research communications
of 3-[2-(1,3-thiazol-2-yl)diazen-1-yl]pyridine-2,6-diamine monohydrate
aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, bDepartment of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand, and cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand
*Correspondence e-mail: ratanonc@nu.ac.th
In the title hydrated azo compound, C8H8N6S·H2O, the two aromatic groups are close to coplanar with the dihedral angle between the mean planes of the thiazole and pyridine rings being 2.9 (2)°. The organic molecule adopts an E configuration with respect to the double bond of the azo bridge. In the crystal, molecules are linked by (amine)N—H⋯N(pyridine), (amine)N—H⋯O(water) and (water)O—H⋯N(thiazole) hydrogen bonds along with π–π interactions involving pairs of thiazole rings and pairs of pyridine rings. The plane-to-plane distance between two parallel molecules is 3.7856 (4) Å and corresponds to the length of the a axis. In this way, a layer structure parallel to (010) is formed. The layers are linked by weak C—H⋯S hydrogen bonds, eventually resulting in a three-dimensional network.
Keywords: crystal structure; azo dyes; hydrogen bonding; π–π stacking.
CCDC reference: 1831600
1. Chemical context
et al., 2018). The main characteristic of these compounds is the chromophore of the azo group (–N=N–), which is responsible for the color of the dyes. Compounds with an aromatic thiazolylazo moiety are a subclass of azo dyes, which contain the thiazole group on one side of the azo linkage and are important ligands in coordination chemistry (Kaim, 2001). In this regard, zinc complexes with polydentate chelating thiazolylazo ligands have been prepared as luminescence probes for selectively sensing phosphates (Hens et al., 2015). Recently, Piyasaengthong et al. (2015) reported the synthesis of a gold(III) complex of 3-(2′-thiazolylazo)-2,6-diaminopyridine and investigated its pepsin inhibition.
are one of the most important organic dyes used in industrial applications to colour various consumer goods such as leather, plastics and cosmetics (KaurWe report here the 8H8N6S·H2O, (I), obtained through the diazotization of 2-aminothiazole followed by a coupling reaction with 2,6-diaminopyridine (Montelongo et al., 1982).
of 3-(2′-thiazolylazo)-2,6-diaminopyridine monohydrate, C2. Structural commentary
The molecular entities of (I) with atom labelling are presented in Fig. 1. The organic molecule has an E configuration with respect to the azo bridge (–N2=N3–), and is essentially planar with an r.m.s deviation of the fitted non-hydrogen atoms being 0.033 Å. The amine N5 and N6 atoms are 0.044 (2) and −0.059 (3) Å, respectively, out of this plane. The thiazole ring (C1–C3, N1, S1) makes a dihedral angle of 2.9 (2)° with the pyridine ring (C4–C8, N4). An intramolecular N5—H5A⋯N2 hydrogen bond is observed (Table 1), showing an S(6) ring motif.
3. Supramolecular features
In the crystal of (I), extensive (amine)N—H⋯N(pyridine), (amine)N—H⋯O(water) and (water)O—H⋯N(thiazole) hydrogen bonds (Table 1) are present. Together with π–π interactions involving pairs of thiazole rings and pairs of pyridine rings with a plane-to-plane distance between two parallel molecules of 3.7856 (4) Å, a layered structure parallel to the ac plane is formed (Fig. 2). Weak C—H⋯S hydrogen bonds between adjacent thiazole rings further consolidate the crystal packing, thus generating a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) for compounds with the (E)-2-(pyridin-3-yldiazenyl)thiazole moiety gave no hits. However, structures of substituted thiazolylazo derivatives were found, for example, 5-(diethylamino)-2-(2-thiazolylazo)phenol (QAVNAD; Zhang et al., 2005), 4-(2′-thiazolylazo)pyrocatechol (TZAZPC; Apinitis, 1978), 1-(2-thiazolylazo)-6-bromo-2-naphthol (TAZBRN10; Kurahashi et al., 1976) and 1-(2-thiazolylazo)-2-naphthol (TAZNPL10; Kurahashi, 1976).
5. Synthesis and crystallization
2-Aminothiazole (1.0 g, 0.009 mol) was dissolved in 6 M hydrochloric acid (16 ml) with sodium nitrite (0.7 g, 0.01 mol). The mixture was stirred at a temperature between 268 and 273 K while a solution of 2,6-diaminopyridine (1.0 g, 0.009 mol) in 40 ml of 4 M hydrochloric acid was added. The reaction mixture was stirred for 1 h and then adjusted to pH 6.0 by 0.001 M sodium hydroxide. The red precipitate formed was filtered through suction and washed with water. Suitable crystals for X-ray analysis were grown by recrystallization using the vapor diffusion technique in a methanol-hexane mixture at 253 K [yield 1.12 g, 51%]. 1H NMR (400 MHz, 298 K, C2D6OS): δ 6.10 (d, m-ArH py, 1H), 7.39 (d, thiazole-H, 1H), 7.55 (d, p-ArH py, 1H), 7.703 (d, thiazole-H, 1H). Mass spec. (ESI) m/z 220.9 (M+), 136.2, 108.3, 81.4. IR–KBr (cm−1): 3335 (w), 3217 (w), 3082 (w), 1660 (s), 1631 (s), 1454 (m), 1292 (s), 1159 (m). Analysis calculated for C8H10N6OS: C, 43.64; H, 3.66; N, 38.16; 14.56. Found: C, 43.80; H, 3.79; N, 38.45; S,14.78.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to O and N atoms were located in difference-Fourier maps and refined with distance restraints of 0.84±0.02 Å with Uiso(H) = 1.5Ueq(O) and 0.86±0.02 Å with Uiso(H) = 1.2Ueq(N), respectively. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1831600
https://doi.org/10.1107/S2056989018004693/wm5438sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018004693/wm5438Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018004693/wm5438Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018004693/wm5438Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C8H8N6S·H2O | F(000) = 496 |
Mr = 238.28 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7856 (4) Å | Cell parameters from 4156 reflections |
b = 28.393 (3) Å | θ = 3.0–26.6° |
c = 9.6324 (9) Å | µ = 0.30 mm−1 |
β = 93.824 (3)° | T = 296 K |
V = 1033.02 (17) Å3 | Needle, dark orange |
Z = 4 | 0.28 × 0.08 × 0.04 mm |
Bruker D8 QUEST CMOS diffractometer | 2100 independent reflections |
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 1670 reflections with I > 2σ(I) |
GraphiteDouble Bounce Multilayer Mirror monochromator | Rint = 0.054 |
Detector resolution: 10.5 pixels mm-1 | θmax = 26.6°, θmin = 3.6° |
ω and φ scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −35→35 |
Tmin = 0.644, Tmax = 0.745 | l = −12→11 |
11837 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0131P)2 + 1.7616P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
2100 reflections | Δρmax = 0.33 e Å−3 |
169 parameters | Δρmin = −0.26 e Å−3 |
6 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.1445 (2) | 0.72666 (3) | 0.18385 (9) | 0.0377 (2) | |
N1 | 0.4021 (8) | 0.65791 (9) | 0.0492 (3) | 0.0356 (6) | |
N2 | 0.2953 (7) | 0.63596 (9) | 0.2749 (3) | 0.0317 (6) | |
N3 | 0.1805 (7) | 0.65155 (9) | 0.3905 (3) | 0.0310 (6) | |
N4 | 0.2611 (7) | 0.54434 (8) | 0.6116 (3) | 0.0299 (6) | |
N5 | 0.4246 (8) | 0.55257 (10) | 0.3899 (3) | 0.0379 (7) | |
N6 | 0.1041 (9) | 0.53404 (10) | 0.8343 (3) | 0.0437 (8) | |
C1 | 0.2378 (10) | 0.73517 (12) | 0.0133 (4) | 0.0415 (8) | |
H1 | 0.2022 | 0.7632 | −0.0355 | 0.050* | |
C2 | 0.3691 (10) | 0.69560 (12) | −0.0395 (4) | 0.0409 (8) | |
H2 | 0.4337 | 0.6939 | −0.1308 | 0.049* | |
C3 | 0.2931 (8) | 0.66920 (10) | 0.1706 (3) | 0.0303 (7) | |
C4 | 0.1707 (8) | 0.62052 (10) | 0.4978 (3) | 0.0284 (7) | |
C5 | 0.2873 (8) | 0.57206 (10) | 0.4993 (3) | 0.0279 (7) | |
C6 | 0.1248 (8) | 0.56226 (10) | 0.7246 (3) | 0.0306 (7) | |
C7 | 0.0081 (9) | 0.60975 (11) | 0.7330 (3) | 0.0342 (7) | |
H7 | −0.0845 | 0.6212 | 0.8134 | 0.041* | |
C8 | 0.0359 (8) | 0.63760 (11) | 0.6209 (3) | 0.0335 (7) | |
H8 | −0.0357 | 0.6689 | 0.6250 | 0.040* | |
O1 | 0.7912 (8) | 0.56959 (9) | 0.0910 (3) | 0.0489 (7) | |
H5A | 0.471 (9) | 0.5698 (10) | 0.320 (2) | 0.040 (10)* | |
H5B | 0.504 (9) | 0.5242 (6) | 0.397 (4) | 0.047 (11)* | |
H6A | 0.166 (10) | 0.5050 (5) | 0.826 (4) | 0.058 (12)* | |
H6B | 0.022 (10) | 0.5438 (12) | 0.910 (2) | 0.052 (12)* | |
H1A | 0.647 (12) | 0.5905 (15) | 0.062 (6) | 0.11 (2)* | |
H1B | 0.936 (19) | 0.584 (3) | 0.145 (8) | 0.23 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0472 (5) | 0.0283 (4) | 0.0375 (5) | 0.0039 (4) | 0.0011 (4) | −0.0003 (3) |
N1 | 0.0457 (16) | 0.0316 (14) | 0.0299 (15) | −0.0034 (12) | 0.0044 (13) | −0.0004 (11) |
N2 | 0.0362 (15) | 0.0295 (13) | 0.0295 (15) | 0.0017 (11) | 0.0028 (12) | 0.0031 (11) |
N3 | 0.0332 (14) | 0.0286 (13) | 0.0313 (15) | 0.0013 (11) | 0.0018 (12) | 0.0008 (11) |
N4 | 0.0342 (14) | 0.0265 (13) | 0.0292 (14) | 0.0033 (11) | 0.0048 (12) | 0.0011 (10) |
N5 | 0.0555 (19) | 0.0264 (14) | 0.0331 (16) | 0.0100 (13) | 0.0127 (14) | 0.0034 (12) |
N6 | 0.064 (2) | 0.0359 (16) | 0.0331 (17) | 0.0112 (15) | 0.0151 (15) | 0.0028 (13) |
C1 | 0.053 (2) | 0.0324 (17) | 0.037 (2) | −0.0067 (15) | −0.0083 (17) | 0.0076 (14) |
C2 | 0.054 (2) | 0.0386 (18) | 0.0298 (18) | −0.0102 (16) | 0.0034 (16) | 0.0041 (14) |
C3 | 0.0321 (17) | 0.0261 (15) | 0.0323 (18) | −0.0027 (12) | 0.0002 (14) | −0.0006 (12) |
C4 | 0.0305 (16) | 0.0259 (14) | 0.0287 (16) | 0.0015 (12) | 0.0006 (13) | 0.0007 (12) |
C5 | 0.0273 (15) | 0.0266 (15) | 0.0300 (17) | 0.0002 (12) | 0.0028 (13) | −0.0027 (12) |
C6 | 0.0309 (16) | 0.0309 (16) | 0.0301 (17) | 0.0002 (13) | 0.0033 (14) | 0.0002 (12) |
C7 | 0.0392 (18) | 0.0327 (16) | 0.0314 (18) | 0.0054 (14) | 0.0082 (15) | −0.0043 (13) |
C8 | 0.0376 (18) | 0.0272 (15) | 0.0355 (19) | 0.0065 (13) | 0.0021 (15) | −0.0019 (13) |
O1 | 0.0621 (18) | 0.0385 (14) | 0.0474 (16) | 0.0045 (13) | 0.0123 (14) | −0.0006 (12) |
S1—C1 | 1.720 (4) | N6—H6A | 0.863 (10) |
S1—C3 | 1.733 (3) | N6—H6B | 0.860 (10) |
N1—C2 | 1.370 (4) | C1—H1 | 0.9300 |
N1—C3 | 1.305 (4) | C1—C2 | 1.342 (5) |
N2—N3 | 1.300 (3) | C2—H2 | 0.9300 |
N2—C3 | 1.379 (4) | C4—C5 | 1.445 (4) |
N3—C4 | 1.360 (4) | C4—C8 | 1.408 (4) |
N4—C5 | 1.347 (4) | C6—C7 | 1.423 (4) |
N4—C6 | 1.336 (4) | C7—H7 | 0.9300 |
N5—C5 | 1.326 (4) | C7—C8 | 1.348 (4) |
N5—H5A | 0.858 (10) | C8—H8 | 0.9300 |
N5—H5B | 0.861 (10) | O1—H1A | 0.841 (10) |
N6—C6 | 1.333 (4) | O1—H1B | 0.840 (10) |
C1—S1—C3 | 88.47 (16) | N1—C3—N2 | 119.9 (3) |
C3—N1—C2 | 110.2 (3) | N2—C3—S1 | 125.2 (2) |
N3—N2—C3 | 113.9 (2) | N3—C4—C5 | 126.9 (3) |
N2—N3—C4 | 117.2 (2) | N3—C4—C8 | 116.5 (3) |
C6—N4—C5 | 119.0 (2) | C8—C4—C5 | 116.5 (3) |
C5—N5—H5A | 120 (2) | N4—C5—C4 | 121.7 (3) |
C5—N5—H5B | 119 (2) | N5—C5—N4 | 116.6 (3) |
H5A—N5—H5B | 121 (3) | N5—C5—C4 | 121.7 (3) |
C6—N6—H6A | 118 (3) | N4—C6—C7 | 123.0 (3) |
C6—N6—H6B | 122 (3) | N6—C6—N4 | 117.6 (3) |
H6A—N6—H6B | 120 (4) | N6—C6—C7 | 119.3 (3) |
S1—C1—H1 | 124.8 | C6—C7—H7 | 121.0 |
C2—C1—S1 | 110.4 (3) | C8—C7—C6 | 118.0 (3) |
C2—C1—H1 | 124.8 | C8—C7—H7 | 121.0 |
N1—C2—H2 | 122.0 | C4—C8—H8 | 119.2 |
C1—C2—N1 | 116.0 (3) | C7—C8—C4 | 121.6 (3) |
C1—C2—H2 | 122.0 | C7—C8—H8 | 119.2 |
N1—C3—S1 | 114.9 (2) | H1A—O1—H1B | 104 (7) |
S1—C1—C2—N1 | −0.1 (4) | C2—N1—C3—N2 | 178.4 (3) |
N2—N3—C4—C5 | 2.5 (5) | C3—S1—C1—C2 | 0.0 (3) |
N2—N3—C4—C8 | −178.2 (3) | C3—N1—C2—C1 | 0.2 (5) |
N3—N2—C3—S1 | −1.5 (4) | C3—N2—N3—C4 | 179.2 (3) |
N3—N2—C3—N1 | −180.0 (3) | C5—N4—C6—N6 | −179.6 (3) |
N3—C4—C5—N4 | −179.3 (3) | C5—N4—C6—C7 | −0.7 (5) |
N3—C4—C5—N5 | 0.5 (5) | C5—C4—C8—C7 | −1.8 (5) |
N3—C4—C8—C7 | 178.8 (3) | C6—N4—C5—N5 | 179.9 (3) |
N4—C6—C7—C8 | 0.3 (5) | C6—N4—C5—C4 | −0.3 (4) |
N6—C6—C7—C8 | 179.3 (3) | C6—C7—C8—C4 | 1.0 (5) |
C1—S1—C3—N1 | 0.1 (3) | C8—C4—C5—N4 | 1.4 (4) |
C1—S1—C3—N2 | −178.5 (3) | C8—C4—C5—N5 | −178.8 (3) |
C2—N1—C3—S1 | −0.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···S1i | 0.93 | 3.02 | 3.665 (3) | 128 |
N5—H5A···N2 | 0.86 (1) | 2.03 (3) | 2.645 (4) | 128 (3) |
N5—H5A···O1 | 0.86 (1) | 2.59 (2) | 3.314 (4) | 143 (3) |
N5—H5B···N4ii | 0.86 (1) | 2.14 (1) | 2.998 (4) | 172 (3) |
N6—H6A···O1ii | 0.86 (1) | 2.27 (2) | 3.048 (4) | 151 (4) |
N6—H6B···O1iii | 0.86 (1) | 2.13 (1) | 2.988 (4) | 177 (4) |
O1—H1A···N1 | 0.84 (1) | 2.13 (3) | 2.923 (4) | 158 (6) |
O1—H1B···N2iv | 0.84 (1) | 2.31 (2) | 3.143 (4) | 170 (9) |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z+1; (iv) x+1, y, z. |
Funding information
RC and BB thank the Faculty of Science, Naresuan University for financial support. AS thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a scholarship. The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.
References
Apinitis, S. K. (1978). J. Struct. Chem. 19, 158–161. CrossRef Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hens, A., Mondal, P. & Rajak, K. K. (2015). Polyhedron, 85, 255–266. CrossRef Google Scholar
Kaim, W. (2001). Coord. Chem. Rev. 219–221, 463–488. CrossRef CAS Google Scholar
Kaur, B., Kaur, N. & Kumar, S. (2018). Coord. Chem. Rev. 358, 13–69. CrossRef Google Scholar
Kurahashi, M. (1976). Bull. Chem. Soc. Jpn, 49, 2927–2933. CrossRef Google Scholar
Kurahashi, M., Fukuyo, M., Shimada, A. & Kawase, A. (1976). Bull. Chem. Soc. Jpn, 49, 872–875. CrossRef Google Scholar
Montelongo, F. G., Díaz, V. G. & González, C. R. T. (1982). Microchem. J. 27, 194–199. CrossRef Google Scholar
Piyasaengthong, A., Boonyalai, N., Suramitr, S. & Songsasen, A. (2015). Inorg. Chem. Commun. 59, 88–90. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, G., Wang, S., Gan, Q., Zhang, Y., Yang, G., Shi Ma, J. & Xu, H. (2005). Eur. J. Inorg. Chem. pp. 4186–4192. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.