research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3-bis­­(4-methyl­phen­yl)benzo[g]quinoxaline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry Education and Department of Chemical Materials, Graduate School, Pusan National University, Busan 46241, South Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 34134, South Korea
*Correspondence e-mail: skkang@cnu.ac.kr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 7 March 2018; accepted 16 March 2018; online 23 March 2018)

The title compound, C26H20N2, was obtained during a search for new π-extended ligands with the potential to generate efficient phosphors with iridium(III) for organic light-emitting devices (OLEDs). The benzoquinoxaline ring system is almost planar (r.m.s. deviation = 0.076 Å). A pseudo-twofold rotation axis runs through the midpoints of the C2—C3 and C9—C10 bonds. The two phenyl rings are twisted relative to the benzoquinoxaline ring system, making dihedral angles of 53.91 (4) and 36.86 (6)°. In the crystal, C—H⋯π (arene) inter­actions link the mol­ecules, but no ππ inter­actions between aromatic rings are observed.

1. Chemical context

Quinoxalines are well-known nitro­gen-containing heterocyclic compounds, and substituted quinoxalines are important ligands with transition metals (Achelle et al., 2013[Achelle, S., Baudequin, C. & Plé, N. (2013). Dyes Pigments, 98, 575-600.]; Floris et al., 2017[Floris, B., Donzello, M. P., Ercolani, C. & Viola, E. (2017). Coord. Chem. Rev. 347, 115-140.]; Tariq et al., 2018[Tariq, S., Somakala, K. & Amir, M. (2018). Eur. J. Med. Chem. 143, 542-557.]). They act as chelating agents bearing ring complexes bounded by a benzene ring and a pyrazine ring. We have reported, for example, deep-red emissive iridium(III) complexes containing 2,3-di­phenyl­quinoxaline (dpqH), in which red emissions contributed to the conjugated structure of the dpq ligand (Song et al., 2015[Song, M., Yun, S.-J., Nam, K.-S., Liu, H., Gal, Y.-S., Lee, J. W., Jin, S.-H., Lee, J. Y., Kang, S. K. & Kim, Y. I. (2015). J. Organomet. Chem. 794, 197-205.]). The use of long conjugated compounds as metal coordination ligands could be an approach to develop novel emitters toward red-shift emission up to near-infrared (NIR) wavelengths due to inter­system crossing (Ahn et al., 2009[Ahn, S. Y., Lee, H. S., Seo, J.-H., Kim, Y. K. & Ha, Y. (2009). Thin Solid Films, 517, 4111-4114.]). Recently, 2,3-di­phenyl­benzoquinoxaline (dpbqH), a more π-extended ligand than dpqH, has been introduced, and its iridium(III) complex showed bathochromic shifted emission at 763 nm (Kim et al., 2018[Kim, Y.-I., Yun, S.-J., Kim, D. & Kang, S. K. (2018). Bull. Korean Chem. Soc. 39, 133-136.]). The aromatic rings in dpqH formed dimeric aggregates by ππ inter­actions, and these dimers inter­act via van der Waals inter­actions in the solid state (Cantalupo et al., 2006[Cantalupo, S. A., Salvati, H., McBurney, B., Raju, R., Glagovich, N. M. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17-24.]; Kim et al., 2018[Kim, Y.-I., Yun, S.-J., Kim, D. & Kang, S. K. (2018). Bull. Korean Chem. Soc. 39, 133-136.]). In this work, we have synthesized 2,3-di-p-tolyl­benzo[g]quinoxaline (dmpbqH) from the reaction of 4,4-di­methyl­benzil with 2,3-di­aminona­phthalene, and investigated its single crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The benzoquinoxaline ring system (atoms N1/C2/C3/N4/C5–C14) is almost planar, with an r.m.s. deviation of 0.076 Å from the corresponding least-squares plane defined by the 14 constituent atoms. In the pyrazine heterocyclic ring, the N1—C2 [1.310 (2) Å] and C3—N4 [1.310 (2) Å] bonds are shorter than the N1—C14 [1.381 (2) Å] and N4—C5 [1.379 (2) Å] bonds, even though the pyrazine ring has a delocalized π-system. There is a pseudo-twofold rotation axis passing through the midpoints of the C2—C3, C5—C14, C7—C12, and C9—C10 bonds. The two phenyl rings (atoms C15–C20 and C22–C25) are twisted relative to the benzoquinoxaline ring system, making dihedral angles of 53.91 (4) and 36.86 (6)°, respectively. The dihedral angle between the phenyl rings is 65.22 (6)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids for non-H atoms.

3. Supra­molecular features

In the crystal, there are two C—H⋯π inter­actions: C19—H19⋯Cg1i and C27—H27⋯Cg2ii (Table 1[link], Fig. 2[link]) which stabilize the crystal packing (Fig. 3[link]). There are no ππ inter­actions between the aromatic rings.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of atoms C7–C12 and N1/C2/C3/N4/C5–C7/C12–C14, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cg1i 0.93 2.88 3.488 (3) 124
C27—H27⋯Cg2ii 0.93 2.91 3.601 (3) 132
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z.
[Figure 2]
Figure 2
Part of the crystal packing showing mol­ecules linked by inter­molecular C—H⋯π inter­actions (Table 1[link]; shown as dashed lines). Cg1 and Cg2 are the centroids of the C7–C12 and the N1/C2/C3/N4/C5–C7/C12–C14 rings, respectively. [Symmetry codes: (i) −x + 1, −y, −z, (ii) x − 1, y, z].
[Figure 3]
Figure 3
Crystal packing of the title compound, showing mol­ecules linked by inter­molecular C—H⋯π bonds (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) via the WebCSD inter­face in February 2018 returned several entries for crystal structures related to 2,3-disubstituted benzoquinoxalines. In 2,3-di­phenyl­benzoquinoxaline, the two phenyl rings form dihedral angles of 43.42 (3) and 46.89 (3)° with the benzoquinoxaline plane, a little larger than those of the title compound. The packing in the crystals is described as having a herringbone motif (REKDIV, Cantalupo et al., 2006[Cantalupo, S. A., Salvati, H., McBurney, B., Raju, R., Glagovich, N. M. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17-24.]; REKDIV01, Chan & Chang, 2016[Chan, C. K. & Chang, M. Y. (2016). Synthesis, 48, 3785-3793.]). There are three entries for metal complexes with this ligand. In the crystal lattice of a bis-cyclo­manganese complex, the mol­ecules are π-stacked in a parallel head-to-tail pattern with a mean inter-planar distance between the benzoquinoxaline planes of 3.5 Å (DECTAH; Djukic et al., 2005[Djukic, J. P., de Cian, A. & Gruber, N. K. (2005). J. Organomet. Chem. 690, 4822-4827.]). In addition we also found two octa­hedral IrIII complexes (VEHCAN and VEHCER; Chen et al., 2006[Chen, H. Y., Yang, C. H., Chi, Y., Cheng, Y. M., Yeh, Y. S., Chou, P. T., Hsieh, H. Y., Liu, C. S., Peng, S. M. & Lee, G. H. (2006). Can. J. Chem. 84, 309-318.]).

There are three entries for crystal structures related to 2,3-bis­(2-pyrid­yl)benzoquinoxaline. In the distorted octa­hedral CoIII complex (JUHVIR; Escuer et al., 1991[Escuer, A., Vicente, R., Comas, T., Ribas, J., Gomez, M., Solans, X., Gatteschi, D. & Zanchini, C. (1991). Inorg. Chim. Acta, 181, 51-60.]), the CoIII atom is situated in the benzoquinoxaline plane, coordinated by one pyridyl N atom and one quinoxaline N atom. In the octa­hedral ReV complex (HAYSAB; Bandoli et al., 1994[Bandoli, G., Gerber, T. I. A., Jacobs, R. & du Preez, J. G. H. (1994). Inorg. Chem. 33, 178-179.]), the ReV atom is chelated by two pyridyl N atoms of the bis­(2-pyrid­yl)benzoquinoxaline ligand. Finally, in the square-planar PtII complex (AYAMIW; Cusumano et al., 2004[Cusumano, M., Di Pietro, M. L., Giannetto, A., Nicolò, F., Nordén, B. & Lincoln, P. (2004). Inorg. Chem. 43, 2416-2421.]), the benzo­quin­oxaline moiety lies almost perpendicular to the square plane giving the mol­ecule an unusual L-shaped geometry.

5. Synthesis and crystallization

Chemicals were obtained commercially in reagent grade and used as received. Solvents were dried using standard procedures as described in the literature. 1H NMR spectra were recorded with a 300 MHz Varian Mercury model in CDCl3. 4,4-Di­methyl­benzil (3 mmol), 2,3-di­aminona­phthalene (4.4 mmol), and iodine (0.37 mmol) were dissolved slowly in aceto­nitrile (10 ml), and stirred for 10 minutes at room temperature. The reaction mixture was poured into water, extracted with ether and dried over anhydrous MgSO4. After volatiles had been removed under reduced pressure, the product was purified by silica gel chromatography using an eluent of hexa­ne/ethyl acetate (20:1). Pale-yellow single crystals of the title compound were obtained from di­chloro­methane/hexane (1:1) solution within a few days by slow evaporation of the solvent at 298 K, yield: 48%. 1H NMR (300 MHz, CDCl3): 8.72 (s, 2H), 8.12 (m, 2H), 7.56 (m, 2H), 7.49 (d, 2H, J = 8.1Hz), 7.18 (d, 2H, J = 7.8Hz), 2.40 (s, 6H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic-H and 1.5Ueq(C) for methyl-H atoms, respectively.

Table 2
Experimental details

Crystal data
Chemical formula C26H20N2
Mr 360.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.0814 (1), 21.5212 (4), 14.8312 (3)
β (°) 91.2496 (11)
V3) 1940.63 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 29811, 4805, 2628
Rint 0.050
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.01
No. of reflections 4805
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.16
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,3-Bis(4-methylphenyl)benzo[g]quinoxaline top
Crystal data top
C26H20N2F(000) = 760
Mr = 360.44Dx = 1.234 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.0814 (1) ÅCell parameters from 3900 reflections
b = 21.5212 (4) Åθ = 2.3–21.9°
c = 14.8312 (3) ŵ = 0.07 mm1
β = 91.2496 (11)°T = 296 K
V = 1940.63 (6) Å3Block, yellow
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.050
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 1.7°
φ and ω scansh = 88
29811 measured reflectionsk = 2628
4805 independent reflectionsl = 1919
2628 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2858P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4805 reflectionsΔρmax = 0.17 e Å3
255 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7331 (2)0.02999 (6)0.12787 (9)0.0539 (4)
C20.5746 (3)0.02628 (7)0.18606 (11)0.0496 (4)
C30.4315 (3)0.07859 (8)0.20406 (11)0.0496 (4)
N40.4398 (2)0.12958 (7)0.15602 (9)0.0551 (4)
C50.5980 (3)0.13326 (8)0.09102 (11)0.0513 (4)
C60.6102 (3)0.18621 (8)0.03848 (12)0.0595 (5)
H60.50330.21690.04360.071*
C70.7797 (3)0.19434 (8)0.02186 (11)0.0549 (4)
C80.7963 (3)0.24860 (9)0.07635 (13)0.0683 (5)
H80.68660.27870.07440.082*
C90.9686 (3)0.25701 (10)0.13079 (13)0.0728 (6)
H90.97650.29260.16610.087*
C101.1356 (3)0.21237 (10)0.13438 (13)0.0728 (6)
H101.25610.21950.17060.087*
C111.1252 (3)0.15891 (9)0.08612 (12)0.0647 (5)
H111.23620.12940.09080.078*
C120.9451 (3)0.14766 (8)0.02829 (11)0.0529 (4)
C130.9257 (3)0.09318 (8)0.02196 (11)0.0558 (4)
H131.02990.06190.01600.067*
C140.7539 (3)0.08485 (8)0.08053 (11)0.0499 (4)
C150.5403 (3)0.03522 (7)0.22942 (10)0.0495 (4)
C160.7057 (3)0.06426 (9)0.27877 (12)0.0620 (5)
H160.84110.04470.28680.074*
C170.6716 (3)0.12205 (9)0.31627 (12)0.0659 (5)
H170.78400.14040.35040.079*
C180.4750 (3)0.15320 (8)0.30446 (11)0.0586 (5)
C190.3114 (3)0.12401 (9)0.25490 (12)0.0614 (5)
H190.17730.14410.24570.074*
C200.3415 (3)0.06556 (8)0.21842 (11)0.0572 (4)
H200.22710.04660.18630.069*
C210.4416 (4)0.21754 (9)0.34221 (15)0.0851 (6)
H21A0.31010.23530.31610.128*
H21B0.42810.21510.40650.128*
H21C0.56540.24320.32810.128*
C220.2735 (3)0.08010 (8)0.27948 (11)0.0509 (4)
C230.3194 (3)0.05472 (9)0.36372 (12)0.0622 (5)
H230.44790.03200.37300.075*
C240.1768 (3)0.06271 (9)0.43408 (12)0.0671 (5)
H240.21270.04590.49020.080*
C250.0174 (3)0.09511 (9)0.42289 (13)0.0638 (5)
C260.0646 (3)0.11931 (9)0.33862 (13)0.0641 (5)
H260.19630.14050.32890.077*
C270.0785 (3)0.11292 (8)0.26840 (12)0.0571 (4)
H270.04390.13090.21280.068*
C280.1697 (3)0.10576 (11)0.50077 (14)0.0894 (7)
H28A0.15920.14830.52000.134*
H28B0.12820.07890.54990.134*
H28C0.31830.09690.48180.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0563 (9)0.0479 (9)0.0578 (8)0.0029 (7)0.0064 (7)0.0033 (7)
C20.0513 (9)0.0470 (10)0.0504 (9)0.0003 (8)0.0000 (8)0.0053 (7)
C30.0481 (9)0.0491 (10)0.0516 (9)0.0002 (8)0.0015 (7)0.0062 (8)
N40.0543 (8)0.0508 (9)0.0603 (8)0.0030 (7)0.0080 (7)0.0010 (7)
C50.0501 (10)0.0492 (10)0.0548 (10)0.0015 (8)0.0030 (8)0.0033 (8)
C60.0592 (11)0.0513 (11)0.0682 (11)0.0062 (9)0.0067 (9)0.0008 (9)
C70.0580 (11)0.0516 (11)0.0552 (10)0.0047 (8)0.0011 (8)0.0020 (8)
C80.0749 (13)0.0567 (12)0.0736 (12)0.0015 (10)0.0065 (10)0.0068 (10)
C90.0868 (15)0.0592 (13)0.0727 (13)0.0142 (11)0.0065 (11)0.0076 (10)
C100.0758 (14)0.0766 (14)0.0666 (12)0.0194 (12)0.0157 (10)0.0011 (11)
C110.0625 (12)0.0691 (13)0.0628 (11)0.0042 (10)0.0099 (9)0.0067 (10)
C120.0566 (10)0.0543 (11)0.0480 (9)0.0059 (8)0.0029 (8)0.0070 (8)
C130.0570 (10)0.0534 (10)0.0573 (10)0.0060 (8)0.0055 (8)0.0058 (8)
C140.0528 (10)0.0468 (10)0.0501 (9)0.0015 (8)0.0031 (7)0.0053 (8)
C150.0517 (10)0.0472 (10)0.0496 (9)0.0032 (8)0.0039 (7)0.0053 (8)
C160.0535 (11)0.0614 (12)0.0709 (12)0.0014 (9)0.0013 (9)0.0010 (10)
C170.0686 (13)0.0642 (12)0.0647 (11)0.0130 (10)0.0037 (9)0.0066 (10)
C180.0726 (13)0.0516 (11)0.0519 (10)0.0035 (9)0.0108 (9)0.0012 (8)
C190.0624 (12)0.0572 (11)0.0646 (11)0.0114 (9)0.0025 (9)0.0047 (9)
C200.0581 (11)0.0534 (11)0.0597 (10)0.0003 (9)0.0061 (8)0.0009 (8)
C210.1156 (18)0.0598 (13)0.0806 (14)0.0034 (12)0.0196 (13)0.0129 (11)
C220.0508 (10)0.0469 (10)0.0551 (10)0.0011 (8)0.0045 (8)0.0082 (8)
C230.0620 (11)0.0645 (12)0.0604 (11)0.0082 (9)0.0059 (9)0.0029 (9)
C240.0761 (13)0.0709 (13)0.0546 (10)0.0037 (11)0.0111 (9)0.0033 (9)
C250.0612 (11)0.0618 (12)0.0690 (12)0.0062 (9)0.0148 (9)0.0163 (10)
C260.0503 (10)0.0659 (12)0.0762 (13)0.0038 (9)0.0048 (9)0.0152 (10)
C270.0557 (10)0.0563 (11)0.0592 (10)0.0002 (8)0.0013 (8)0.0070 (8)
C280.0821 (15)0.1055 (18)0.0821 (14)0.0039 (13)0.0310 (12)0.0222 (13)
Geometric parameters (Å, º) top
N1—C21.3102 (19)C16—C171.380 (3)
N1—C141.381 (2)C16—H160.9300
C2—C31.451 (2)C17—C181.378 (2)
C2—C151.488 (2)C17—H170.9300
C3—N41.310 (2)C18—C191.376 (2)
C3—C221.491 (2)C18—C211.509 (3)
N4—C51.379 (2)C19—C201.383 (2)
C5—C61.383 (2)C19—H190.9300
C5—C141.419 (2)C20—H200.9300
C6—C71.391 (2)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C7—C81.425 (2)C21—H21C0.9600
C7—C121.426 (2)C22—C231.386 (2)
C8—C91.349 (2)C22—C271.387 (2)
C8—H80.9300C23—C241.382 (2)
C9—C101.400 (3)C23—H230.9300
C9—H90.9300C24—C251.378 (3)
C10—C111.357 (3)C24—H240.9300
C10—H100.9300C25—C261.378 (3)
C11—C121.427 (2)C25—C281.514 (2)
C11—H110.9300C26—C271.379 (2)
C12—C131.396 (2)C26—H260.9300
C13—C141.385 (2)C27—H270.9300
C13—H130.9300C28—H28A0.9600
C15—C201.380 (2)C28—H28B0.9600
C15—C161.380 (2)C28—H28C0.9600
C2—N1—C14117.63 (14)C15—C16—H16119.7
N1—C2—C3121.78 (15)C18—C17—C16121.64 (17)
N1—C2—C15116.81 (14)C18—C17—H17119.2
C3—C2—C15121.33 (14)C16—C17—H17119.2
N4—C3—C2121.30 (14)C19—C18—C17117.44 (17)
N4—C3—C22115.02 (14)C19—C18—C21121.03 (18)
C2—C3—C22123.63 (15)C17—C18—C21121.51 (18)
C3—N4—C5117.64 (14)C18—C19—C20121.59 (17)
N4—C5—C6119.19 (15)C18—C19—H19119.2
N4—C5—C14120.82 (15)C20—C19—H19119.2
C6—C5—C14119.93 (15)C15—C20—C19120.46 (17)
C5—C6—C7121.02 (16)C15—C20—H20119.8
C5—C6—H6119.5C19—C20—H20119.8
C7—C6—H6119.5C18—C21—H21A109.5
C6—C7—C8122.04 (17)C18—C21—H21B109.5
C6—C7—C12119.22 (16)H21A—C21—H21B109.5
C8—C7—C12118.73 (16)C18—C21—H21C109.5
C9—C8—C7120.99 (19)H21A—C21—H21C109.5
C9—C8—H8119.5H21B—C21—H21C109.5
C7—C8—H8119.5C23—C22—C27117.51 (15)
C8—C9—C10120.29 (19)C23—C22—C3123.20 (15)
C8—C9—H9119.9C27—C22—C3119.05 (15)
C10—C9—H9119.9C24—C23—C22120.96 (17)
C11—C10—C9121.31 (18)C24—C23—H23119.5
C11—C10—H10119.3C22—C23—H23119.5
C9—C10—H10119.3C25—C24—C23121.47 (18)
C10—C11—C12120.39 (18)C25—C24—H24119.3
C10—C11—H11119.8C23—C24—H24119.3
C12—C11—H11119.8C26—C25—C24117.47 (16)
C13—C12—C7119.21 (15)C26—C25—C28121.05 (19)
C13—C12—C11122.58 (17)C24—C25—C28121.44 (19)
C7—C12—C11118.21 (16)C25—C26—C27121.64 (17)
C14—C13—C12121.16 (16)C25—C26—H26119.2
C14—C13—H13119.4C27—C26—H26119.2
C12—C13—H13119.4C26—C27—C22120.91 (17)
N1—C14—C13120.54 (15)C26—C27—H27119.5
N1—C14—C5120.22 (14)C22—C27—H27119.5
C13—C14—C5119.24 (16)C25—C28—H28A109.5
C20—C15—C16118.33 (16)C25—C28—H28B109.5
C20—C15—C2120.02 (15)H28A—C28—H28B109.5
C16—C15—C2121.62 (16)C25—C28—H28C109.5
C17—C16—C15120.51 (17)H28A—C28—H28C109.5
C17—C16—H16119.7H28B—C28—H28C109.5
C14—N1—C2—C33.0 (2)C6—C5—C14—N1175.17 (16)
C14—N1—C2—C15173.87 (14)N4—C5—C14—C13172.58 (15)
N1—C2—C3—N47.3 (2)C6—C5—C14—C134.4 (2)
C15—C2—C3—N4169.37 (15)N1—C2—C15—C20119.48 (17)
N1—C2—C3—C22169.84 (15)C3—C2—C15—C2057.4 (2)
C15—C2—C3—C2213.5 (2)N1—C2—C15—C1658.5 (2)
C2—C3—N4—C53.6 (2)C3—C2—C15—C16124.69 (17)
C22—C3—N4—C5173.74 (14)C20—C15—C16—C170.3 (3)
C3—N4—C5—C6179.40 (16)C2—C15—C16—C17178.24 (16)
C3—N4—C5—C143.6 (2)C15—C16—C17—C181.4 (3)
N4—C5—C6—C7173.89 (16)C16—C17—C18—C191.1 (3)
C14—C5—C6—C73.2 (3)C16—C17—C18—C21177.36 (17)
C5—C6—C7—C8179.68 (17)C17—C18—C19—C200.2 (3)
C5—C6—C7—C121.0 (3)C21—C18—C19—C20178.70 (17)
C6—C7—C8—C9176.35 (18)C16—C15—C20—C191.0 (2)
C12—C7—C8—C92.3 (3)C2—C15—C20—C19176.97 (15)
C7—C8—C9—C100.3 (3)C18—C19—C20—C151.3 (3)
C8—C9—C10—C112.3 (3)N4—C3—C22—C23139.82 (17)
C9—C10—C11—C121.7 (3)C2—C3—C22—C2337.5 (2)
C6—C7—C12—C134.0 (2)N4—C3—C22—C2734.4 (2)
C8—C7—C12—C13177.35 (16)C2—C3—C22—C27148.26 (16)
C6—C7—C12—C11175.84 (16)C27—C22—C23—C240.9 (3)
C8—C7—C12—C112.9 (2)C3—C22—C23—C24173.46 (17)
C10—C11—C12—C13179.29 (17)C22—C23—C24—C251.2 (3)
C10—C11—C12—C70.9 (3)C23—C24—C25—C260.0 (3)
C7—C12—C13—C142.7 (2)C23—C24—C25—C28177.85 (18)
C11—C12—C13—C14177.09 (16)C24—C25—C26—C271.6 (3)
C2—N1—C14—C13176.18 (15)C28—C25—C26—C27176.32 (18)
C2—N1—C14—C54.2 (2)C25—C26—C27—C221.9 (3)
C12—C13—C14—N1178.13 (15)C23—C22—C27—C260.7 (3)
C12—C13—C14—C51.5 (2)C3—C22—C27—C26175.22 (16)
N4—C5—C14—N17.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C7–C12 and the N1/C2/C3/N4/C5–C7/C12–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···Cg1i0.932.883.488 (3)124
C27—H27···Cg2ii0.932.913.601 (3)132
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Funding information

This work was supported by a two-year research grant of Pusan National University.

References

First citationAchelle, S., Baudequin, C. & Plé, N. (2013). Dyes Pigments, 98, 575–600.  CrossRef CAS Google Scholar
First citationAhn, S. Y., Lee, H. S., Seo, J.-H., Kim, Y. K. & Ha, Y. (2009). Thin Solid Films, 517, 4111–4114.  CrossRef CAS Google Scholar
First citationBandoli, G., Gerber, T. I. A., Jacobs, R. & du Preez, J. G. H. (1994). Inorg. Chem. 33, 178–179.  CrossRef CAS Google Scholar
First citationBruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantalupo, S. A., Salvati, H., McBurney, B., Raju, R., Glagovich, N. M. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationChan, C. K. & Chang, M. Y. (2016). Synthesis, 48, 3785–3793.  CAS Google Scholar
First citationChen, H. Y., Yang, C. H., Chi, Y., Cheng, Y. M., Yeh, Y. S., Chou, P. T., Hsieh, H. Y., Liu, C. S., Peng, S. M. & Lee, G. H. (2006). Can. J. Chem. 84, 309–318.  CrossRef CAS Google Scholar
First citationCusumano, M., Di Pietro, M. L., Giannetto, A., Nicolò, F., Nordén, B. & Lincoln, P. (2004). Inorg. Chem. 43, 2416–2421.  CrossRef CAS Google Scholar
First citationDjukic, J. P., de Cian, A. & Gruber, N. K. (2005). J. Organomet. Chem. 690, 4822–4827.  CrossRef CAS Google Scholar
First citationEscuer, A., Vicente, R., Comas, T., Ribas, J., Gomez, M., Solans, X., Gatteschi, D. & Zanchini, C. (1991). Inorg. Chim. Acta, 181, 51–60.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFloris, B., Donzello, M. P., Ercolani, C. & Viola, E. (2017). Coord. Chem. Rev. 347, 115–140.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Yun, S.-J., Kim, D. & Kang, S. K. (2018). Bull. Korean Chem. Soc. 39, 133–136.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, M., Yun, S.-J., Nam, K.-S., Liu, H., Gal, Y.-S., Lee, J. W., Jin, S.-H., Lee, J. Y., Kang, S. K. & Kim, Y. I. (2015). J. Organomet. Chem. 794, 197–205.  CrossRef CAS Google Scholar
First citationTariq, S., Somakala, K. & Amir, M. (2018). Eur. J. Med. Chem. 143, 542–557.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds