research communications
g]quinoxaline
of 2,3-bis(4-methylphenyl)benzo[aDepartment of Chemistry Education and Department of Chemical Materials, Graduate School, Pusan National University, Busan 46241, South Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 34134, South Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The title compound, C26H20N2, was obtained during a search for new π-extended ligands with the potential to generate efficient phosphors with iridium(III) for organic light-emitting devices (OLEDs). The benzoquinoxaline ring system is almost planar (r.m.s. deviation = 0.076 Å). A pseudo-twofold rotation axis runs through the midpoints of the C2—C3 and C9—C10 bonds. The two phenyl rings are twisted relative to the benzoquinoxaline ring system, making dihedral angles of 53.91 (4) and 36.86 (6)°. In the crystal, C—H⋯π (arene) interactions link the molecules, but no π–π interactions between aromatic rings are observed.
Keywords: crystal structure; 2,3-di-p-tolylbenzo[g]quinoxaline; N-heterocyclic compound; C—H⋯π interaction.
CCDC reference: 1543571
1. Chemical context
Quinoxalines are well-known nitrogen-containing et al., 2013; Floris et al., 2017; Tariq et al., 2018). They act as chelating agents bearing ring complexes bounded by a benzene ring and a pyrazine ring. We have reported, for example, deep-red emissive iridium(III) complexes containing 2,3-diphenylquinoxaline (dpqH), in which red emissions contributed to the conjugated structure of the dpq ligand (Song et al., 2015). The use of long conjugated compounds as metal coordination ligands could be an approach to develop novel emitters toward red-shift emission up to near-infrared (NIR) wavelengths due to intersystem crossing (Ahn et al., 2009). Recently, 2,3-diphenylbenzoquinoxaline (dpbqH), a more π-extended ligand than dpqH, has been introduced, and its iridium(III) complex showed bathochromic shifted emission at 763 nm (Kim et al., 2018). The aromatic rings in dpqH formed dimeric aggregates by π–π interactions, and these dimers interact via van der Waals interactions in the solid state (Cantalupo et al., 2006; Kim et al., 2018). In this work, we have synthesized 2,3-di-p-tolylbenzo[g]quinoxaline (dmpbqH) from the reaction of 4,4-dimethylbenzil with 2,3-diaminonaphthalene, and investigated its single crystal structure.
and substituted quinoxalines are important ligands with transition metals (Achelle2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The benzoquinoxaline ring system (atoms N1/C2/C3/N4/C5–C14) is almost planar, with an r.m.s. deviation of 0.076 Å from the corresponding least-squares plane defined by the 14 constituent atoms. In the pyrazine heterocyclic ring, the N1—C2 [1.310 (2) Å] and C3—N4 [1.310 (2) Å] bonds are shorter than the N1—C14 [1.381 (2) Å] and N4—C5 [1.379 (2) Å] bonds, even though the pyrazine ring has a delocalized π-system. There is a pseudo-twofold rotation axis passing through the midpoints of the C2—C3, C5—C14, C7—C12, and C9—C10 bonds. The two phenyl rings (atoms C15–C20 and C22–C25) are twisted relative to the benzoquinoxaline ring system, making dihedral angles of 53.91 (4) and 36.86 (6)°, respectively. The dihedral angle between the phenyl rings is 65.22 (6)°.
3. Supramolecular features
In the crystal, there are two C—H⋯π interactions: C19—H19⋯Cg1i and C27—H27⋯Cg2ii (Table 1, Fig. 2) which stabilize the crystal packing (Fig. 3). There are no π–π interactions between the aromatic rings.
4. Database survey
A search of the Cambridge Structural Database (CSD; Groom et al., 2016) via the WebCSD interface in February 2018 returned several entries for crystal structures related to 2,3-disubstituted benzoquinoxalines. In 2,3-diphenylbenzoquinoxaline, the two phenyl rings form dihedral angles of 43.42 (3) and 46.89 (3)° with the benzoquinoxaline plane, a little larger than those of the title compound. The packing in the crystals is described as having a herringbone motif (REKDIV, Cantalupo et al., 2006; REKDIV01, Chan & Chang, 2016). There are three entries for metal complexes with this ligand. In the of a bis-cyclomanganese complex, the molecules are π-stacked in a parallel head-to-tail pattern with a mean inter-planar distance between the benzoquinoxaline planes of 3.5 Å (DECTAH; Djukic et al., 2005). In addition we also found two octahedral IrIII complexes (VEHCAN and VEHCER; Chen et al., 2006).
There are three entries for crystal structures related to 2,3-bis(2-pyridyl)benzoquinoxaline. In the distorted octahedral CoIII complex (JUHVIR; Escuer et al., 1991), the CoIII atom is situated in the benzoquinoxaline plane, coordinated by one pyridyl N atom and one quinoxaline N atom. In the octahedral ReV complex (HAYSAB; Bandoli et al., 1994), the ReV atom is chelated by two pyridyl N atoms of the bis(2-pyridyl)benzoquinoxaline ligand. Finally, in the square-planar PtII complex (AYAMIW; Cusumano et al., 2004), the benzoquinoxaline moiety lies almost perpendicular to the square plane giving the molecule an unusual L-shaped geometry.
5. Synthesis and crystallization
Chemicals were obtained commercially in reagent grade and used as received. Solvents were dried using standard procedures as described in the literature. 1H NMR spectra were recorded with a 300 MHz Varian Mercury model in CDCl3. 4,4-Dimethylbenzil (3 mmol), 2,3-diaminonaphthalene (4.4 mmol), and iodine (0.37 mmol) were dissolved slowly in acetonitrile (10 ml), and stirred for 10 minutes at room temperature. The reaction mixture was poured into water, extracted with ether and dried over anhydrous MgSO4. After volatiles had been removed under reduced pressure, the product was purified by silica gel using an of hexane/ethyl acetate (20:1). Pale-yellow single crystals of the title compound were obtained from dichloromethane/hexane (1:1) solution within a few days by slow evaporation of the solvent at 298 K, yield: 48%. 1H NMR (300 MHz, CDCl3): 8.72 (s, 2H), 8.12 (m, 2H), 7.56 (m, 2H), 7.49 (d, 2H, J = 8.1Hz), 7.18 (d, 2H, J = 7.8Hz), 2.40 (s, 6H).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic-H and 1.5Ueq(C) for methyl-H atoms, respectively.
details are summarized in Table 2Supporting information
CCDC reference: 1543571
https://doi.org/10.1107/S2056989018004413/vm2210sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018004413/vm2210Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018004413/vm2210Isup3.cml
Data collection: SMART (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C26H20N2 | F(000) = 760 |
Mr = 360.44 | Dx = 1.234 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.0814 (1) Å | Cell parameters from 3900 reflections |
b = 21.5212 (4) Å | θ = 2.3–21.9° |
c = 14.8312 (3) Å | µ = 0.07 mm−1 |
β = 91.2496 (11)° | T = 296 K |
V = 1940.63 (6) Å3 | Block, yellow |
Z = 4 | 0.15 × 0.12 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | Rint = 0.050 |
Radiation source: fine-focus sealed tube | θmax = 28.3°, θmin = 1.7° |
φ and ω scans | h = −8→8 |
29811 measured reflections | k = −26→28 |
4805 independent reflections | l = −19→19 |
2628 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.124 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
4805 reflections | Δρmax = 0.17 e Å−3 |
255 parameters | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7331 (2) | 0.02999 (6) | 0.12787 (9) | 0.0539 (4) | |
C2 | 0.5746 (3) | 0.02628 (7) | 0.18606 (11) | 0.0496 (4) | |
C3 | 0.4315 (3) | 0.07859 (8) | 0.20406 (11) | 0.0496 (4) | |
N4 | 0.4398 (2) | 0.12958 (7) | 0.15602 (9) | 0.0551 (4) | |
C5 | 0.5980 (3) | 0.13326 (8) | 0.09102 (11) | 0.0513 (4) | |
C6 | 0.6102 (3) | 0.18621 (8) | 0.03848 (12) | 0.0595 (5) | |
H6 | 0.5033 | 0.2169 | 0.0436 | 0.071* | |
C7 | 0.7797 (3) | 0.19434 (8) | −0.02186 (11) | 0.0549 (4) | |
C8 | 0.7963 (3) | 0.24860 (9) | −0.07635 (13) | 0.0683 (5) | |
H8 | 0.6866 | 0.2787 | −0.0744 | 0.082* | |
C9 | 0.9686 (3) | 0.25701 (10) | −0.13079 (13) | 0.0728 (6) | |
H9 | 0.9765 | 0.2926 | −0.1661 | 0.087* | |
C10 | 1.1356 (3) | 0.21237 (10) | −0.13438 (13) | 0.0728 (6) | |
H10 | 1.2561 | 0.2195 | −0.1706 | 0.087* | |
C11 | 1.1252 (3) | 0.15891 (9) | −0.08612 (12) | 0.0647 (5) | |
H11 | 1.2362 | 0.1294 | −0.0908 | 0.078* | |
C12 | 0.9451 (3) | 0.14766 (8) | −0.02829 (11) | 0.0529 (4) | |
C13 | 0.9257 (3) | 0.09318 (8) | 0.02196 (11) | 0.0558 (4) | |
H13 | 1.0299 | 0.0619 | 0.0160 | 0.067* | |
C14 | 0.7539 (3) | 0.08485 (8) | 0.08053 (11) | 0.0499 (4) | |
C15 | 0.5403 (3) | −0.03522 (7) | 0.22942 (10) | 0.0495 (4) | |
C16 | 0.7057 (3) | −0.06426 (9) | 0.27877 (12) | 0.0620 (5) | |
H16 | 0.8411 | −0.0447 | 0.2868 | 0.074* | |
C17 | 0.6716 (3) | −0.12205 (9) | 0.31627 (12) | 0.0659 (5) | |
H17 | 0.7840 | −0.1404 | 0.3504 | 0.079* | |
C18 | 0.4750 (3) | −0.15320 (8) | 0.30446 (11) | 0.0586 (5) | |
C19 | 0.3114 (3) | −0.12401 (9) | 0.25490 (12) | 0.0614 (5) | |
H19 | 0.1773 | −0.1441 | 0.2457 | 0.074* | |
C20 | 0.3415 (3) | −0.06556 (8) | 0.21842 (11) | 0.0572 (4) | |
H20 | 0.2271 | −0.0466 | 0.1863 | 0.069* | |
C21 | 0.4416 (4) | −0.21754 (9) | 0.34221 (15) | 0.0851 (6) | |
H21A | 0.3101 | −0.2353 | 0.3161 | 0.128* | |
H21B | 0.4281 | −0.2151 | 0.4065 | 0.128* | |
H21C | 0.5654 | −0.2432 | 0.3281 | 0.128* | |
C22 | 0.2735 (3) | 0.08010 (8) | 0.27948 (11) | 0.0509 (4) | |
C23 | 0.3194 (3) | 0.05472 (9) | 0.36372 (12) | 0.0622 (5) | |
H23 | 0.4479 | 0.0320 | 0.3730 | 0.075* | |
C24 | 0.1768 (3) | 0.06271 (9) | 0.43408 (12) | 0.0671 (5) | |
H24 | 0.2127 | 0.0459 | 0.4902 | 0.080* | |
C25 | −0.0174 (3) | 0.09511 (9) | 0.42289 (13) | 0.0638 (5) | |
C26 | −0.0646 (3) | 0.11931 (9) | 0.33862 (13) | 0.0641 (5) | |
H26 | −0.1963 | 0.1405 | 0.3289 | 0.077* | |
C27 | 0.0785 (3) | 0.11292 (8) | 0.26840 (12) | 0.0571 (4) | |
H27 | 0.0439 | 0.1309 | 0.2128 | 0.068* | |
C28 | −0.1697 (3) | 0.10576 (11) | 0.50077 (14) | 0.0894 (7) | |
H28A | −0.1592 | 0.1483 | 0.5200 | 0.134* | |
H28B | −0.1282 | 0.0789 | 0.5499 | 0.134* | |
H28C | −0.3183 | 0.0969 | 0.4818 | 0.134* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0563 (9) | 0.0479 (9) | 0.0578 (8) | 0.0029 (7) | 0.0064 (7) | −0.0033 (7) |
C2 | 0.0513 (9) | 0.0470 (10) | 0.0504 (9) | 0.0003 (8) | 0.0000 (8) | −0.0053 (7) |
C3 | 0.0481 (9) | 0.0491 (10) | 0.0516 (9) | −0.0002 (8) | 0.0015 (7) | −0.0062 (8) |
N4 | 0.0543 (8) | 0.0508 (9) | 0.0603 (8) | 0.0030 (7) | 0.0080 (7) | −0.0010 (7) |
C5 | 0.0501 (10) | 0.0492 (10) | 0.0548 (10) | 0.0015 (8) | 0.0030 (8) | −0.0033 (8) |
C6 | 0.0592 (11) | 0.0513 (11) | 0.0682 (11) | 0.0062 (9) | 0.0067 (9) | 0.0008 (9) |
C7 | 0.0580 (11) | 0.0516 (11) | 0.0552 (10) | −0.0047 (8) | 0.0011 (8) | −0.0020 (8) |
C8 | 0.0749 (13) | 0.0567 (12) | 0.0736 (12) | −0.0015 (10) | 0.0065 (10) | 0.0068 (10) |
C9 | 0.0868 (15) | 0.0592 (13) | 0.0727 (13) | −0.0142 (11) | 0.0065 (11) | 0.0076 (10) |
C10 | 0.0758 (14) | 0.0766 (14) | 0.0666 (12) | −0.0194 (12) | 0.0157 (10) | −0.0011 (11) |
C11 | 0.0625 (12) | 0.0691 (13) | 0.0628 (11) | −0.0042 (10) | 0.0099 (9) | −0.0067 (10) |
C12 | 0.0566 (10) | 0.0543 (11) | 0.0480 (9) | −0.0059 (8) | 0.0029 (8) | −0.0070 (8) |
C13 | 0.0570 (10) | 0.0534 (10) | 0.0573 (10) | 0.0060 (8) | 0.0055 (8) | −0.0058 (8) |
C14 | 0.0528 (10) | 0.0468 (10) | 0.0501 (9) | −0.0015 (8) | 0.0031 (7) | −0.0053 (8) |
C15 | 0.0517 (10) | 0.0472 (10) | 0.0496 (9) | 0.0032 (8) | 0.0039 (7) | −0.0053 (8) |
C16 | 0.0535 (11) | 0.0614 (12) | 0.0709 (12) | 0.0014 (9) | −0.0013 (9) | −0.0010 (10) |
C17 | 0.0686 (13) | 0.0642 (12) | 0.0647 (11) | 0.0130 (10) | −0.0037 (9) | 0.0066 (10) |
C18 | 0.0726 (13) | 0.0516 (11) | 0.0519 (10) | 0.0035 (9) | 0.0108 (9) | −0.0012 (8) |
C19 | 0.0624 (12) | 0.0572 (11) | 0.0646 (11) | −0.0114 (9) | 0.0025 (9) | −0.0047 (9) |
C20 | 0.0581 (11) | 0.0534 (11) | 0.0597 (10) | −0.0003 (9) | −0.0061 (8) | −0.0009 (8) |
C21 | 0.1156 (18) | 0.0598 (13) | 0.0806 (14) | 0.0034 (12) | 0.0196 (13) | 0.0129 (11) |
C22 | 0.0508 (10) | 0.0469 (10) | 0.0551 (10) | −0.0011 (8) | 0.0045 (8) | −0.0082 (8) |
C23 | 0.0620 (11) | 0.0645 (12) | 0.0604 (11) | 0.0082 (9) | 0.0059 (9) | −0.0029 (9) |
C24 | 0.0761 (13) | 0.0709 (13) | 0.0546 (10) | 0.0037 (11) | 0.0111 (9) | −0.0033 (9) |
C25 | 0.0612 (11) | 0.0618 (12) | 0.0690 (12) | −0.0062 (9) | 0.0148 (9) | −0.0163 (10) |
C26 | 0.0503 (10) | 0.0659 (12) | 0.0762 (13) | 0.0038 (9) | 0.0048 (9) | −0.0152 (10) |
C27 | 0.0557 (10) | 0.0563 (11) | 0.0592 (10) | 0.0002 (8) | 0.0013 (8) | −0.0070 (8) |
C28 | 0.0821 (15) | 0.1055 (18) | 0.0821 (14) | −0.0039 (13) | 0.0310 (12) | −0.0222 (13) |
N1—C2 | 1.3102 (19) | C16—C17 | 1.380 (3) |
N1—C14 | 1.381 (2) | C16—H16 | 0.9300 |
C2—C3 | 1.451 (2) | C17—C18 | 1.378 (2) |
C2—C15 | 1.488 (2) | C17—H17 | 0.9300 |
C3—N4 | 1.310 (2) | C18—C19 | 1.376 (2) |
C3—C22 | 1.491 (2) | C18—C21 | 1.509 (3) |
N4—C5 | 1.379 (2) | C19—C20 | 1.383 (2) |
C5—C6 | 1.383 (2) | C19—H19 | 0.9300 |
C5—C14 | 1.419 (2) | C20—H20 | 0.9300 |
C6—C7 | 1.391 (2) | C21—H21A | 0.9600 |
C6—H6 | 0.9300 | C21—H21B | 0.9600 |
C7—C8 | 1.425 (2) | C21—H21C | 0.9600 |
C7—C12 | 1.426 (2) | C22—C23 | 1.386 (2) |
C8—C9 | 1.349 (2) | C22—C27 | 1.387 (2) |
C8—H8 | 0.9300 | C23—C24 | 1.382 (2) |
C9—C10 | 1.400 (3) | C23—H23 | 0.9300 |
C9—H9 | 0.9300 | C24—C25 | 1.378 (3) |
C10—C11 | 1.357 (3) | C24—H24 | 0.9300 |
C10—H10 | 0.9300 | C25—C26 | 1.378 (3) |
C11—C12 | 1.427 (2) | C25—C28 | 1.514 (2) |
C11—H11 | 0.9300 | C26—C27 | 1.379 (2) |
C12—C13 | 1.396 (2) | C26—H26 | 0.9300 |
C13—C14 | 1.385 (2) | C27—H27 | 0.9300 |
C13—H13 | 0.9300 | C28—H28A | 0.9600 |
C15—C20 | 1.380 (2) | C28—H28B | 0.9600 |
C15—C16 | 1.380 (2) | C28—H28C | 0.9600 |
C2—N1—C14 | 117.63 (14) | C15—C16—H16 | 119.7 |
N1—C2—C3 | 121.78 (15) | C18—C17—C16 | 121.64 (17) |
N1—C2—C15 | 116.81 (14) | C18—C17—H17 | 119.2 |
C3—C2—C15 | 121.33 (14) | C16—C17—H17 | 119.2 |
N4—C3—C2 | 121.30 (14) | C19—C18—C17 | 117.44 (17) |
N4—C3—C22 | 115.02 (14) | C19—C18—C21 | 121.03 (18) |
C2—C3—C22 | 123.63 (15) | C17—C18—C21 | 121.51 (18) |
C3—N4—C5 | 117.64 (14) | C18—C19—C20 | 121.59 (17) |
N4—C5—C6 | 119.19 (15) | C18—C19—H19 | 119.2 |
N4—C5—C14 | 120.82 (15) | C20—C19—H19 | 119.2 |
C6—C5—C14 | 119.93 (15) | C15—C20—C19 | 120.46 (17) |
C5—C6—C7 | 121.02 (16) | C15—C20—H20 | 119.8 |
C5—C6—H6 | 119.5 | C19—C20—H20 | 119.8 |
C7—C6—H6 | 119.5 | C18—C21—H21A | 109.5 |
C6—C7—C8 | 122.04 (17) | C18—C21—H21B | 109.5 |
C6—C7—C12 | 119.22 (16) | H21A—C21—H21B | 109.5 |
C8—C7—C12 | 118.73 (16) | C18—C21—H21C | 109.5 |
C9—C8—C7 | 120.99 (19) | H21A—C21—H21C | 109.5 |
C9—C8—H8 | 119.5 | H21B—C21—H21C | 109.5 |
C7—C8—H8 | 119.5 | C23—C22—C27 | 117.51 (15) |
C8—C9—C10 | 120.29 (19) | C23—C22—C3 | 123.20 (15) |
C8—C9—H9 | 119.9 | C27—C22—C3 | 119.05 (15) |
C10—C9—H9 | 119.9 | C24—C23—C22 | 120.96 (17) |
C11—C10—C9 | 121.31 (18) | C24—C23—H23 | 119.5 |
C11—C10—H10 | 119.3 | C22—C23—H23 | 119.5 |
C9—C10—H10 | 119.3 | C25—C24—C23 | 121.47 (18) |
C10—C11—C12 | 120.39 (18) | C25—C24—H24 | 119.3 |
C10—C11—H11 | 119.8 | C23—C24—H24 | 119.3 |
C12—C11—H11 | 119.8 | C26—C25—C24 | 117.47 (16) |
C13—C12—C7 | 119.21 (15) | C26—C25—C28 | 121.05 (19) |
C13—C12—C11 | 122.58 (17) | C24—C25—C28 | 121.44 (19) |
C7—C12—C11 | 118.21 (16) | C25—C26—C27 | 121.64 (17) |
C14—C13—C12 | 121.16 (16) | C25—C26—H26 | 119.2 |
C14—C13—H13 | 119.4 | C27—C26—H26 | 119.2 |
C12—C13—H13 | 119.4 | C26—C27—C22 | 120.91 (17) |
N1—C14—C13 | 120.54 (15) | C26—C27—H27 | 119.5 |
N1—C14—C5 | 120.22 (14) | C22—C27—H27 | 119.5 |
C13—C14—C5 | 119.24 (16) | C25—C28—H28A | 109.5 |
C20—C15—C16 | 118.33 (16) | C25—C28—H28B | 109.5 |
C20—C15—C2 | 120.02 (15) | H28A—C28—H28B | 109.5 |
C16—C15—C2 | 121.62 (16) | C25—C28—H28C | 109.5 |
C17—C16—C15 | 120.51 (17) | H28A—C28—H28C | 109.5 |
C17—C16—H16 | 119.7 | H28B—C28—H28C | 109.5 |
C14—N1—C2—C3 | −3.0 (2) | C6—C5—C14—N1 | −175.17 (16) |
C14—N1—C2—C15 | 173.87 (14) | N4—C5—C14—C13 | −172.58 (15) |
N1—C2—C3—N4 | 7.3 (2) | C6—C5—C14—C13 | 4.4 (2) |
C15—C2—C3—N4 | −169.37 (15) | N1—C2—C15—C20 | −119.48 (17) |
N1—C2—C3—C22 | −169.84 (15) | C3—C2—C15—C20 | 57.4 (2) |
C15—C2—C3—C22 | 13.5 (2) | N1—C2—C15—C16 | 58.5 (2) |
C2—C3—N4—C5 | −3.6 (2) | C3—C2—C15—C16 | −124.69 (17) |
C22—C3—N4—C5 | 173.74 (14) | C20—C15—C16—C17 | −0.3 (3) |
C3—N4—C5—C6 | 179.40 (16) | C2—C15—C16—C17 | −178.24 (16) |
C3—N4—C5—C14 | −3.6 (2) | C15—C16—C17—C18 | 1.4 (3) |
N4—C5—C6—C7 | 173.89 (16) | C16—C17—C18—C19 | −1.1 (3) |
C14—C5—C6—C7 | −3.2 (3) | C16—C17—C18—C21 | 177.36 (17) |
C5—C6—C7—C8 | −179.68 (17) | C17—C18—C19—C20 | −0.2 (3) |
C5—C6—C7—C12 | −1.0 (3) | C21—C18—C19—C20 | −178.70 (17) |
C6—C7—C8—C9 | 176.35 (18) | C16—C15—C20—C19 | −1.0 (2) |
C12—C7—C8—C9 | −2.3 (3) | C2—C15—C20—C19 | 176.97 (15) |
C7—C8—C9—C10 | −0.3 (3) | C18—C19—C20—C15 | 1.3 (3) |
C8—C9—C10—C11 | 2.3 (3) | N4—C3—C22—C23 | −139.82 (17) |
C9—C10—C11—C12 | −1.7 (3) | C2—C3—C22—C23 | 37.5 (2) |
C6—C7—C12—C13 | 4.0 (2) | N4—C3—C22—C27 | 34.4 (2) |
C8—C7—C12—C13 | −177.35 (16) | C2—C3—C22—C27 | −148.26 (16) |
C6—C7—C12—C11 | −175.84 (16) | C27—C22—C23—C24 | −0.9 (3) |
C8—C7—C12—C11 | 2.9 (2) | C3—C22—C23—C24 | 173.46 (17) |
C10—C11—C12—C13 | 179.29 (17) | C22—C23—C24—C25 | 1.2 (3) |
C10—C11—C12—C7 | −0.9 (3) | C23—C24—C25—C26 | 0.0 (3) |
C7—C12—C13—C14 | −2.7 (2) | C23—C24—C25—C28 | −177.85 (18) |
C11—C12—C13—C14 | 177.09 (16) | C24—C25—C26—C27 | −1.6 (3) |
C2—N1—C14—C13 | 176.18 (15) | C28—C25—C26—C27 | 176.32 (18) |
C2—N1—C14—C5 | −4.2 (2) | C25—C26—C27—C22 | 1.9 (3) |
C12—C13—C14—N1 | 178.13 (15) | C23—C22—C27—C26 | −0.7 (3) |
C12—C13—C14—C5 | −1.5 (2) | C3—C22—C27—C26 | −175.22 (16) |
N4—C5—C14—N1 | 7.8 (2) |
Cg1 and Cg2 are the centroids of the C7–C12 and the N1/C2/C3/N4/C5–C7/C12–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···Cg1i | 0.93 | 2.88 | 3.488 (3) | 124 |
C27—H27···Cg2ii | 0.93 | 2.91 | 3.601 (3) | 132 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z. |
Funding information
This work was supported by a two-year research grant of Pusan National University.
References
Achelle, S., Baudequin, C. & Plé, N. (2013). Dyes Pigments, 98, 575–600. CrossRef CAS Google Scholar
Ahn, S. Y., Lee, H. S., Seo, J.-H., Kim, Y. K. & Ha, Y. (2009). Thin Solid Films, 517, 4111–4114. CrossRef CAS Google Scholar
Bandoli, G., Gerber, T. I. A., Jacobs, R. & du Preez, J. G. H. (1994). Inorg. Chem. 33, 178–179. CrossRef CAS Google Scholar
Bruker (2012). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cantalupo, S. A., Salvati, H., McBurney, B., Raju, R., Glagovich, N. M. & Crundwell, G. (2006). J. Chem. Crystallogr. 36, 17–24. Web of Science CSD CrossRef CAS Google Scholar
Chan, C. K. & Chang, M. Y. (2016). Synthesis, 48, 3785–3793. CAS Google Scholar
Chen, H. Y., Yang, C. H., Chi, Y., Cheng, Y. M., Yeh, Y. S., Chou, P. T., Hsieh, H. Y., Liu, C. S., Peng, S. M. & Lee, G. H. (2006). Can. J. Chem. 84, 309–318. CrossRef CAS Google Scholar
Cusumano, M., Di Pietro, M. L., Giannetto, A., Nicolò, F., Nordén, B. & Lincoln, P. (2004). Inorg. Chem. 43, 2416–2421. CrossRef CAS Google Scholar
Djukic, J. P., de Cian, A. & Gruber, N. K. (2005). J. Organomet. Chem. 690, 4822–4827. CrossRef CAS Google Scholar
Escuer, A., Vicente, R., Comas, T., Ribas, J., Gomez, M., Solans, X., Gatteschi, D. & Zanchini, C. (1991). Inorg. Chim. Acta, 181, 51–60. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Floris, B., Donzello, M. P., Ercolani, C. & Viola, E. (2017). Coord. Chem. Rev. 347, 115–140. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, Y.-I., Yun, S.-J., Kim, D. & Kang, S. K. (2018). Bull. Korean Chem. Soc. 39, 133–136. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, M., Yun, S.-J., Nam, K.-S., Liu, H., Gal, Y.-S., Lee, J. W., Jin, S.-H., Lee, J. Y., Kang, S. K. & Kim, Y. I. (2015). J. Organomet. Chem. 794, 197–205. CrossRef CAS Google Scholar
Tariq, S., Somakala, K. & Amir, M. (2018). Eur. J. Med. Chem. 143, 542–557. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.