the solid was loaded onto a silica gel plug and eluted with CH3OH/EtOAc (v/v, 1:6) as a red fraction. The desired product was recrystallized from ether–methanol to afford 170 mg of a coral solid (73% based on [CoIII(DMC)Cl2]Cl). Single crystals were grown from slow diffusion of ether into a methanol solution of 1.

Data for [CoIII(DMC)(C2Ph)Cl]Cl (1). ESI–MS: [M]+, 423.0. 1H NMR (300 MHz, CD3OD, δ): 7.55–7.41 (m, 2H), 7.37–7.25 (m, 2H), 7.25–7.15 (m, 1H), 5.36 (s, 2H), 4.23 (s, 2H), 3.21–2.46 (m, 14H), 1.93–1.84 (m, 2H), 1.53–1.48 (m, 2H), 1.30 (dd, J = 6.9, 4.7 Hz, 6H). Visible spectra, λmax [nm, (M−1, cm−1)]: 256 (36, 800), 493 (101); IR (cm−1): C≡C: 2122 (m).

Preparation of [CoIII(DMC)(C2Ph)2]OTf (2). Compound 1 (150 mg, 0.33 mmol) and AgOTf (384 mg, 1.49 mmol) were dissolved in 50 mL of CH3CN and refluxed for 48 h. The precipitate that formed was filtered out, and 3.1 mL (22 mmol) of Et3N and 0.20 mL (1.8 mmol) of phenyl­acetyl­ene were added and the solution was refluxed for 48 h. The solution was purified over a silica gel plug and the product eluted with CH3OH/EtOAc (v/v, 1:8). A pale-yellow fraction was collected and recrystallized from ether–methanol to afford 102 mg of a yellow solid (47% based on 1). Single crystals were grown from slow diffusion of n-hexa­nes into a CH3OH/CH2Cl­2 (v/v, 1:9) solution of 2.

Data for [CoIII(DMC)(C2Ph)2]OTf (2). ESI–MS: [M]+, 489.0. 1H NMR (300 MHz, CD3OD, δ): 7.58–7.42 (m, 4H), 7.36–7.24 (m, 4H), 7.22–7.13 (m, 2H), 4.90 (s, 2H), 3.84 (s, 2H), 3.30–3.01 (m, 6H), 2.81–2.78 (m, 2H), 2.68–2.63 (m, 3H), 2.50–2.43 (m, 3H), 1.83 (d, 2H), 1.38 (d, 2H), 1.27 (d, 6H). Visible spectra, λmax [nm, (M−1, cm−1)]: 271 (40, 800), 464 (64.5); IR (cm−1): C≡C: 2102 (m).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. H atoms attached to carbon and nitro­gen atoms and hydroxyl hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms. Carbon-to-hydrogen bond distances were constrained to 0.95 Å for aromatic C—H. Aliphatic C—H, CH2, and CH3 moieties were constrained to 1.00, 0.99 and 0.98 Å, respect­ively. N—H distances were constrained to 0.88 Å and O—H distances to 0.84 Å. Methyl and hydroxyl H atoms were allowed to rotate, but not to tip, to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for OH and CH3, and 1.2 for N—H and C—H units, respectively.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Co(C8H5)Cl(C12H28N4)]Cl·C2H3N·CH4O [Co(C8H5)2(C12H28N4)]2(CF3SO3)2·CH2Cl2
Mr 532.43 1362.17
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21
Temperature (K) 150 150
a, b, c (Å) 9.6903 (13), 15.668 (2), 17.985 (2) 12.0263 (7), 12.3999 (5), 21.9164 (14)
α, β, γ (°) 86.430 (5), 74.848 (4), 88.970 (5) 90, 105.3260 (14), 90
V3) 2630.6 (6) 3152.1 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.88 0.75
Crystal size (mm) 0.36 × 0.25 × 0.09 0.40 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.190, 0.263 0.660, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 44192, 9687, 7643 54456, 22462, 18066
Rint 0.095 0.026
(sin θ/λ)max−1) 0.610 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.241, 1.10 0.034, 0.078, 1.01
No. of reflections 9687 22462
No. of parameters 628 872
No. of restraints 79 349
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −1.41 0.44, −0.56
Absolute structure Flack x determined using 6987 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (3)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 and SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The structure of compound 1 exhibits pseudo-symmetry and emulates a double-volume C-centered monoclinic cell in space group C2/c. The pseudo-symmetry is only approximate, and the α and γ angles deviate substanti­ally from the expected 90° for monoclinic (approximate cell dimensions: 34.71, 9.69, 15.67, 88.97, 93.41, 89.52). The structure is, however, twinned by a symmetry operator of the approximate larger monoclinic cell, by a 180° rotation around the [201] direction in reciprocal space (of the actual triclinic cell). Application of the twin matrix 1 0 0, 0 [\overline{1}] 0, 1 0 [\overline{1}] yielded a twin ratio of 0.798 (3):0.202 (3).

In the structure of compound 1, each methanol group was refined with two-component disorder with a shared occupancy ratio for the two sites. The C—O bond lengths were restrained to 1.427 (20) Å. Each minor occupancy component was restrained to be similar the respective major occupancy component (SAME command of SHELXL, s.u. = 0.02 Å). The Uij components for atoms within 2.0 Å were restrained to be similar (SIMU command of SHELXL, s.u. = 0.01 Å2). The alcohol hydrogen atom to neighboring chloride distances were restrained based on hydrogen-bonding considerations. Subject to these conditions, the occupancy rates refined to 0.643 (16) and 0.357 (16).

In the structure of compound 2, the S1 triflate anion was refined with two-component disorder. Each moiety was restrained to have a similar geometry as the S2 triflate anion (SAME command of SHELXL, s.u. = 0.02 Å). The Uij components for disordered atoms within 2.0 Å were restrained to be similar (SIMU command of SHELXL, s.u. = 0.01 Å2). Subject to these conditions, the occupancy factors refined to 0.503 (22) and 0.497 (22). The di­chloro­methane mol­ecule was refined with two-component disorder. The minor occupancy component was restrained to have a similar geometry as the major occupancy component (SIMU command of SHELXL, s.u. = 0.01 Å2). The Uij components for atoms within 2.0 Å were restrained to be similar (SIMU command of SHELXL, s.u. = 0.01 Å2). Subject to these conditions, the occupancy factors refined to 0.545 (12) and 0.455 (12).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011) for (1); SHELXL2018 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011) for (2). For both structures, molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Chlorido(5,12-dimethyl-1,4,8,11-tetraazacyclotetradecane)(phenylethynyl)cobalt(III) chloride–acetonitrile–methanol (1/1/1) (1) top
Crystal data top
[Co(C8H5)Cl(C12H28N4)]Cl·C2H3N·CH4OZ = 4
Mr = 532.43F(000) = 1128
Triclinic, P1Dx = 1.344 Mg m3
a = 9.6903 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.668 (2) ÅCell parameters from 9887 reflections
c = 17.985 (2) Åθ = 3.1–28.4°
α = 86.430 (5)°µ = 0.88 mm1
β = 74.848 (4)°T = 150 K
γ = 88.970 (5)°Plate, orange
V = 2630.6 (6) Å30.36 × 0.25 × 0.09 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
9687 independent reflections
Radiation source: sealed tube X-ray source7643 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.095
ω and phi scansθmax = 25.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.190, Tmax = 0.263k = 1919
44192 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: mixed
wR(F2) = 0.241H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0698P)2 + 11.8383P]
where P = (Fo2 + 2Fc2)/3
9687 reflections(Δ/σ)max < 0.001
628 parametersΔρmax = 0.93 e Å3
79 restraintsΔρmin = 1.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

The structure exhibits pseudo-symmetry and emulates a double the volume C-centered monoclinic cell in space group C2/c. The pseudosymmetry is only approximate, and angles deviate substantially from the expected 90 degrees for monoclinic (approximate cell dimensions: 34.71, 9.69, 15.67, 88.97, 93.41, 89.52). The structure is however twinned by a symmetry operator of the approximate larger monoclinic cell, by a 180 degree rotation around the 2 0 1 direction in reciprocal space (of the actual triclinic cell). Application of the twin matrix 1 0 0, 0 -1 0, 1 0 -1 yielded a twin ratio of 0.798 (3) to 0.202 (3).

Each methanol moiety was refined with two component disorder, with a shared occupancy ratio for the two sites. The C-O bond lengths were restrained to 1.427 (20) Angstrom. Alcohol hydrogen atom to neighboring chloride distances were restrained based on hydrogen bonding considerations. Subject to these conditions, the occupancy rates refined to 0.643 (16) and 0.357 (16).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co1A0.61768 (10)0.01471 (6)0.30868 (5)0.0416 (3)
N1A0.7788 (7)0.0419 (4)0.3401 (4)0.0540 (16)
H1NA0.8292330.0770730.2965800.065*
N2A0.4963 (7)0.0762 (4)0.3738 (4)0.0499 (15)
H2NA0.4502080.0507640.4239160.060*
N3A0.4587 (7)0.0713 (5)0.2757 (4)0.0587 (17)
H3N0.4064830.1063420.3188670.070*
N4A0.7391 (7)0.1056 (4)0.2432 (4)0.0503 (15)
H4N0.7852580.0799500.1931530.060*
Cl1A0.5633 (2)0.09833 (12)0.41506 (10)0.0511 (5)
Cl2A0.2600 (3)0.32533 (17)0.25087 (14)0.0737 (7)
C1A0.6550 (7)0.0519 (4)0.2213 (4)0.0400 (14)
C2A0.6751 (8)0.0840 (5)0.1612 (4)0.0483 (17)
C3A0.6889 (8)0.1197 (4)0.0875 (4)0.0464 (16)
C4A0.8031 (8)0.1724 (5)0.0545 (4)0.0500 (18)
H4A0.8745780.1860790.0807910.060*
C5A0.8123 (10)0.2047 (6)0.0159 (5)0.061 (2)
H5A0.8911190.2400200.0382700.074*
C6A0.7076 (10)0.1865 (6)0.0550 (5)0.063 (2)
H6A0.7138260.2096820.1033680.075*
C7A0.5958 (10)0.1346 (7)0.0227 (5)0.068 (2)
H7A0.5245630.1209910.0492180.082*
C8A0.5855 (9)0.1021 (6)0.0475 (5)0.062 (2)
H8A0.5062340.0668980.0693880.075*
C9A0.7189 (10)0.1029 (6)0.4069 (5)0.063 (2)
H9A0.6885480.0720620.4548900.076*
H9B0.7920200.1458260.4129620.076*
C10A0.5943 (10)0.1457 (5)0.3917 (5)0.060 (2)
H10A0.5440550.1818950.4375020.072*
H10B0.6261090.1823480.3474410.072*
C11A0.3771 (10)0.1130 (6)0.3467 (5)0.068 (2)
H11A0.4205730.1440140.2991140.082*
C12A0.2813 (10)0.0412 (8)0.3254 (7)0.084 (3)
H12A0.1961740.0675060.3155820.101*
H12B0.2475850.0058350.3704500.101*
C13A0.3507 (9)0.0165 (7)0.2566 (6)0.073 (3)
H13A0.3973480.0182340.2128050.088*
H13B0.2772090.0529450.2410600.088*
C14A0.5195 (10)0.1320 (6)0.2085 (5)0.065 (2)
H14A0.5510170.1009700.1606650.078*
H14B0.4468230.1749490.2018060.078*
C15A0.6434 (11)0.1746 (5)0.2251 (5)0.063 (2)
H15A0.6947390.2110690.1796530.075*
H15B0.6105020.2109750.2694370.075*
C16A0.8591 (10)0.1420 (6)0.2708 (5)0.066 (2)
H16A0.8152700.1717240.3190350.080*
C17A0.9542 (9)0.0703 (7)0.2910 (6)0.077 (3)
H17A0.9879900.0359290.2453090.093*
H17B1.0393480.0965070.3009400.093*
C18A0.8889 (9)0.0126 (7)0.3570 (6)0.071 (3)
H18A0.8445490.0465110.4018190.085*
H18B0.9638170.0241040.3707520.085*
C19A0.2892 (13)0.1762 (8)0.4063 (6)0.093 (4)
H19A0.2103070.1970730.3876510.140*
H19B0.2504070.1480390.4545900.140*
H19C0.3496090.2244090.4154550.140*
C20A0.9448 (12)0.2077 (8)0.2120 (6)0.095 (4)
H20A0.9862440.1806710.1633980.142*
H20B1.0216080.2299860.2314930.142*
H20C0.8818930.2546890.2031150.142*
N5A0.8348 (11)0.0938 (6)0.0607 (5)0.084 (3)
C21A0.8507 (10)0.0751 (6)0.0005 (5)0.065 (2)
C22A0.8738 (13)0.0504 (7)0.0794 (5)0.082 (3)
H22A0.9360810.0923430.1146420.098*
H22B0.7818240.0482810.0923330.098*
H22C0.9191510.0061380.0844290.098*
O1A0.2181 (17)0.1695 (11)0.3497 (10)0.101 (4)0.643 (16)
H1OA0.2128740.2122540.3199410.152*0.643 (16)
C23A0.180 (3)0.1931 (17)0.4250 (12)0.112 (6)0.643 (16)
H23A0.1098790.2396440.4301250.168*0.643 (16)
H23B0.2650500.2124290.4389400.168*0.643 (16)
H23C0.1381260.1439480.4593220.168*0.643 (16)
O1C0.242 (3)0.1838 (19)0.386 (2)0.096 (6)0.357 (16)
H1OC0.2398630.2323790.3640830.144*0.357 (16)
C23C0.104 (4)0.163 (3)0.434 (3)0.113 (7)0.357 (16)
H23G0.0869640.1930840.4816810.170*0.357 (16)
H23H0.0989760.1008520.4469200.170*0.357 (16)
H23I0.0320100.1793460.4067570.170*0.357 (16)
Co2B0.59189 (10)0.51435 (6)0.30908 (5)0.0417 (3)
N1B0.3958 (6)0.4714 (4)0.3312 (3)0.0473 (15)
H1BN0.3934940.4357020.2873160.057*
N2B0.6267 (7)0.4190 (4)0.3809 (3)0.0475 (14)
H2BN0.6173730.4445720.4315080.057*
N3B0.7887 (7)0.5564 (4)0.2859 (4)0.0551 (16)
H3BN0.7929920.5915560.3297690.066*
N4B0.5553 (7)0.6099 (4)0.2376 (3)0.0480 (15)
H4BN0.5626050.5838990.1873590.058*
Cl1B0.5340 (2)0.59978 (12)0.41394 (10)0.0532 (5)
Cl2B1.0093 (2)0.81517 (16)0.25885 (14)0.0677 (6)
C1B0.6461 (7)0.4456 (4)0.2224 (4)0.0383 (14)
C2B0.6812 (8)0.4126 (5)0.1638 (4)0.0452 (16)
C3B0.7320 (8)0.3759 (4)0.0903 (4)0.0453 (16)
C4B0.6445 (9)0.3266 (5)0.0600 (4)0.0540 (19)
H4B0.5478870.3168580.0880000.065*
C5B0.6974 (11)0.2913 (6)0.0111 (5)0.066 (2)
H5B0.6371760.2561670.0302710.079*
C6B0.8343 (10)0.3064 (6)0.0535 (5)0.064 (2)
H6B0.8677520.2843950.1031010.077*
C7B0.9244 (10)0.3541 (7)0.0238 (5)0.068 (2)
H7B1.0208720.3632770.0522100.081*
C8B0.8729 (9)0.3884 (6)0.0479 (5)0.057 (2)
H8B0.9351950.4207830.0680860.069*
C9B0.3724 (9)0.4117 (5)0.4000 (4)0.054 (2)
H9C0.2895480.3743620.4029590.065*
H9D0.3524000.4439280.4472420.065*
C10B0.5058 (9)0.3582 (5)0.3935 (4)0.053 (2)
H10C0.4980400.3218660.4414680.063*
H10D0.5201860.3208450.3497430.063*
C11B0.7685 (10)0.3717 (6)0.3631 (5)0.059 (2)
H11B0.7778740.3409220.3149970.071*
C12B0.8899 (10)0.4348 (7)0.3487 (6)0.071 (2)
H12C0.8748300.4700300.3940280.085*
H12D0.9800560.4025580.3446980.085*
C13B0.9071 (9)0.4926 (6)0.2788 (6)0.069 (2)
H13C0.9106680.4581330.2340840.083*
H13D0.9990910.5233410.2688450.083*
C14B0.8114 (9)0.6163 (6)0.2177 (5)0.060 (2)
H14C0.8324640.5843100.1702220.072*
H14D0.8937300.6539660.2150460.072*
C15B0.6792 (10)0.6690 (5)0.2234 (5)0.058 (2)
H15C0.6659910.7075610.2662450.069*
H15D0.6872430.7042960.1748670.069*
C16B0.4142 (9)0.6575 (6)0.2560 (5)0.058 (2)
H16B0.4036050.6856150.3055830.070*
C17B0.2959 (10)0.5940 (6)0.2674 (6)0.066 (2)
H17C0.2051700.6255460.2710000.080*
H17D0.3138970.5600800.2210970.080*
C18B0.2771 (8)0.5339 (6)0.3366 (5)0.064 (2)
H18C0.2691100.5673230.3825120.077*
H18D0.1864570.5022340.3443530.077*
C19B0.7802 (12)0.3064 (6)0.4274 (6)0.071 (2)
H19D0.7727750.3355680.4749260.107*
H19E0.8725430.2769600.4126920.107*
H19F0.7027530.2646130.4359340.107*
C20B0.4069 (12)0.7268 (6)0.1935 (5)0.075 (3)
H20D0.4286700.7016040.1431680.113*
H20E0.4766380.7716590.1924450.113*
H20F0.3105780.7515930.2046900.113*
N5B0.6455 (13)0.5963 (6)0.0575 (5)0.094 (3)
C21B0.6682 (12)0.5719 (6)0.0016 (5)0.067 (2)
C22B0.6983 (15)0.5401 (8)0.0779 (6)0.091 (4)
H22D0.7492610.4854800.0785490.109*
H22E0.7576150.5815500.1152730.109*
H22F0.6082730.5317680.0917330.109*
O1B0.9508 (15)0.6559 (9)0.3612 (7)0.080 (3)0.643 (16)
H1OB0.9416780.7023410.3370670.120*0.643 (16)
C23B0.927 (3)0.669 (2)0.4407 (11)0.097 (5)0.643 (16)
H23D0.8246190.6801010.4630230.145*0.643 (16)
H23E0.9819430.7190400.4469570.145*0.643 (16)
H23F0.9564720.6186970.4672290.145*0.643 (16)
O1D0.874 (3)0.6780 (17)0.3906 (16)0.093 (6)0.357 (16)
H1OD0.8978930.7178830.3562870.139*0.357 (16)
C23D0.974 (4)0.674 (4)0.437 (3)0.100 (7)0.357 (16)
H23J0.9512670.7181790.4743090.151*0.357 (16)
H23K1.0709790.6820500.4040770.151*0.357 (16)
H23L0.9671650.6173070.4649080.151*0.357 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co1A0.0442 (5)0.0450 (5)0.0356 (5)0.0034 (4)0.0075 (4)0.0158 (4)
N1A0.050 (4)0.069 (4)0.044 (4)0.015 (3)0.009 (3)0.023 (3)
N2A0.051 (4)0.049 (3)0.044 (3)0.000 (3)0.000 (3)0.016 (3)
N3A0.052 (4)0.069 (4)0.054 (4)0.011 (3)0.011 (3)0.017 (3)
N4A0.048 (3)0.057 (4)0.043 (3)0.000 (3)0.003 (3)0.016 (3)
Cl1A0.0613 (11)0.0484 (9)0.0394 (9)0.0005 (8)0.0021 (8)0.0189 (7)
Cl2A0.0762 (15)0.0857 (16)0.0679 (14)0.0093 (12)0.0285 (11)0.0280 (12)
C1A0.038 (3)0.049 (4)0.036 (3)0.005 (3)0.014 (3)0.006 (3)
C2A0.052 (4)0.043 (4)0.051 (4)0.002 (3)0.013 (3)0.012 (3)
C3A0.055 (4)0.043 (4)0.041 (4)0.002 (3)0.009 (3)0.015 (3)
C4A0.044 (4)0.062 (5)0.046 (4)0.001 (3)0.011 (3)0.017 (4)
C5A0.064 (5)0.070 (5)0.046 (4)0.006 (4)0.003 (4)0.024 (4)
C6A0.070 (5)0.072 (6)0.047 (5)0.003 (4)0.011 (4)0.029 (4)
C7A0.065 (5)0.095 (7)0.053 (5)0.005 (5)0.024 (4)0.032 (5)
C8A0.056 (5)0.080 (6)0.058 (5)0.020 (4)0.021 (4)0.034 (4)
C9A0.073 (6)0.078 (6)0.039 (4)0.030 (5)0.015 (4)0.015 (4)
C10A0.089 (6)0.043 (4)0.041 (4)0.008 (4)0.004 (4)0.010 (3)
C11A0.057 (5)0.079 (6)0.064 (5)0.010 (4)0.001 (4)0.031 (5)
C12A0.045 (5)0.116 (9)0.093 (8)0.006 (5)0.015 (5)0.043 (7)
C13A0.039 (4)0.109 (8)0.078 (6)0.006 (4)0.022 (4)0.029 (6)
C14A0.067 (5)0.072 (6)0.059 (5)0.017 (4)0.023 (4)0.003 (4)
C15A0.087 (6)0.037 (4)0.060 (5)0.002 (4)0.012 (4)0.002 (3)
C16A0.061 (5)0.085 (6)0.049 (5)0.018 (4)0.000 (4)0.024 (4)
C17A0.039 (4)0.111 (8)0.084 (7)0.003 (5)0.010 (4)0.042 (6)
C18A0.044 (4)0.109 (8)0.067 (6)0.007 (5)0.022 (4)0.035 (5)
C19A0.092 (8)0.106 (8)0.071 (7)0.036 (7)0.007 (6)0.030 (6)
C20A0.088 (7)0.112 (8)0.069 (6)0.041 (6)0.019 (5)0.044 (6)
N5A0.095 (6)0.085 (6)0.057 (5)0.016 (5)0.009 (4)0.019 (4)
C21A0.070 (6)0.067 (5)0.050 (5)0.004 (4)0.000 (4)0.007 (4)
C22A0.107 (8)0.090 (7)0.051 (5)0.007 (6)0.021 (5)0.017 (5)
O1A0.084 (8)0.110 (9)0.103 (11)0.016 (7)0.010 (8)0.020 (9)
C23A0.100 (13)0.119 (12)0.109 (13)0.001 (10)0.012 (11)0.009 (11)
O1C0.090 (12)0.105 (11)0.087 (15)0.011 (10)0.006 (11)0.045 (11)
C23C0.102 (14)0.122 (13)0.112 (14)0.011 (12)0.017 (13)0.029 (13)
Co2B0.0503 (5)0.0451 (5)0.0300 (5)0.0036 (4)0.0080 (4)0.0149 (4)
N1B0.044 (3)0.064 (4)0.033 (3)0.007 (3)0.004 (2)0.024 (3)
N2B0.057 (4)0.052 (3)0.036 (3)0.009 (3)0.014 (3)0.014 (3)
N3B0.057 (4)0.061 (4)0.047 (4)0.013 (3)0.009 (3)0.009 (3)
N4B0.055 (4)0.057 (4)0.033 (3)0.004 (3)0.011 (3)0.017 (3)
Cl1B0.0808 (13)0.0478 (10)0.0325 (8)0.0022 (9)0.0137 (8)0.0183 (7)
Cl2B0.0600 (12)0.0761 (14)0.0628 (13)0.0108 (10)0.0052 (10)0.0210 (11)
C1B0.031 (3)0.046 (4)0.035 (3)0.001 (3)0.004 (3)0.002 (3)
C2B0.048 (4)0.052 (4)0.034 (4)0.003 (3)0.008 (3)0.010 (3)
C3B0.052 (4)0.043 (4)0.039 (4)0.006 (3)0.006 (3)0.016 (3)
C4B0.052 (4)0.070 (5)0.043 (4)0.006 (4)0.014 (3)0.019 (4)
C5B0.085 (6)0.071 (6)0.050 (5)0.006 (5)0.029 (4)0.026 (4)
C6B0.080 (6)0.074 (6)0.038 (4)0.019 (5)0.013 (4)0.025 (4)
C7B0.061 (5)0.096 (7)0.040 (4)0.012 (5)0.001 (4)0.022 (4)
C8B0.055 (5)0.073 (5)0.042 (4)0.000 (4)0.008 (3)0.015 (4)
C9B0.060 (5)0.067 (5)0.033 (4)0.010 (4)0.004 (3)0.020 (4)
C10B0.082 (6)0.040 (4)0.035 (4)0.017 (4)0.009 (4)0.009 (3)
C11B0.069 (5)0.065 (5)0.047 (5)0.006 (4)0.020 (4)0.012 (4)
C12B0.057 (5)0.080 (6)0.079 (6)0.002 (4)0.020 (4)0.018 (5)
C13B0.038 (4)0.084 (6)0.086 (7)0.006 (4)0.013 (4)0.012 (5)
C14B0.060 (5)0.065 (5)0.056 (5)0.019 (4)0.012 (4)0.009 (4)
C15B0.081 (6)0.044 (4)0.048 (4)0.019 (4)0.015 (4)0.001 (3)
C16B0.062 (5)0.065 (5)0.050 (5)0.005 (4)0.015 (4)0.019 (4)
C17B0.055 (5)0.080 (6)0.071 (6)0.012 (4)0.025 (4)0.021 (5)
C18B0.037 (4)0.081 (6)0.073 (6)0.003 (4)0.009 (4)0.027 (5)
C19B0.088 (7)0.069 (6)0.065 (6)0.001 (5)0.032 (5)0.017 (5)
C20B0.099 (8)0.075 (6)0.058 (6)0.013 (5)0.030 (5)0.019 (5)
N5B0.161 (10)0.074 (5)0.052 (5)0.019 (6)0.035 (5)0.018 (4)
C21B0.093 (7)0.060 (5)0.053 (5)0.008 (5)0.025 (5)0.013 (4)
C22B0.120 (9)0.101 (8)0.050 (6)0.032 (7)0.017 (6)0.030 (6)
O1B0.075 (8)0.102 (8)0.066 (7)0.025 (6)0.020 (6)0.011 (6)
C23B0.086 (12)0.112 (10)0.088 (9)0.036 (11)0.013 (9)0.012 (9)
O1D0.096 (13)0.111 (11)0.075 (11)0.025 (11)0.025 (9)0.018 (10)
C23D0.094 (15)0.115 (12)0.082 (11)0.022 (14)0.005 (11)0.006 (11)
Geometric parameters (Å, º) top
Co1A—C1A1.893 (7)Co2B—C1B1.905 (7)
Co1A—N3A1.968 (7)Co2B—N1B1.960 (6)
Co1A—N1A1.973 (7)Co2B—N3B1.960 (7)
Co1A—N2A1.979 (6)Co2B—N2B1.996 (7)
Co1A—N4A1.982 (7)Co2B—N4B1.999 (7)
Co1A—Cl1A2.3270 (18)Co2B—Cl1B2.3233 (18)
N1A—C18A1.482 (11)N1B—C9B1.475 (10)
N1A—C9A1.484 (11)N1B—C18B1.484 (11)
N1A—H1NA1.0000N1B—H1BN1.0000
N2A—C11A1.502 (11)N2B—C10B1.485 (9)
N2A—C10A1.506 (11)N2B—C11B1.517 (11)
N2A—H2NA1.0000N2B—H2BN1.0000
N3A—C13A1.485 (11)N3B—C14B1.469 (11)
N3A—C14A1.489 (12)N3B—C13B1.493 (11)
N3A—H3N1.0000N3B—H3BN1.0000
N4A—C15A1.487 (11)N4B—C15B1.487 (10)
N4A—C16A1.512 (11)N4B—C16B1.514 (10)
N4A—H4N1.0000N4B—H4BN1.0000
C1A—C2A1.189 (10)C1B—C2B1.168 (9)
C2A—C3A1.444 (10)C2B—C3B1.437 (9)
C3A—C8A1.392 (11)C3B—C4B1.390 (11)
C3A—C4A1.395 (10)C3B—C8B1.390 (11)
C4A—C5A1.374 (11)C4B—C5B1.392 (11)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.394 (13)C5B—C6B1.363 (13)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.368 (12)C6B—C7B1.387 (13)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.371 (11)C7B—C8B1.393 (11)
C7A—H7A0.9500C7B—H7B0.9500
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.486 (13)C9B—C10B1.510 (12)
C9A—H9A0.9900C9B—H9C0.9900
C9A—H9B0.9900C9B—H9D0.9900
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C19A1.509 (14)C11B—C12B1.509 (13)
C11A—C12A1.539 (15)C11B—C19B1.521 (12)
C11A—H11A1.0000C11B—H11B1.0000
C12A—C13A1.499 (15)C12B—C13B1.477 (14)
C12A—H12A0.9900C12B—H12C0.9900
C12A—H12B0.9900C12B—H12D0.9900
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—C15A1.489 (13)C14B—C15B1.495 (13)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—H15A0.9900C15B—H15C0.9900
C15A—H15B0.9900C15B—H15D0.9900
C16A—C20A1.517 (13)C16B—C17B1.497 (12)
C16A—C17A1.526 (15)C16B—C20B1.528 (13)
C16A—H16A1.0000C16B—H16B1.0000
C17A—C18A1.456 (14)C17B—C18B1.488 (13)
C17A—H17A0.9900C17B—H17C0.9900
C17A—H17B0.9900C17B—H17D0.9900
C18A—H18A0.9900C18B—H18C0.9900
C18A—H18B0.9900C18B—H18D0.9900
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C20A—H20A0.9800C20B—H20D0.9800
C20A—H20B0.9800C20B—H20E0.9800
C20A—H20C0.9800C20B—H20F0.9800
N5A—C21A1.128 (12)N5B—C21B1.118 (11)
C21A—C22A1.454 (12)C21B—C22B1.444 (12)
C22A—H22A0.9800C22B—H22D0.9800
C22A—H22B0.9800C22B—H22E0.9800
C22A—H22C0.9800C22B—H22F0.9800
O1A—C23A1.378 (17)O1B—C23B1.416 (17)
O1A—H1OA0.8400O1B—H1OB0.8400
C23A—H23A0.9800C23B—H23D0.9800
C23A—H23B0.9800C23B—H23E0.9800
C23A—H23C0.9800C23B—H23F0.9800
O1C—C23C1.421 (19)O1D—C23D1.430 (19)
O1C—H1OC0.8400O1D—H1OD0.8400
C23C—H23G0.9800C23D—H23J0.9800
C23C—H23H0.9800C23D—H23K0.9800
C23C—H23I0.9800C23D—H23L0.9800
C1A—Co1A—N3A89.8 (3)C1B—Co2B—N1B89.9 (2)
C1A—Co1A—N1A89.6 (3)C1B—Co2B—N3B89.3 (3)
N3A—Co1A—N1A179.1 (3)N1B—Co2B—N3B179.3 (3)
C1A—Co1A—N2A91.7 (3)C1B—Co2B—N2B92.2 (3)
N3A—Co1A—N2A94.4 (3)N1B—Co2B—N2B86.7 (3)
N1A—Co1A—N2A86.2 (3)N3B—Co2B—N2B93.4 (3)
C1A—Co1A—N4A88.2 (3)C1B—Co2B—N4B88.0 (3)
N3A—Co1A—N4A85.6 (3)N1B—Co2B—N4B92.9 (3)
N1A—Co1A—N4A93.9 (3)N3B—Co2B—N4B87.1 (3)
N2A—Co1A—N4A179.8 (3)N2B—Co2B—N4B179.5 (3)
C1A—Co1A—Cl1A177.7 (2)C1B—Co2B—Cl1B178.0 (2)
N3A—Co1A—Cl1A88.0 (2)N1B—Co2B—Cl1B92.08 (17)
N1A—Co1A—Cl1A92.66 (18)N3B—Co2B—Cl1B88.6 (2)
N2A—Co1A—Cl1A88.08 (18)N2B—Co2B—Cl1B87.81 (18)
N4A—Co1A—Cl1A92.09 (18)N4B—Co2B—Cl1B92.00 (17)
C18A—N1A—C9A110.3 (7)C9B—N1B—C18B112.2 (6)
C18A—N1A—Co1A118.2 (6)C9B—N1B—Co2B107.6 (5)
C9A—N1A—Co1A108.0 (5)C18B—N1B—Co2B118.8 (5)
C18A—N1A—H1NA106.5C9B—N1B—H1BN105.8
C9A—N1A—H1NA106.5C18B—N1B—H1BN105.8
Co1A—N1A—H1NA106.5Co2B—N1B—H1BN105.8
C11A—N2A—C10A111.0 (7)C10B—N2B—C11B110.8 (6)
C11A—N2A—Co1A119.2 (6)C10B—N2B—Co2B107.1 (5)
C10A—N2A—Co1A107.4 (5)C11B—N2B—Co2B120.2 (5)
C11A—N2A—H2NA106.1C10B—N2B—H2BN105.9
C10A—N2A—H2NA106.1C11B—N2B—H2BN105.9
Co1A—N2A—H2NA106.1Co2B—N2B—H2BN105.9
C13A—N3A—C14A109.1 (7)C14B—N3B—C13B112.0 (7)
C13A—N3A—Co1A118.1 (6)C14B—N3B—Co2B107.7 (5)
C14A—N3A—Co1A108.5 (5)C13B—N3B—Co2B118.4 (5)
C13A—N3A—H3N106.9C14B—N3B—H3BN106.0
C14A—N3A—H3N106.9C13B—N3B—H3BN106.0
Co1A—N3A—H3N106.9Co2B—N3B—H3BN106.0
C15A—N4A—C16A111.1 (7)C15B—N4B—C16B111.9 (6)
C15A—N4A—Co1A108.0 (5)C15B—N4B—Co2B106.4 (5)
C16A—N4A—Co1A118.6 (5)C16B—N4B—Co2B120.5 (5)
C15A—N4A—H4N106.1C15B—N4B—H4BN105.7
C16A—N4A—H4N106.1C16B—N4B—H4BN105.7
Co1A—N4A—H4N106.1Co2B—N4B—H4BN105.7
C2A—C1A—Co1A171.3 (7)C2B—C1B—Co2B171.8 (6)
C1A—C2A—C3A175.3 (8)C1B—C2B—C3B176.3 (8)
C8A—C3A—C4A118.1 (7)C4B—C3B—C8B118.1 (7)
C8A—C3A—C2A119.8 (7)C4B—C3B—C2B121.9 (7)
C4A—C3A—C2A122.0 (7)C8B—C3B—C2B120.0 (7)
C5A—C4A—C3A120.1 (8)C3B—C4B—C5B120.5 (8)
C5A—C4A—H4A119.9C3B—C4B—H4B119.7
C3A—C4A—H4A119.9C5B—C4B—H4B119.7
C4A—C5A—C6A120.9 (8)C6B—C5B—C4B120.9 (8)
C4A—C5A—H5A119.5C6B—C5B—H5B119.5
C6A—C5A—H5A119.5C4B—C5B—H5B119.5
C7A—C6A—C5A118.9 (7)C5B—C6B—C7B119.5 (7)
C7A—C6A—H6A120.5C5B—C6B—H6B120.2
C5A—C6A—H6A120.5C7B—C6B—H6B120.2
C6A—C7A—C8A120.6 (8)C6B—C7B—C8B119.8 (8)
C6A—C7A—H7A119.7C6B—C7B—H7B120.1
C8A—C7A—H7A119.7C8B—C7B—H7B120.1
C7A—C8A—C3A121.3 (8)C3B—C8B—C7B121.1 (8)
C7A—C8A—H8A119.4C3B—C8B—H8B119.5
C3A—C8A—H8A119.4C7B—C8B—H8B119.5
N1A—C9A—C10A107.7 (7)N1B—C9B—C10B108.2 (6)
N1A—C9A—H9A110.2N1B—C9B—H9C110.0
C10A—C9A—H9A110.2C10B—C9B—H9C110.0
N1A—C9A—H9B110.2N1B—C9B—H9D110.0
C10A—C9A—H9B110.2C10B—C9B—H9D110.0
H9A—C9A—H9B108.5H9C—C9B—H9D108.4
C9A—C10A—N2A107.1 (6)N2B—C10B—C9B106.6 (6)
C9A—C10A—H10A110.3N2B—C10B—H10C110.4
N2A—C10A—H10A110.3C9B—C10B—H10C110.4
C9A—C10A—H10B110.3N2B—C10B—H10D110.4
N2A—C10A—H10B110.3C9B—C10B—H10D110.4
H10A—C10A—H10B108.5H10C—C10B—H10D108.6
N2A—C11A—C19A111.7 (8)C12B—C11B—N2B109.8 (7)
N2A—C11A—C12A110.4 (7)C12B—C11B—C19B109.4 (8)
C19A—C11A—C12A110.4 (9)N2B—C11B—C19B112.7 (7)
N2A—C11A—H11A108.1C12B—C11B—H11B108.3
C19A—C11A—H11A108.1N2B—C11B—H11B108.3
C12A—C11A—H11A108.1C19B—C11B—H11B108.3
C13A—C12A—C11A115.4 (8)C13B—C12B—C11B115.2 (8)
C13A—C12A—H12A108.4C13B—C12B—H12C108.5
C11A—C12A—H12A108.4C11B—C12B—H12C108.5
C13A—C12A—H12B108.4C13B—C12B—H12D108.5
C11A—C12A—H12B108.4C11B—C12B—H12D108.5
H12A—C12A—H12B107.5H12C—C12B—H12D107.5
N3A—C13A—C12A109.9 (8)C12B—C13B—N3B112.7 (8)
N3A—C13A—H13A109.7C12B—C13B—H13C109.1
C12A—C13A—H13A109.7N3B—C13B—H13C109.1
N3A—C13A—H13B109.7C12B—C13B—H13D109.1
C12A—C13A—H13B109.7N3B—C13B—H13D109.1
H13A—C13A—H13B108.2H13C—C13B—H13D107.8
C15A—C14A—N3A106.9 (7)N3B—C14B—C15B108.8 (7)
C15A—C14A—H14A110.3N3B—C14B—H14C109.9
N3A—C14A—H14A110.3C15B—C14B—H14C109.9
C15A—C14A—H14B110.3N3B—C14B—H14D109.9
N3A—C14A—H14B110.3C15B—C14B—H14D109.9
H14A—C14A—H14B108.6H14C—C14B—H14D108.3
N4A—C15A—C14A106.9 (6)N4B—C15B—C14B108.2 (6)
N4A—C15A—H15A110.3N4B—C15B—H15C110.1
C14A—C15A—H15A110.3C14B—C15B—H15C110.1
N4A—C15A—H15B110.3N4B—C15B—H15D110.1
C14A—C15A—H15B110.3C14B—C15B—H15D110.1
H15A—C15A—H15B108.6H15C—C15B—H15D108.4
N4A—C16A—C20A111.4 (8)C17B—C16B—N4B108.5 (7)
N4A—C16A—C17A110.4 (7)C17B—C16B—C20B111.4 (8)
C20A—C16A—C17A111.6 (9)N4B—C16B—C20B112.2 (7)
N4A—C16A—H16A107.7C17B—C16B—H16B108.2
C20A—C16A—H16A107.7N4B—C16B—H16B108.2
C17A—C16A—H16A107.7C20B—C16B—H16B108.2
C18A—C17A—C16A116.3 (8)C18B—C17B—C16B115.3 (7)
C18A—C17A—H17A108.2C18B—C17B—H17C108.5
C16A—C17A—H17A108.2C16B—C17B—H17C108.5
C18A—C17A—H17B108.2C18B—C17B—H17D108.5
C16A—C17A—H17B108.2C16B—C17B—H17D108.5
H17A—C17A—H17B107.4H17C—C17B—H17D107.5
C17A—C18A—N1A111.4 (7)N1B—C18B—C17B113.5 (7)
C17A—C18A—H18A109.4N1B—C18B—H18C108.9
N1A—C18A—H18A109.4C17B—C18B—H18C108.9
C17A—C18A—H18B109.4N1B—C18B—H18D108.9
N1A—C18A—H18B109.4C17B—C18B—H18D108.9
H18A—C18A—H18B108.0H18C—C18B—H18D107.7
C11A—C19A—H19A109.5C11B—C19B—H19D109.5
C11A—C19A—H19B109.5C11B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C11A—C19A—H19C109.5C11B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C16A—C20A—H20A109.5C16B—C20B—H20D109.5
C16A—C20A—H20B109.5C16B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C16A—C20A—H20C109.5C16B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
N5A—C21A—C22A179.0 (13)N5B—C21B—C22B179.7 (14)
C21A—C22A—H22A109.5C21B—C22B—H22D109.5
C21A—C22A—H22B109.5C21B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
C21A—C22A—H22C109.5C21B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C23A—O1A—H1OA109.5C23B—O1B—H1OB109.5
O1A—C23A—H23A109.5O1B—C23B—H23D109.5
O1A—C23A—H23B109.5O1B—C23B—H23E109.5
H23A—C23A—H23B109.5H23D—C23B—H23E109.5
O1A—C23A—H23C109.5O1B—C23B—H23F109.5
H23A—C23A—H23C109.5H23D—C23B—H23F109.5
H23B—C23A—H23C109.5H23E—C23B—H23F109.5
C23C—O1C—H1OC109.5C23D—O1D—H1OD109.5
O1C—C23C—H23G109.5O1D—C23D—H23J109.5
O1C—C23C—H23H109.5O1D—C23D—H23K109.5
H23G—C23C—H23H109.5H23J—C23D—H23K109.5
O1C—C23C—H23I109.5O1D—C23D—H23L109.5
H23G—C23C—H23I109.5H23J—C23D—H23L109.5
H23H—C23C—H23I109.5H23K—C23D—H23L109.5
C8A—C3A—C4A—C5A0.8 (12)C8B—C3B—C4B—C5B0.3 (13)
C2A—C3A—C4A—C5A179.7 (8)C2B—C3B—C4B—C5B179.4 (8)
C3A—C4A—C5A—C6A0.8 (13)C3B—C4B—C5B—C6B2.0 (14)
C4A—C5A—C6A—C7A0.9 (14)C4B—C5B—C6B—C7B3.2 (15)
C5A—C6A—C7A—C8A1.0 (15)C5B—C6B—C7B—C8B2.1 (15)
C6A—C7A—C8A—C3A0.9 (16)C4B—C3B—C8B—C7B1.4 (13)
C4A—C3A—C8A—C7A0.8 (14)C2B—C3B—C8B—C7B179.5 (8)
C2A—C3A—C8A—C7A179.7 (9)C6B—C7B—C8B—C3B0.2 (15)
C18A—N1A—C9A—C10A171.1 (7)C18B—N1B—C9B—C10B173.1 (6)
Co1A—N1A—C9A—C10A40.5 (7)Co2B—N1B—C9B—C10B40.7 (6)
N1A—C9A—C10A—N2A53.2 (8)C11B—N2B—C10B—C9B172.6 (6)
C11A—N2A—C10A—C9A172.0 (6)Co2B—N2B—C10B—C9B39.7 (6)
Co1A—N2A—C10A—C9A40.1 (7)N1B—C9B—C10B—N2B53.7 (7)
C10A—N2A—C11A—C19A59.0 (9)C10B—N2B—C11B—C12B178.7 (7)
Co1A—N2A—C11A—C19A175.4 (7)Co2B—N2B—C11B—C12B52.9 (8)
C10A—N2A—C11A—C12A177.7 (7)C10B—N2B—C11B—C19B59.0 (8)
Co1A—N2A—C11A—C12A52.2 (8)Co2B—N2B—C11B—C19B175.2 (5)
N2A—C11A—C12A—C13A66.8 (10)N2B—C11B—C12B—C13B66.2 (10)
C19A—C11A—C12A—C13A169.2 (8)C19B—C11B—C12B—C13B169.6 (8)
C14A—N3A—C13A—C12A176.3 (8)C11B—C12B—C13B—N3B69.7 (11)
Co1A—N3A—C13A—C12A59.3 (9)C14B—N3B—C13B—C12B176.9 (7)
C11A—C12A—C13A—N3A70.5 (10)Co2B—N3B—C13B—C12B56.9 (9)
C13A—N3A—C14A—C15A170.5 (7)C13B—N3B—C14B—C15B171.3 (7)
Co1A—N3A—C14A—C15A40.6 (8)Co2B—N3B—C14B—C15B39.4 (7)
C16A—N4A—C15A—C14A172.8 (7)C16B—N4B—C15B—C14B171.6 (6)
Co1A—N4A—C15A—C14A41.1 (8)Co2B—N4B—C15B—C14B38.1 (7)
N3A—C14A—C15A—N4A53.6 (9)N3B—C14B—C15B—N4B52.2 (8)
C15A—N4A—C16A—C20A56.7 (9)C15B—N4B—C16B—C17B178.5 (7)
Co1A—N4A—C16A—C20A177.4 (6)Co2B—N4B—C16B—C17B55.4 (8)
C15A—N4A—C16A—C17A178.7 (7)C15B—N4B—C16B—C20B55.0 (9)
Co1A—N4A—C16A—C17A52.7 (8)Co2B—N4B—C16B—C20B178.9 (5)
N4A—C16A—C17A—C18A66.7 (10)N4B—C16B—C17B—C18B67.2 (9)
C20A—C16A—C17A—C18A168.8 (8)C20B—C16B—C17B—C18B168.8 (7)
C16A—C17A—C18A—N1A69.5 (10)C9B—N1B—C18B—C17B178.8 (7)
C9A—N1A—C18A—C17A177.3 (7)Co2B—N1B—C18B—C17B54.7 (8)
Co1A—N1A—C18A—C17A57.7 (9)C16B—C17B—C18B—N1B69.0 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···Cl2Bi1.002.403.265 (6)144
N2A—H2NA···Cl1Aii1.002.913.684 (7)134
N3A—H3N···O1A1.002.022.844 (16)138
N3A—H3N···O1C1.002.143.10 (3)160
N4A—H4N···N5A1.002.303.185 (10)147
N1B—H1BN···Cl2A1.002.403.251 (6)143
N2B—H2BN···Cl1Biii1.002.833.607 (6)135
N3B—H3BN···O1B1.002.062.863 (13)136
N3B—H3BN···O1D1.002.083.03 (3)158
N4B—H4BN···N5B1.002.263.148 (10)147
O1A—H1OA···Cl2A0.842.092.899 (18)163
O1B—H1OB···Cl2B0.842.192.979 (13)157
O1C—H1OC···Cl2A0.842.403.16 (4)152
O1D—H1OD···Cl2B0.842.303.13 (3)168
C9A—H9A···Cl1Aii0.992.923.631 (9)130
C10A—H10A···Cl1Aii0.992.963.531 (8)118
C14A—H14B···Cl2A0.992.983.884 (10)152
C16A—H16A···Cl1A1.002.813.373 (9)116
C17A—H17B···O1Aiv0.992.463.44 (2)169
C18A—H18A···Cl1A0.992.783.339 (9)116
C20A—H20B···Cl2Aiv0.982.883.834 (11)164
C22A—H22A···Cl2Bv0.982.823.669 (11)146
C9B—H9C···Cl2A0.992.973.498 (8)114
C10B—H10C···Cl1Biii0.992.893.485 (7)120
C16B—H16B···Cl1B1.002.853.407 (9)116
C17B—H17C···O1Bvi0.992.633.479 (18)144
C18B—H18C···Cl1B0.992.833.358 (9)114
C22B—H22E···Cl2Avii0.982.813.583 (12)137
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z; (vi) x1, y, z; (vii) x+1, y+1, z.
(5,12-Dimethyl-1,4,8,11-tetraazacyclotetradecane)bis(phenylethynyl)cobalt(III) trifluoromethanesulfonate–dichloromethane (2/1) (2) top
Crystal data top
2[Co(C8H5)2(C12H28N4)](CF3SO3)2·CH2Cl2F(000) = 1420
Mr = 1362.17Dx = 1.435 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.0263 (7) ÅCell parameters from 9895 reflections
b = 12.3999 (5) Åθ = 3.3–32.9°
c = 21.9164 (14) ŵ = 0.75 mm1
β = 105.3260 (14)°T = 150 K
V = 3152.1 (3) Å3Plate, yellow
Z = 20.40 × 0.30 × 0.10 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
22462 independent reflections
Radiation source: sealed tube X-ray source18066 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.026
ω and phi scansθmax = 33.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.660, Tmax = 0.747k = 1917
54456 measured reflectionsl = 3033
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.44 e Å3
22462 reflectionsΔρmin = 0.56 e Å3
872 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
349 restraintsExtinction coefficient: 0.0043 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 6987 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The S1 triflate anion was refined as two-component disorder. Each moiety was restrained to have to same geometries as the S2 triflate anion. The Uij components for atoms within 2.0 Angstrom were restrained to be similar. Subject to these conditions, the occupancy factors refined to 0.503 (22) and 0.497 (22).

The dichloromethane molecule was refined as two-component disorder. The minor moiety was restrained to have the same geometries as the major moiety. The Uij components for atoms within 2.0 Angstrom were restrained to be similar. Subject to these conditions, the occupancy factors refined to 0.545 (12) and 0.455 (12).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.22599 (2)0.74080 (2)0.48710 (2)0.01937 (6)
N10.17596 (16)0.88594 (16)0.50613 (9)0.0250 (4)
H1N0.2021330.9368240.4773550.030*
N20.06447 (15)0.72137 (15)0.43196 (8)0.0259 (4)
H2N0.0229580.6775070.4573030.031*
N30.27611 (17)0.59624 (16)0.46631 (10)0.0293 (4)
H3N0.2489080.5437050.4938470.035*
N40.38659 (15)0.75942 (16)0.54171 (9)0.0273 (4)
H4N0.4292770.8024300.5166020.033*
C10.18010 (17)0.67531 (17)0.55641 (10)0.0221 (4)
C20.15508 (18)0.62530 (17)0.59859 (10)0.0233 (4)
C30.12824 (17)0.56768 (17)0.64983 (9)0.0222 (4)
C40.0332 (2)0.5971 (2)0.67176 (11)0.0295 (5)
H40.0142960.6555350.6524660.035*
C50.0077 (2)0.5419 (3)0.72122 (11)0.0381 (5)
H50.0575670.5620210.7353490.046*
C60.0764 (2)0.4581 (3)0.74996 (11)0.0428 (7)
H60.0585620.4203600.7838910.051*
C70.1710 (2)0.4285 (2)0.72980 (11)0.0396 (6)
H70.2187820.3710640.7502540.048*
C80.19740 (19)0.4824 (2)0.67952 (11)0.0302 (5)
H80.2623720.4609820.6654810.036*
C90.27097 (17)0.80612 (19)0.41753 (10)0.0245 (4)
C100.29546 (19)0.85630 (19)0.37578 (10)0.0269 (4)
C110.32411 (19)0.91203 (17)0.32458 (10)0.0249 (4)
C120.2475 (2)0.91150 (19)0.26354 (11)0.0295 (5)
H120.1756050.8753090.2564570.035*
C130.2760 (2)0.9629 (2)0.21413 (12)0.0367 (5)
H130.2239040.9615400.1731430.044*
C140.3799 (3)1.0166 (2)0.22371 (13)0.0398 (6)
H140.3987951.0527030.1895650.048*
C150.4562 (3)1.0175 (2)0.28327 (15)0.0434 (7)
H150.5277151.0541960.2900040.052*
C160.4288 (2)0.9653 (2)0.33284 (13)0.0353 (5)
H160.4824430.9656830.3733940.042*
C170.04871 (19)0.8884 (2)0.48645 (11)0.0298 (5)
H17A0.0211430.9639830.4815170.036*
H17B0.0173500.8532210.5188910.036*
C180.00871 (19)0.8294 (2)0.42431 (11)0.0300 (5)
H18A0.0762230.8214840.4125490.036*
H18B0.0306240.8702180.3904470.036*
C190.0467 (2)0.6646 (2)0.37000 (11)0.0342 (5)
H190.0850220.7082000.3429790.041*
C200.1039 (3)0.5545 (2)0.37961 (13)0.0428 (6)
H20A0.0748780.5144980.4113300.051*
H20B0.0800630.5141570.3392770.051*
C210.2337 (2)0.5562 (2)0.40102 (12)0.0399 (6)
H21A0.2634830.4823660.3984410.048*
H21B0.2635660.6029390.3723060.048*
C220.4035 (2)0.5954 (2)0.48753 (14)0.0371 (6)
H22A0.4359290.6332840.4563780.045*
H22B0.4323060.5202290.4915840.045*
C230.4389 (2)0.6508 (2)0.54976 (13)0.0356 (5)
H23A0.4119490.6096140.5818260.043*
H23B0.5240070.6563980.5640580.043*
C240.40217 (19)0.8167 (2)0.60386 (10)0.0326 (5)
H240.3595110.7751440.6296130.039*
C250.3503 (2)0.9283 (2)0.59300 (12)0.0365 (5)
H25A0.3817850.9655990.5612650.044*
H25B0.3746790.9695130.6330070.044*
C260.2197 (2)0.9300 (2)0.57045 (11)0.0315 (5)
H26A0.1877010.8873800.6000580.038*
H26B0.1923771.0052200.5710760.038*
C270.0805 (3)0.6548 (3)0.33523 (13)0.0485 (7)
H27A0.0881850.6219840.2936400.073*
H27B0.1157600.7266320.3298070.073*
H27C0.1194980.6095010.3598610.073*
C280.5295 (2)0.8221 (3)0.64130 (14)0.0497 (7)
H28A0.5601870.7487940.6497290.075*
H28B0.5360360.8595370.6814790.075*
H28C0.5733780.8613550.6166080.075*
Co20.23261 (2)0.54263 (2)0.01865 (2)0.01757 (6)
N50.29019 (15)0.69043 (15)0.04341 (9)0.0244 (4)
H5N0.2339630.7410320.0158450.029*
N60.34959 (14)0.53764 (17)0.03178 (8)0.0239 (3)
H6N0.4178140.4989580.0045860.029*
N70.17491 (15)0.39501 (15)0.00536 (8)0.0223 (3)
H7N0.2306830.3444030.0225030.027*
N80.11669 (14)0.54874 (15)0.06975 (7)0.0216 (3)
H8N0.0488130.5896070.0438730.026*
C290.34839 (17)0.48017 (17)0.08770 (9)0.0219 (4)
C300.42740 (18)0.43525 (18)0.12509 (9)0.0235 (4)
C310.52463 (17)0.38645 (18)0.16944 (9)0.0222 (4)
C320.53286 (19)0.27573 (19)0.17816 (11)0.0286 (5)
H320.4727460.2302560.1551260.034*
C330.6291 (2)0.2308 (2)0.22065 (11)0.0348 (5)
H330.6339670.1547750.2260440.042*
C340.71686 (19)0.2948 (2)0.25480 (10)0.0352 (5)
H340.7819180.2635040.2836970.042*
C350.7094 (2)0.4057 (2)0.24661 (12)0.0397 (6)
H350.7698030.4505540.2699710.048*
C360.6140 (2)0.4516 (2)0.20435 (11)0.0326 (5)
H360.6095290.5276300.1991700.039*
C370.12161 (16)0.60579 (17)0.05219 (9)0.0208 (4)
C380.05723 (17)0.65390 (17)0.09550 (9)0.0218 (4)
C390.01624 (17)0.70998 (17)0.14853 (9)0.0213 (4)
C400.13659 (19)0.70282 (19)0.16176 (10)0.0275 (4)
H400.1705560.6607210.1352430.033*
C410.2068 (2)0.7569 (2)0.21348 (11)0.0362 (5)
H410.2883370.7520550.2219740.043*
C420.1575 (2)0.8180 (2)0.25253 (11)0.0393 (6)
H420.2052940.8546040.2879300.047*
C430.0389 (2)0.8256 (2)0.23998 (11)0.0357 (5)
H430.0054280.8673400.2668540.043*
C440.03152 (19)0.77238 (18)0.18824 (10)0.0274 (4)
H440.1129150.7785140.1797960.033*
C450.40012 (19)0.7033 (2)0.02585 (12)0.0306 (5)
H45A0.4638910.6698580.0583980.037*
H45B0.4177090.7808410.0229300.037*
C460.3882 (2)0.6496 (2)0.03681 (12)0.0302 (5)
H46A0.3311460.6886190.0704260.036*
H46B0.4631400.6498890.0475810.036*
C470.32107 (19)0.4804 (2)0.09431 (10)0.0270 (4)
H470.2581280.5209000.1245630.032*
C480.2788 (2)0.3669 (2)0.08736 (11)0.0295 (5)
H48A0.3377450.3293090.0540030.035*
H48B0.2718970.3277160.1275440.035*
C490.1639 (2)0.36053 (19)0.07085 (10)0.0280 (4)
H49A0.1070040.4070640.1001050.034*
H49B0.1349970.2854370.0763870.034*
C500.06417 (18)0.38286 (19)0.01145 (10)0.0261 (4)
H50A0.0455860.3055200.0141220.031*
H50B0.0010790.4171870.0211250.031*
C510.07717 (19)0.43658 (18)0.07439 (11)0.0270 (4)
H51A0.0024430.4367120.0853880.032*
H51B0.1341250.3970730.1078000.032*
C520.15078 (19)0.6018 (2)0.13300 (10)0.0275 (4)
H520.2170190.5604640.1600680.033*
C530.1913 (2)0.7163 (2)0.12757 (11)0.0332 (5)
H53A0.1306240.7550350.0957490.040*
H53B0.2001410.7529200.1687190.040*
C540.3029 (2)0.7258 (2)0.10930 (11)0.0309 (5)
H54A0.3292270.8017410.1139480.037*
H54B0.3624150.6811900.1382270.037*
C550.4260 (2)0.4763 (2)0.12123 (12)0.0355 (5)
H55A0.4044870.4418020.1629250.053*
H55B0.4875890.4347970.0927170.053*
H55C0.4530630.5498450.1253120.053*
C560.0530 (2)0.6009 (2)0.16609 (12)0.0381 (6)
H56A0.0151810.6363180.1390120.057*
H56B0.0778320.6395740.2064040.057*
H56C0.0340310.5262160.1739530.057*
S10.6918 (7)0.8003 (6)0.4734 (3)0.0332 (11)0.50 (2)
O10.6705 (15)0.7293 (12)0.4194 (5)0.099 (4)0.50 (2)
O20.7769 (14)0.8842 (10)0.4875 (8)0.049 (3)0.50 (2)
O30.5941 (9)0.8222 (11)0.4981 (7)0.045 (2)0.50 (2)
F10.8656 (9)0.6762 (12)0.5194 (7)0.054 (2)0.50 (2)
F20.7082 (10)0.6104 (7)0.5296 (6)0.054 (2)0.50 (2)
F30.7786 (8)0.7397 (10)0.5895 (4)0.062 (2)0.50 (2)
C570.7676 (10)0.7009 (9)0.5326 (5)0.037 (2)0.50 (2)
S1B0.7044 (6)0.7879 (6)0.4723 (3)0.0309 (9)0.50 (2)
O1B0.7133 (8)0.7290 (9)0.4177 (4)0.055 (2)0.50 (2)
O2B0.7640 (16)0.8870 (12)0.4692 (7)0.050 (3)0.50 (2)
O3B0.5915 (9)0.8073 (13)0.4787 (5)0.045 (2)0.50 (2)
F1B0.8866 (9)0.6754 (12)0.5320 (5)0.0443 (17)0.50 (2)
F2B0.7322 (10)0.6263 (10)0.5491 (7)0.067 (3)0.50 (2)
F3B0.8162 (13)0.7693 (10)0.5904 (5)0.081 (3)0.50 (2)
C57B0.7849 (11)0.7114 (10)0.5378 (6)0.036 (2)0.50 (2)
S20.76108 (5)0.56611 (5)0.01361 (3)0.03150 (14)
O40.7606 (2)0.4696 (2)0.04905 (13)0.0746 (9)
O50.87335 (14)0.61100 (16)0.01408 (9)0.0363 (4)
O60.67605 (17)0.6462 (2)0.04039 (13)0.0700 (8)
F40.78556 (16)0.44510 (19)0.08685 (11)0.0708 (7)
F50.61133 (13)0.47501 (17)0.03822 (9)0.0522 (5)
F60.7121 (2)0.59882 (19)0.09421 (10)0.0754 (7)
C580.7159 (2)0.5187 (2)0.05455 (12)0.0333 (5)
C590.4912 (6)0.7261 (7)0.2843 (4)0.052 (2)0.545 (12)
H59A0.4351210.7848190.2687510.062*0.545 (12)
H59B0.5280910.7394230.3297020.062*0.545 (12)
Cl10.4161 (7)0.6001 (5)0.2761 (3)0.0557 (11)0.545 (12)
Cl20.5971 (4)0.7286 (3)0.24236 (19)0.0778 (8)0.545 (12)
C59B0.5033 (7)0.6857 (7)0.3089 (4)0.0481 (19)0.455 (12)
H59C0.5663950.6436280.3370590.058*0.455 (12)
H59D0.4772470.7405910.3349120.058*0.455 (12)
Cl1B0.3905 (8)0.6011 (7)0.2748 (4)0.0624 (17)0.455 (12)
Cl2B0.5550 (6)0.7505 (3)0.24951 (15)0.0614 (13)0.455 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02035 (12)0.01829 (12)0.02225 (12)0.00115 (10)0.01053 (9)0.00103 (10)
N10.0258 (9)0.0234 (9)0.0276 (9)0.0002 (7)0.0105 (7)0.0012 (7)
N20.0274 (8)0.0278 (10)0.0228 (8)0.0068 (7)0.0069 (6)0.0003 (7)
N30.0342 (10)0.0217 (9)0.0375 (10)0.0002 (8)0.0191 (8)0.0024 (8)
N40.0220 (8)0.0297 (10)0.0312 (9)0.0030 (7)0.0088 (7)0.0039 (8)
C10.0213 (9)0.0213 (10)0.0255 (10)0.0017 (8)0.0092 (7)0.0009 (8)
C20.0240 (9)0.0225 (10)0.0243 (9)0.0033 (8)0.0082 (7)0.0031 (8)
C30.0239 (9)0.0256 (10)0.0181 (8)0.0094 (8)0.0072 (7)0.0037 (7)
C40.0331 (11)0.0298 (12)0.0290 (11)0.0037 (9)0.0142 (9)0.0035 (9)
C50.0426 (13)0.0474 (14)0.0305 (11)0.0165 (13)0.0207 (10)0.0068 (12)
C60.0517 (16)0.0579 (18)0.0193 (10)0.0209 (14)0.0100 (10)0.0040 (11)
C70.0420 (14)0.0449 (15)0.0262 (11)0.0104 (12)0.0013 (10)0.0122 (10)
C80.0240 (10)0.0372 (13)0.0276 (11)0.0039 (9)0.0035 (8)0.0030 (9)
C90.0262 (9)0.0236 (10)0.0265 (9)0.0025 (9)0.0120 (7)0.0001 (9)
C100.0293 (10)0.0253 (11)0.0291 (10)0.0042 (9)0.0129 (8)0.0017 (8)
C110.0312 (11)0.0192 (10)0.0290 (10)0.0017 (8)0.0163 (8)0.0007 (8)
C120.0299 (11)0.0257 (11)0.0342 (12)0.0001 (9)0.0110 (9)0.0017 (9)
C130.0503 (15)0.0301 (12)0.0312 (12)0.0072 (11)0.0133 (11)0.0035 (10)
C140.0528 (16)0.0325 (14)0.0447 (14)0.0062 (11)0.0312 (12)0.0114 (11)
C150.0414 (14)0.0362 (15)0.0600 (18)0.0104 (11)0.0266 (13)0.0064 (12)
C160.0377 (13)0.0325 (13)0.0378 (13)0.0110 (10)0.0137 (10)0.0005 (10)
C170.0261 (10)0.0316 (12)0.0326 (11)0.0062 (9)0.0094 (8)0.0001 (9)
C180.0244 (10)0.0348 (13)0.0300 (11)0.0020 (9)0.0060 (8)0.0050 (9)
C190.0404 (13)0.0349 (13)0.0265 (11)0.0136 (10)0.0075 (9)0.0046 (9)
C200.0594 (16)0.0325 (14)0.0382 (12)0.0123 (12)0.0159 (12)0.0104 (11)
C210.0562 (16)0.0296 (13)0.0418 (13)0.0018 (11)0.0267 (12)0.0115 (11)
C220.0313 (12)0.0285 (12)0.0592 (16)0.0079 (10)0.0253 (11)0.0015 (11)
C230.0238 (11)0.0369 (13)0.0486 (14)0.0072 (10)0.0138 (10)0.0115 (11)
C240.0277 (10)0.0395 (14)0.0285 (10)0.0078 (10)0.0034 (8)0.0002 (10)
C250.0382 (13)0.0348 (13)0.0358 (12)0.0114 (10)0.0084 (10)0.0114 (10)
C260.0375 (12)0.0271 (11)0.0315 (11)0.0008 (10)0.0121 (9)0.0078 (9)
C270.0493 (16)0.0542 (18)0.0362 (13)0.0227 (14)0.0008 (11)0.0007 (12)
C280.0317 (13)0.064 (2)0.0458 (15)0.0097 (13)0.0022 (11)0.0031 (14)
Co20.01427 (11)0.01756 (12)0.01917 (12)0.00037 (10)0.00138 (8)0.00328 (10)
N50.0237 (8)0.0208 (9)0.0270 (9)0.0001 (7)0.0036 (7)0.0014 (7)
N60.0191 (7)0.0285 (9)0.0245 (8)0.0020 (8)0.0064 (6)0.0021 (8)
N70.0204 (8)0.0229 (9)0.0229 (8)0.0014 (7)0.0041 (6)0.0010 (7)
N80.0204 (7)0.0219 (8)0.0218 (7)0.0011 (7)0.0043 (6)0.0024 (7)
C290.0194 (9)0.0221 (10)0.0227 (9)0.0012 (7)0.0031 (7)0.0023 (7)
C300.0219 (9)0.0258 (10)0.0221 (9)0.0018 (8)0.0043 (7)0.0032 (8)
C310.0182 (9)0.0293 (11)0.0187 (9)0.0040 (8)0.0043 (7)0.0049 (8)
C320.0262 (10)0.0293 (12)0.0292 (10)0.0030 (8)0.0053 (8)0.0041 (8)
C330.0366 (12)0.0335 (13)0.0346 (11)0.0114 (10)0.0098 (9)0.0139 (10)
C340.0259 (10)0.0513 (15)0.0263 (10)0.0128 (11)0.0034 (8)0.0145 (11)
C350.0286 (12)0.0498 (16)0.0339 (12)0.0005 (11)0.0040 (9)0.0050 (11)
C360.0280 (11)0.0312 (12)0.0329 (11)0.0007 (9)0.0019 (9)0.0053 (9)
C370.0175 (8)0.0216 (9)0.0231 (9)0.0011 (7)0.0050 (7)0.0021 (7)
C380.0211 (9)0.0221 (10)0.0214 (9)0.0025 (8)0.0041 (7)0.0013 (7)
C390.0241 (9)0.0193 (9)0.0179 (8)0.0034 (7)0.0012 (7)0.0007 (7)
C400.0261 (10)0.0272 (10)0.0255 (10)0.0014 (8)0.0002 (8)0.0021 (8)
C410.0279 (11)0.0369 (13)0.0352 (12)0.0005 (10)0.0071 (9)0.0039 (10)
C420.0452 (13)0.0383 (14)0.0256 (10)0.0069 (11)0.0061 (9)0.0118 (10)
C430.0466 (13)0.0333 (13)0.0255 (10)0.0019 (11)0.0067 (9)0.0109 (9)
C440.0279 (10)0.0285 (11)0.0253 (10)0.0038 (8)0.0060 (8)0.0042 (8)
C450.0237 (10)0.0274 (11)0.0406 (12)0.0075 (9)0.0081 (9)0.0018 (9)
C460.0246 (10)0.0291 (12)0.0388 (12)0.0056 (9)0.0116 (9)0.0025 (10)
C470.0265 (10)0.0318 (12)0.0228 (10)0.0004 (9)0.0068 (8)0.0008 (8)
C480.0331 (11)0.0280 (12)0.0293 (11)0.0006 (9)0.0118 (9)0.0057 (9)
C490.0306 (11)0.0264 (11)0.0251 (10)0.0036 (9)0.0042 (8)0.0038 (8)
C500.0231 (10)0.0252 (11)0.0305 (11)0.0067 (8)0.0080 (8)0.0007 (8)
C510.0263 (10)0.0263 (11)0.0307 (11)0.0011 (8)0.0115 (8)0.0042 (9)
C520.0288 (10)0.0313 (12)0.0220 (9)0.0011 (9)0.0060 (8)0.0026 (8)
C530.0380 (12)0.0321 (13)0.0297 (11)0.0016 (10)0.0096 (9)0.0045 (9)
C540.0345 (11)0.0258 (12)0.0309 (10)0.0042 (9)0.0063 (9)0.0055 (9)
C550.0338 (12)0.0413 (14)0.0357 (12)0.0018 (11)0.0169 (10)0.0022 (11)
C560.0421 (13)0.0438 (15)0.0322 (12)0.0016 (12)0.0165 (10)0.0013 (11)
S10.040 (2)0.0276 (14)0.0287 (12)0.0064 (12)0.0040 (11)0.0018 (8)
O10.113 (8)0.107 (6)0.051 (4)0.049 (6)0.025 (5)0.042 (4)
O20.046 (3)0.022 (3)0.089 (8)0.006 (3)0.038 (5)0.005 (4)
O30.022 (2)0.039 (3)0.076 (7)0.000 (2)0.020 (4)0.007 (4)
F10.018 (3)0.057 (3)0.082 (6)0.018 (3)0.000 (3)0.012 (4)
F20.053 (4)0.028 (2)0.094 (6)0.006 (2)0.042 (4)0.005 (3)
F30.060 (4)0.096 (6)0.029 (3)0.021 (3)0.010 (3)0.007 (3)
C570.024 (3)0.044 (4)0.044 (4)0.009 (3)0.012 (3)0.012 (3)
S1B0.0232 (11)0.0262 (17)0.0450 (15)0.0017 (13)0.0119 (8)0.0008 (10)
O1B0.058 (4)0.074 (4)0.033 (3)0.003 (4)0.009 (3)0.010 (3)
O2B0.064 (6)0.035 (3)0.068 (6)0.002 (3)0.047 (5)0.010 (4)
O3B0.025 (2)0.058 (5)0.051 (5)0.006 (3)0.011 (3)0.011 (4)
F1B0.013 (3)0.065 (3)0.051 (3)0.012 (3)0.003 (3)0.004 (3)
F2B0.053 (4)0.060 (5)0.091 (6)0.008 (3)0.026 (4)0.042 (4)
F3B0.095 (7)0.077 (6)0.046 (3)0.045 (5)0.025 (4)0.024 (3)
C57B0.027 (4)0.034 (3)0.044 (4)0.003 (3)0.004 (3)0.000 (3)
S20.0218 (2)0.0462 (4)0.0262 (3)0.0002 (2)0.00569 (19)0.0004 (2)
O40.0803 (18)0.0837 (19)0.0732 (17)0.0383 (16)0.0435 (14)0.0486 (15)
O50.0229 (8)0.0410 (10)0.0455 (10)0.0031 (7)0.0101 (7)0.0012 (8)
O60.0286 (10)0.100 (2)0.0794 (16)0.0186 (12)0.0114 (10)0.0540 (16)
F40.0403 (10)0.0843 (15)0.0891 (15)0.0137 (10)0.0192 (9)0.0559 (13)
F50.0273 (8)0.0698 (12)0.0620 (11)0.0072 (8)0.0164 (7)0.0113 (10)
F60.1158 (18)0.0679 (14)0.0638 (12)0.0239 (13)0.0612 (13)0.0208 (11)
C580.0242 (10)0.0376 (14)0.0381 (12)0.0006 (9)0.0080 (9)0.0021 (10)
C590.050 (3)0.050 (4)0.050 (4)0.008 (3)0.003 (3)0.019 (3)
Cl10.057 (3)0.0634 (18)0.0486 (14)0.0088 (15)0.0164 (14)0.0098 (12)
Cl20.0591 (16)0.0467 (13)0.135 (2)0.0116 (11)0.0386 (14)0.0176 (13)
C59B0.060 (4)0.037 (4)0.037 (4)0.008 (3)0.003 (3)0.001 (3)
Cl1B0.060 (3)0.091 (3)0.0347 (14)0.015 (2)0.0102 (16)0.0079 (15)
Cl2B0.067 (2)0.0463 (14)0.0701 (15)0.0101 (15)0.0165 (13)0.0004 (10)
Geometric parameters (Å, º) top
Co1—C91.926 (2)N8—C511.482 (3)
Co1—C11.927 (2)N8—C521.491 (3)
Co1—N11.9768 (19)N8—H8N1.0000
Co1—N31.982 (2)C29—C301.214 (3)
Co1—N41.9985 (18)C30—C311.441 (3)
Co1—N22.0126 (18)C31—C321.386 (3)
N1—C261.473 (3)C31—C361.399 (3)
N1—C171.477 (3)C32—C331.395 (3)
N1—H1N1.0000C32—H320.9500
N2—C181.487 (3)C33—C341.374 (4)
N2—C191.494 (3)C33—H330.9500
N2—H2N1.0000C34—C351.386 (4)
N3—C211.472 (3)C34—H340.9500
N3—C221.479 (3)C35—C361.392 (3)
N3—H3N1.0000C35—H350.9500
N4—C231.478 (3)C36—H360.9500
N4—C241.503 (3)C37—C381.212 (3)
N4—H4N1.0000C38—C391.440 (3)
C1—C21.215 (3)C39—C441.396 (3)
C2—C31.438 (3)C39—C401.402 (3)
C3—C81.396 (3)C40—C411.394 (3)
C3—C41.401 (3)C40—H400.9500
C4—C51.383 (3)C41—C421.388 (4)
C4—H40.9500C41—H410.9500
C5—C61.373 (4)C42—C431.383 (4)
C5—H50.9500C42—H420.9500
C6—C71.375 (4)C43—C441.390 (3)
C6—H60.9500C43—H430.9500
C7—C81.395 (3)C44—H440.9500
C7—H70.9500C45—C461.498 (3)
C8—H80.9500C45—H45A0.9900
C9—C101.206 (3)C45—H45B0.9900
C10—C111.435 (3)C46—H46A0.9900
C11—C161.391 (3)C46—H46B0.9900
C11—C121.409 (3)C47—C481.517 (3)
C12—C131.376 (4)C47—C551.528 (3)
C12—H120.9500C47—H471.0000
C13—C141.381 (4)C48—C491.521 (3)
C13—H130.9500C48—H48A0.9900
C14—C151.383 (4)C48—H48B0.9900
C14—H140.9500C49—H49A0.9900
C15—C161.377 (4)C49—H49B0.9900
C15—H150.9500C50—C511.502 (3)
C16—H160.9500C50—H50A0.9900
C17—C181.509 (3)C50—H50B0.9900
C17—H17A0.9900C51—H51A0.9900
C17—H17B0.9900C51—H51B0.9900
C18—H18A0.9900C52—C531.515 (3)
C18—H18B0.9900C52—C561.536 (3)
C19—C201.518 (4)C52—H521.0000
C19—C271.523 (4)C53—C541.504 (3)
C19—H191.0000C53—H53A0.9900
C20—C211.507 (4)C53—H53B0.9900
C20—H20A0.9900C54—H54A0.9900
C20—H20B0.9900C54—H54B0.9900
C21—H21A0.9900C55—H55A0.9800
C21—H21B0.9900C55—H55B0.9800
C22—C231.485 (4)C55—H55C0.9800
C22—H22A0.9900C56—H56A0.9800
C22—H22B0.9900C56—H56B0.9800
C23—H23A0.9900C56—H56C0.9800
C23—H23B0.9900S1—O21.435 (11)
C24—C251.511 (4)S1—O11.442 (10)
C24—C281.535 (3)S1—O31.443 (10)
C24—H241.0000S1—C571.845 (11)
C25—C261.517 (4)F1—C571.322 (11)
C25—H25A0.9900F2—C571.323 (12)
C25—H25B0.9900F3—C571.310 (11)
C26—H26A0.9900S1B—O3B1.422 (10)
C26—H26B0.9900S1B—O1B1.430 (10)
C27—H27A0.9800S1B—O2B1.433 (12)
C27—H27B0.9800S1B—C57B1.779 (10)
C27—H27C0.9800F1B—C57B1.339 (12)
C28—H28A0.9800F2B—C57B1.287 (12)
C28—H28B0.9800F3B—C57B1.325 (12)
C28—H28C0.9800S2—O41.425 (3)
Co2—C371.9262 (19)S2—O61.435 (2)
Co2—C291.9273 (19)S2—O51.4380 (17)
Co2—N71.9789 (18)S2—C581.818 (3)
Co2—N51.9835 (18)F4—C581.312 (3)
Co2—N62.0067 (17)F5—C581.328 (3)
Co2—N82.0071 (16)F6—C581.329 (3)
N5—C541.478 (3)C59—Cl21.757 (7)
N5—C451.480 (3)C59—Cl11.789 (9)
N5—H5N1.0000C59—H59A0.9900
N6—C461.478 (3)C59—H59B0.9900
N6—C471.501 (3)C59B—Cl1B1.722 (10)
N6—H6N1.0000C59B—Cl2B1.777 (9)
N7—C491.470 (3)C59B—H59C0.9900
N7—C501.480 (3)C59B—H59D0.9900
N7—H7N1.0000
C9—Co1—C1179.67 (9)C46—N6—H6N105.7
C9—Co1—N187.08 (9)C47—N6—H6N105.7
C1—Co1—N192.91 (8)Co2—N6—H6N105.7
C9—Co1—N391.84 (9)C49—N7—C50111.01 (17)
C1—Co1—N388.17 (9)C49—N7—Co2117.62 (14)
N1—Co1—N3178.87 (8)C50—N7—Co2107.65 (14)
C9—Co1—N489.79 (8)C49—N7—H7N106.7
C1—Co1—N490.54 (8)C50—N7—H7N106.7
N1—Co1—N493.92 (8)Co2—N7—H7N106.7
N3—Co1—N486.43 (8)C51—N8—C52111.41 (16)
C9—Co1—N290.20 (8)C51—N8—Co2106.60 (13)
C1—Co1—N289.47 (8)C52—N8—Co2118.33 (13)
N1—Co1—N286.35 (8)C51—N8—H8N106.6
N3—Co1—N293.30 (8)C52—N8—H8N106.6
N4—Co1—N2179.73 (9)Co2—N8—H8N106.6
C26—N1—C17110.60 (18)C30—C29—Co2171.40 (19)
C26—N1—Co1119.21 (15)C29—C30—C31177.2 (2)
C17—N1—Co1107.90 (14)C32—C31—C36118.65 (19)
C26—N1—H1N106.1C32—C31—C30121.6 (2)
C17—N1—H1N106.1C36—C31—C30119.7 (2)
Co1—N1—H1N106.1C31—C32—C33120.3 (2)
C18—N2—C19111.72 (18)C31—C32—H32119.9
C18—N2—Co1107.15 (13)C33—C32—H32119.9
C19—N2—Co1119.05 (15)C34—C33—C32121.0 (2)
C18—N2—H2N106.0C34—C33—H33119.5
C19—N2—H2N106.0C32—C33—H33119.5
Co1—N2—H2N106.0C33—C34—C35119.3 (2)
C21—N3—C22111.53 (19)C33—C34—H34120.4
C21—N3—Co1118.69 (16)C35—C34—H34120.4
C22—N3—Co1106.67 (15)C34—C35—C36120.3 (2)
C21—N3—H3N106.4C34—C35—H35119.8
C22—N3—H3N106.4C36—C35—H35119.8
Co1—N3—H3N106.4C35—C36—C31120.5 (2)
C23—N4—C24112.04 (19)C35—C36—H36119.8
C23—N4—Co1106.26 (15)C31—C36—H36119.8
C24—N4—Co1117.80 (14)C38—C37—Co2174.23 (19)
C23—N4—H4N106.7C37—C38—C39177.7 (2)
C24—N4—H4N106.7C44—C39—C40118.59 (18)
Co1—N4—H4N106.7C44—C39—C38120.33 (19)
C2—C1—Co1174.06 (19)C40—C39—C38121.08 (19)
C1—C2—C3178.3 (2)C41—C40—C39120.6 (2)
C8—C3—C4118.5 (2)C41—C40—H40119.7
C8—C3—C2120.8 (2)C39—C40—H40119.7
C4—C3—C2120.7 (2)C42—C41—C40119.9 (2)
C5—C4—C3120.7 (2)C42—C41—H41120.1
C5—C4—H4119.7C40—C41—H41120.1
C3—C4—H4119.7C43—C42—C41120.1 (2)
C6—C5—C4120.2 (2)C43—C42—H42120.0
C6—C5—H5119.9C41—C42—H42120.0
C4—C5—H5119.9C42—C43—C44120.3 (2)
C5—C6—C7120.2 (2)C42—C43—H43119.9
C5—C6—H6119.9C44—C43—H43119.9
C7—C6—H6119.9C43—C44—C39120.6 (2)
C6—C7—C8120.5 (3)C43—C44—H44119.7
C6—C7—H7119.8C39—C44—H44119.7
C8—C7—H7119.8N5—C45—C46108.36 (18)
C7—C8—C3119.9 (2)N5—C45—H45A110.0
C7—C8—H8120.0C46—C45—H45A110.0
C3—C8—H8120.0N5—C45—H45B110.0
C10—C9—Co1173.7 (2)C46—C45—H45B110.0
C9—C10—C11177.6 (2)H45A—C45—H45B108.4
C16—C11—C12117.9 (2)N6—C46—C45107.75 (19)
C16—C11—C10121.5 (2)N6—C46—H46A110.2
C12—C11—C10120.5 (2)C45—C46—H46A110.2
C13—C12—C11120.6 (2)N6—C46—H46B110.2
C13—C12—H12119.7C45—C46—H46B110.2
C11—C12—H12119.7H46A—C46—H46B108.5
C12—C13—C14120.5 (2)N6—C47—C48110.43 (18)
C12—C13—H13119.8N6—C47—C55110.81 (19)
C14—C13—H13119.8C48—C47—C55109.9 (2)
C13—C14—C15119.7 (2)N6—C47—H47108.5
C13—C14—H14120.2C48—C47—H47108.5
C15—C14—H14120.2C55—C47—H47108.5
C16—C15—C14120.3 (3)C47—C48—C49115.0 (2)
C16—C15—H15119.9C47—C48—H48A108.5
C14—C15—H15119.9C49—C48—H48A108.5
C15—C16—C11121.1 (3)C47—C48—H48B108.5
C15—C16—H16119.4C49—C48—H48B108.5
C11—C16—H16119.4H48A—C48—H48B107.5
N1—C17—C18108.18 (18)N7—C49—C48111.35 (18)
N1—C17—H17A110.1N7—C49—H49A109.4
C18—C17—H17A110.1C48—C49—H49A109.4
N1—C17—H17B110.1N7—C49—H49B109.4
C18—C17—H17B110.1C48—C49—H49B109.4
H17A—C17—H17B108.4H49A—C49—H49B108.0
N2—C18—C17107.98 (18)N7—C50—C51107.53 (17)
N2—C18—H18A110.1N7—C50—H50A110.2
C17—C18—H18A110.1C51—C50—H50A110.2
N2—C18—H18B110.1N7—C50—H50B110.2
C17—C18—H18B110.1C51—C50—H50B110.2
H18A—C18—H18B108.4H50A—C50—H50B108.5
N2—C19—C20110.3 (2)N8—C51—C50108.08 (17)
N2—C19—C27112.1 (2)N8—C51—H51A110.1
C20—C19—C27110.9 (2)C50—C51—H51A110.1
N2—C19—H19107.8N8—C51—H51B110.1
C20—C19—H19107.8C50—C51—H51B110.1
C27—C19—H19107.8H51A—C51—H51B108.4
C21—C20—C19115.2 (2)N8—C52—C53110.84 (18)
C21—C20—H20A108.5N8—C52—C56112.26 (19)
C19—C20—H20A108.5C53—C52—C56110.3 (2)
C21—C20—H20B108.5N8—C52—H52107.8
C19—C20—H20B108.5C53—C52—H52107.8
H20A—C20—H20B107.5C56—C52—H52107.8
N3—C21—C20111.8 (2)C54—C53—C52115.0 (2)
N3—C21—H21A109.3C54—C53—H53A108.5
C20—C21—H21A109.3C52—C53—H53A108.5
N3—C21—H21B109.3C54—C53—H53B108.5
C20—C21—H21B109.3C52—C53—H53B108.5
H21A—C21—H21B107.9H53A—C53—H53B107.5
N3—C22—C23107.92 (19)N5—C54—C53111.57 (18)
N3—C22—H22A110.1N5—C54—H54A109.3
C23—C22—H22A110.1C53—C54—H54A109.3
N3—C22—H22B110.1N5—C54—H54B109.3
C23—C22—H22B110.1C53—C54—H54B109.3
H22A—C22—H22B108.4H54A—C54—H54B108.0
N4—C23—C22107.6 (2)C47—C55—H55A109.5
N4—C23—H23A110.2C47—C55—H55B109.5
C22—C23—H23A110.2H55A—C55—H55B109.5
N4—C23—H23B110.2C47—C55—H55C109.5
C22—C23—H23B110.2H55A—C55—H55C109.5
H23A—C23—H23B108.5H55B—C55—H55C109.5
N4—C24—C25110.03 (19)C52—C56—H56A109.5
N4—C24—C28111.9 (2)C52—C56—H56B109.5
C25—C24—C28110.9 (2)H56A—C56—H56B109.5
N4—C24—H24108.0C52—C56—H56C109.5
C25—C24—H24108.0H56A—C56—H56C109.5
C28—C24—H24108.0H56B—C56—H56C109.5
C24—C25—C26114.4 (2)O2—S1—O1125.5 (12)
C24—C25—H25A108.7O2—S1—O3112.9 (9)
C26—C25—H25A108.7O1—S1—O3115.9 (7)
C24—C25—H25B108.7O2—S1—C5798.2 (8)
C26—C25—H25B108.7O1—S1—C5796.7 (8)
H25A—C25—H25B107.6O3—S1—C5799.4 (7)
N1—C26—C25112.5 (2)F3—C57—F1115.0 (10)
N1—C26—H26A109.1F3—C57—F2106.0 (9)
C25—C26—H26A109.1F1—C57—F2107.1 (10)
N1—C26—H26B109.1F3—C57—S1109.3 (8)
C25—C26—H26B109.1F1—C57—S1107.7 (9)
H26A—C26—H26B107.8F2—C57—S1111.8 (8)
C19—C27—H27A109.5O3B—S1B—O1B117.0 (6)
C19—C27—H27B109.5O3B—S1B—O2B111.2 (11)
H27A—C27—H27B109.5O1B—S1B—O2B104.5 (9)
C19—C27—H27C109.5O3B—S1B—C57B109.9 (8)
H27A—C27—H27C109.5O1B—S1B—C57B105.0 (7)
H27B—C27—H27C109.5O2B—S1B—C57B108.8 (8)
C24—C28—H28A109.5F2B—C57B—F3B108.5 (10)
C24—C28—H28B109.5F2B—C57B—F1B104.7 (11)
H28A—C28—H28B109.5F3B—C57B—F1B102.0 (10)
C24—C28—H28C109.5F2B—C57B—S1B113.7 (8)
H28A—C28—H28C109.5F3B—C57B—S1B112.4 (9)
H28B—C28—H28C109.5F1B—C57B—S1B114.6 (9)
C37—Co2—C29177.67 (9)O4—S2—O6117.27 (19)
C37—Co2—N792.41 (8)O4—S2—O5115.03 (14)
C29—Co2—N788.10 (8)O6—S2—O5113.12 (15)
C37—Co2—N587.84 (8)O4—S2—C58102.53 (14)
C29—Co2—N591.66 (8)O6—S2—C58102.98 (12)
N7—Co2—N5179.53 (8)O5—S2—C58103.30 (11)
C37—Co2—N690.34 (8)F4—C58—F5106.6 (2)
C29—Co2—N687.36 (8)F4—C58—F6107.1 (2)
N7—Co2—N694.17 (8)F5—C58—F6106.7 (2)
N5—Co2—N686.23 (8)F4—C58—S2112.40 (18)
C37—Co2—N889.93 (8)F5—C58—S2112.21 (17)
C29—Co2—N892.37 (8)F6—C58—S2111.39 (18)
N7—Co2—N886.38 (7)Cl2—C59—Cl1112.2 (4)
N5—Co2—N893.23 (8)Cl2—C59—H59A109.2
N6—Co2—N8179.38 (8)Cl1—C59—H59A109.2
C54—N5—C45110.68 (17)Cl2—C59—H59B109.2
C54—N5—Co2118.69 (14)Cl1—C59—H59B109.2
C45—N5—Co2107.45 (14)H59A—C59—H59B107.9
C54—N5—H5N106.4Cl1B—C59B—Cl2B110.2 (5)
C45—N5—H5N106.4Cl1B—C59B—H59C109.6
Co2—N5—H5N106.4Cl2B—C59B—H59C109.6
C46—N6—C47112.16 (17)Cl1B—C59B—H59D109.6
C46—N6—Co2106.98 (14)Cl2B—C59B—H59D109.6
C47—N6—Co2119.56 (13)H59C—C59B—H59D108.1
C8—C3—C4—C50.8 (3)C40—C39—C44—C430.4 (3)
C2—C3—C4—C5179.7 (2)C38—C39—C44—C43179.2 (2)
C3—C4—C5—C60.8 (4)C54—N5—C45—C46170.65 (19)
C4—C5—C6—C70.0 (4)Co2—N5—C45—C4639.6 (2)
C5—C6—C7—C80.8 (4)C47—N6—C46—C45173.08 (18)
C6—C7—C8—C30.8 (4)Co2—N6—C46—C4540.1 (2)
C4—C3—C8—C70.0 (3)N5—C45—C46—N653.6 (2)
C2—C3—C8—C7179.0 (2)C46—N6—C47—C48178.48 (18)
C16—C11—C12—C130.4 (3)Co2—N6—C47—C4852.1 (2)
C10—C11—C12—C13178.6 (2)C46—N6—C47—C5559.5 (2)
C11—C12—C13—C140.5 (4)Co2—N6—C47—C55174.14 (16)
C12—C13—C14—C150.7 (4)N6—C47—C48—C4966.6 (2)
C13—C14—C15—C160.1 (4)C55—C47—C48—C49170.80 (19)
C14—C15—C16—C110.8 (4)C50—N7—C49—C48176.88 (19)
C12—C11—C16—C151.1 (4)Co2—N7—C49—C4858.5 (2)
C10—C11—C16—C15179.2 (2)C47—C48—C49—N771.2 (3)
C26—N1—C17—C18172.65 (19)C49—N7—C50—C51170.66 (18)
Co1—N1—C17—C1840.6 (2)Co2—N7—C50—C5140.62 (19)
C19—N2—C18—C17169.88 (19)C52—N8—C51—C50170.37 (17)
Co1—N2—C18—C1737.8 (2)Co2—N8—C51—C5039.93 (19)
N1—C17—C18—N252.5 (2)N7—C50—C51—N854.1 (2)
C18—N2—C19—C20179.61 (19)C51—N8—C52—C53179.86 (18)
Co1—N2—C19—C2054.6 (2)Co2—N8—C52—C5355.8 (2)
C18—N2—C19—C2755.5 (3)C51—N8—C52—C5656.4 (2)
Co1—N2—C19—C27178.71 (17)Co2—N8—C52—C56179.60 (16)
N2—C19—C20—C2167.5 (3)N8—C52—C53—C5468.0 (2)
C27—C19—C20—C21167.7 (2)C56—C52—C53—C54167.1 (2)
C22—N3—C21—C20178.7 (2)C45—N5—C54—C53178.41 (19)
Co1—N3—C21—C2056.7 (3)Co2—N5—C54—C5356.7 (2)
C19—C20—C21—N369.2 (3)C52—C53—C54—N568.5 (3)
C21—N3—C22—C23172.2 (2)O2—S1—C57—F364.4 (11)
Co1—N3—C22—C2341.1 (2)O1—S1—C57—F3168.2 (12)
C24—N4—C23—C22171.47 (19)O3—S1—C57—F350.5 (10)
Co1—N4—C23—C2241.5 (2)O2—S1—C57—F161.2 (11)
N3—C22—C23—N455.8 (3)O1—S1—C57—F166.2 (12)
C23—N4—C24—C25178.40 (19)O3—S1—C57—F1176.1 (10)
Co1—N4—C24—C2557.9 (2)O2—S1—C57—F2178.5 (10)
C23—N4—C24—C2854.7 (3)O1—S1—C57—F251.1 (11)
Co1—N4—C24—C28178.40 (18)O3—S1—C57—F266.5 (10)
N4—C24—C25—C2669.5 (3)O3B—S1B—C57B—F2B50.5 (14)
C28—C24—C25—C26166.2 (2)O1B—S1B—C57B—F2B76.2 (13)
C17—N1—C26—C25179.6 (2)O2B—S1B—C57B—F2B172.5 (13)
Co1—N1—C26—C2553.7 (3)O3B—S1B—C57B—F3B73.4 (13)
C24—C25—C26—N167.7 (3)O1B—S1B—C57B—F3B160.0 (11)
C36—C31—C32—C330.5 (3)O2B—S1B—C57B—F3B48.7 (14)
C30—C31—C32—C33178.9 (2)O3B—S1B—C57B—F1B170.8 (11)
C31—C32—C33—C340.4 (4)O1B—S1B—C57B—F1B44.2 (12)
C32—C33—C34—C350.2 (4)O2B—S1B—C57B—F1B67.2 (14)
C33—C34—C35—C360.1 (4)O4—S2—C58—F459.2 (3)
C34—C35—C36—C310.2 (4)O6—S2—C58—F4178.6 (2)
C32—C31—C36—C350.4 (4)O5—S2—C58—F460.7 (2)
C30—C31—C36—C35178.9 (2)O4—S2—C58—F561.0 (2)
C44—C39—C40—C410.0 (3)O6—S2—C58—F561.2 (2)
C38—C39—C40—C41179.6 (2)O5—S2—C58—F5179.16 (19)
C39—C40—C41—C420.4 (4)O4—S2—C58—F6179.4 (2)
C40—C41—C42—C430.3 (4)O6—S2—C58—F658.4 (2)
C41—C42—C43—C440.1 (4)O5—S2—C58—F659.6 (2)
C42—C43—C44—C390.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F2i1.002.433.298 (9)145
N1—H1N···F2Bi1.002.593.504 (14)151
N2—H2N···F1ii1.002.613.482 (13)146
N2—H2N···F1Bii1.002.613.491 (11)148
N3—H3N···O2iii1.002.062.947 (15)147
N3—H3N···O2Biii1.002.133.053 (18)153
N4—H4N···O31.002.143.001 (11)143
N4—H4N···O3B1.002.313.183 (12)145
C21—H21B···Cl1B0.992.943.779 (9)144
C22—H22B···O3iii0.992.493.401 (14)152
C23—H23B···F20.992.593.419 (11)142
C23—H23B···F2B0.992.643.543 (12)152
N5—H5N···O4iv1.002.923.523 (4)119
N6—H6N···F51.002.293.211 (2)153
N7—H7N···O6v1.002.693.575 (4)148
N8—H8N···O5ii1.002.052.960 (2)150
C46—H46B···O60.992.523.483 (3)163
C49—H49B···O5v0.992.573.408 (3)142
C51—H51A···F4ii0.992.623.590 (3)167
C52—H52···Cl1B1.002.863.637 (8)136
C54—H54A···O4iv0.992.593.307 (4)129
C59—H59B···O10.992.243.169 (13)155
C59B—H59C···O1B0.992.393.027 (12)122
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z; (v) x+1, y1/2, z.
 

Funding information

This project was supported by the National Science Foundation (CHE 1362214 for research and CHE 1625543 for X-ray diffractometers).

References

First citationBanziger, S. D., Cook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2015). J. Organomet. Chem. 799–800, 1–6.  CSD CrossRef CAS Google Scholar
First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2015). Organometallics, 34, 686–689.  CSD CrossRef CAS Google Scholar
First citationCook, T. D., Natoli, S. N., Fanwick, P. E. & Ren, T. (2016). Organometallics, 35, 1329–1338.  CSD CrossRef CAS Google Scholar
First citationHay, R. W., House, D. A. & Bembi, R. (1984). J. Chem. Soc. Dalton Trans. pp. 1927–1930.  CrossRef Google Scholar
First citationHoffert, W. A., Kabir, M. K., Hill, E. A., Mueller, S. M. & Shores, M. P. (2012). Inorg. Chim. Acta, 380, 174–180.  CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJudkins, E. C., Tyler, S. F., Zeller, M., Fanwick, P. E. & Ren, T. (2017). Eur. J. Inorg. Chem. pp. 4068–4076.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNatoli, S. N., Azbell, T. J., Fanwick, P. E., Zeller, M. & Ren, T. (2016). Organometallics, 35, 3594–3603.  CSD CrossRef CAS Google Scholar
First citationNatoli, S. N., Cook, T. D., Abraham, T. R., Kiernicki, J. J., Fanwick, P. E. & Ren, T. (2015). Organometallics, 34, 5207–5209.  CSD CrossRef CAS Google Scholar
First citationNishijo, J., Judai, K. & Nishi, N. (2011). Inorg. Chem. 50, 3464–3470.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRen, T. (2016). Chem. Commun. 52, 3271–3279.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTyler, S. F., Judkins, E. C., Song, Y., Cao, F., McMillin, D. R., Fanwick, P. E. & Ren, T. (2016). Inorg. Chem. 55, 8736–8743.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds