research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2-{[(8-aminona­phthalen-1-yl)imino]­meth­yl}-4,6-di-tert-butyl­phenolato-κ3N,N′,O)bromido­nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, 1068 W. Sheridan Rd., Chicago, IL 60660, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA
*Correspondence e-mail: wlee5@luc.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 February 2018; accepted 2 March 2018; online 9 March 2018)

The title compound, [NiBr(C25H29N2O)], contains an NiII atom with a slightly distorted square-planar coordination environment defined by one O and two N atoms from the 2-{[(8-aminona­phthalen-1-yl)imino]­meth­yl}-4,6-di-tert-butyl­phenolate ligand and a bromide anion. The Ni—O and Ni—N bond lengths are slightly longer than those observed in the phenyl backbone counterpart, which can be attributed to the larger steric hindrance of the naphthyl group in the structure of the title compound. The mol­ecule as a whole is substanti­ally distorted, with both the planar naphthalene-1,8-di­amine and imino–meth­yl–phenolate substitutents rotated against the NiN2OBr plane by 38.92 (7) and 37.22 (8)°, respectively, giving the mol­ecule a twisted appearance. N—H⋯Br hydrogen bonds and N—H⋯C(π) contacts connect the mol­ecules into dimers, and additional C—H⋯Br contacts, C—H⋯π inter­actions, and an offset stacking inter­action between naphthyl units inter­connect these dimers into a three-dimensional network.

1. Chemical context

There has been an emergent inter­est in the design and synthesis of non-symmetrical iminoaryl bis­(salen)-based ligands because of their facile synthesis and tunable properties. As a result, their nickel complexes have been used in a variety of applications and properties, including metal–organic frameworks (Crane & MacLachlan, 2012[Crane, A. K. & MacLachlan, M. J. (2012). Eur. J. Inorg. Chem. 2012, 17-30.]), catalysis for styrene polymerization (Ding et al., 2017[Ding, L., Zhang, Y., Chen, X. & Lü, X. (2017). Inorg. Chem. Commun. 76, 100-102.]), unique redox behavior (Rotthaus et al., 2006[Rotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Perez Del Valle, C., Saint-Aman, E. & Pierre, J.-L. (2006). Chem. Eur. J. 12, 2293-2302.]; Kochem et al., 2013[Kochem, A., Gellon, G., Leconte, N., Baptiste, B., Philouze, C., Jarjayes, O., Orio, M. & Thomas, F. (2013). Chem. Eur. J. 19, 16707-16721.]), and non-linear optics (Cisterna et al., 2015[Cisterna, J., Dorcet, V., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Carrillo, D. (2015). Inorg. Chim. Acta, 430, 82-90.]; Trujillo et al., 2010[Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Saillard, J.-Y. (2010). Inorg. Chem. 49, 2750-2764.]). One of the synthetic methods utilizes the half-unit Schiff base as a precursor for the preparation of non-symmetrical iminoaryl bis­(salen) ligands. Surprisingly, ligands are mostly limited to phenyl derivatives as the backbone. Some metal complexes bearing non-symmetrical iminona­phthyl bis­(salen) ligands have been reported in the literature (Villaverde et al., 2011[Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F. & Snejko, N. (2011). Dalton Trans. 40, 9589-9600.]; Boghaei & Mohebi, 2002[Boghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357-5366.]; Sundaravadivel et al., 2013[Sundaravadivel, E., Muthusamy, K. & Varghese, B. (2013). Polyhedron, 61, 33-44.], 2014[Sundaravadivel, E., Vedavalli, S., Kandaswamy, M., Varghese, B. & Madankumar, P. (2014). RSC Adv. 4, 40763-40775.]), but their crystal structures were not determined. As part of our work on the synthesis of nickel complexes bearing non-symmetrical iminoaryl bis­(salen)-based ligands, we report here the crystal structure of (2-{[(8-aminona­phthalen-1-yl)imino]­meth­yl}-4,6-di-tert-butyl­phenolato-κ3N,N′,O)bromidonickel(II), (I)[link].

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is given in Fig. 1[link], with selected bond lengths and angles collated in Table 1[link]. The structure confirms the nickel cation to be four-coordinate and bound by two N atoms (imine N1 and amine N2), the phenolic O atom (O1), and the Br atom (Br1). The amino nitro­gen atom (N2H2) is neutral, with both hydrogen atoms well-defined in difference electron density maps. The O1—C1 bond length of 1.312 (4) Å indicates a phenolate resonance form for the ligand. The Schiff base double N1=C7 bond is within the range expected for a metal-coordinating Schiff base–imine fragment.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

N1—Ni1 1.880 (3) Ni1—Br1 2.3330 (5)
N2—Ni1 1.922 (3) C1—O1 1.312 (4)
O1—Ni1 1.850 (2) C7—N1 1.305 (4)
       
O1—Ni1—N1 92.82 (10) O1—Ni1—Br1 90.32 (7)
O1—Ni1—N2 170.15 (11) N1—Ni1—Br1 176.24 (8)
N1—Ni1—N2 87.66 (12) N2—Ni1—Br1 89.61 (9)
       
C6—C7—N1—C16 163.1 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing atom labels, with displacement ellipsoids at the 50% probability level.

The coordination environment around the NiII cation can be best described as slightly distorted square-planar, with an r.m.s deviation from planarity for the NiN2OBr fragment of 0.0943 Å. Inter­estingly, the Ni1—N1, Ni1—N2, and Ni1—O1 bond lengths are slightly longer than those observed in the phenyl backbone counterpart of (I)[link], [Ni(NNO)OAc] (II) (NNO = 2-{[(2-amino­phen­yl)imino]­meth­yl}-4,6-di-tert-butyl­phenolate; Ding et al., 2017[Ding, L., Zhang, Y., Chen, X. & Lü, X. (2017). Inorg. Chem. Commun. 76, 100-102.]), which could be attributed to the increased steric bulk of the naphthyl backbone in (I)[link]. In line with this increased steric demand are the value for the angle N2—Ni1—O1 [170.15 (11)°], and that of the torsion angle C6—C7—N1—C16 [163.1 (3)°], which are significantly larger than those observed for (II) (176 and 178°, respectively). The steric profile of the aryl backbone appears to play an important role in altering both bond lengths and angles around the coordination center.

The increased steric demand in (I)[link] does not substanti­ally affect the bond lengths and angles of the individual ligand fragments. Both the naphtyl as well as the imino­methyl phenolate fragments are essentially planar, with r.m.s deviations from planarity of only 0.062 and 0.072 Å, respectively (the least-squares planes include the N and O atoms attached to the fragments). They do, however, yield to the steric strain by substanti­ally rotating out of the plane of the NiN2OBr plane, and with respect to each other, giving the mol­ecule as a whole a twisted appearance. The dihedral angle of the naphthalene-1,8-di­amine unit with the central NiN2OBr plane is 38.92 (7)°, the equivalent angle of the imino­methyl phenolate substitutent is 37.22 (8)°. The inter­planar angle between the two organic fragments is 50.33 (5)°. This contrasts starkly with (II). The less sterically strained counterpart of (I)[link] is essentially planar, with inter­planar angles of the NiN2O2 fragment with the phenyl­ene di-amine of only 5.91 and 7.39° [note that there are two independent mol­ecules in the structure of (II)], and of only 7.08 and 3.58° towards the imino­methyl phenolate fragments.

3. Supra­molecular features

The crystal-packing of (I)[link] is steered by a number of medium strength and weak inter­molecular inter­actions. Most prominent is an inter­molecular N—H⋯Br hydrogen bond, Table 2[link], which connects individual mol­ecules into dimers. The hydrogen bond involves H2B of the amine group. The other amine H atom, H2A, does not form a hydrogen bond. Instead, it inter­acts with the π electron cloud of the phenolate ring, with two close N—H⋯C(π) contacts (Table 2[link]). These latter inter­actions appear to provide additional synergy for the formation of the N—H⋯Br bridged dimers, Fig. 2[link]. Other inter­molecular inter­actions in (I)[link] are less directional. They involve a series of C—H⋯Br contacts, C—H⋯π inter­actions, and an offset stacking inter­action between naphthyl units of neighboring mol­ecules. Combined, these inter­actions connect the more tightly bound dimers into a three-dimensional network, Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Br1i 0.88 (2) 2.98 (2) 3.827 (3) 162 (4)
N2—H2A⋯C1i 0.88 (2) 2.84 (4) 3.285 (4) 113 (3)
N2—H2A⋯C6i 0.88 (2) 2.90 (3) 3.589 (4) 137 (3)
C18—H18⋯Br1ii 0.95 2.93 3.624 (4) 131
C13—H13A⋯Br1iii 0.98 2.96 3.804 (6) 145
C11—H11B⋯C1iv 0.98 2.77 3.741 (5) 169
C9—H9C⋯C5iv 0.98 2.76 3.730 (5) 169
C7—H7⋯C19v 0.95 2.71 3.518 (5) 144
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y, -z.
[Figure 2]
Figure 2
View of one of the dimers in (I)[link], showing the N—H⋯Br hydrogen bonds and N—H⋯C(π) contacts. H atoms not involved in the inter­actions are omitted for clarity.
[Figure 3]
Figure 3
View of the inter­molecular inter­actions for (I)[link], showing N—H⋯Br hydrogen bonds and N—H⋯C(π) contacts as well as C—H⋯Br contacts, C—H⋯π inter­actions, and the offset stacking inter­action between naphthyl units that inter­connects dimers into a three-dimensional framework. For clarity, only one central dimer is shown in stick mode, the surrounding mol­ecules in wireframe style.

4. Database survey

The most recent version of the Cambridge Structural Database (Version 5.39, updated November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) has no entries related to iminona­phthyl mono(salen) supported metal complexes. However, a closely related compound, a nickel(II) complex bearing an imino­phenyl mono(salen) ligand, has been reported as its acetate complex, and has been compared to the title compound in the Structural commentary. A broader exploration showed eight entries corresponding to imino­phenyl mono(salen) ligands, including two aluminum (Muñoz-Hernández et al., 2000[Muñoz-Hernández, M.-A., Keizer, T. S., Parkin, S., Patrick, B. & Atwood, D. A. (2000). Organometallics, 19, 4416-4421.]), one copper (Ding et al., 2014[Ding, L., Liang, S., Zhang, J., Ding, C., Chen, Y. & Lü, X. (2014). Inorg. Chem. Commun. 44, 173-176.]), two palladium (Vicente et al., 1993[Vicente, J., Abad, J. A., Gil-Rubio, J., Jones, P. G. & Bembenek, E. (1993). Organometallics, 12, 4151-4160.], Liu et al., 2010[Liu, P., Feng, X.-J. & He, R. (2010). Tetrahedron, 66, 631-636.]), one rhenium (Lane et al., 2011[Lane, S. R., Sisay, N., Carney, B., Dannoon, S., Williams, S., Engelbrecht, H. P., Barnes, C. L. & Jurisson, S. S. (2011). Dalton Trans. 40, 269-276.]), one ruthenium (Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2269-m2270.]), and one tin (Yearwood et al., 2002[Yearwood, B., Parkin, S. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124-131.]) complexes.

5. Synthesis and crystallization

Starting materials were commercially available and were used without further purification.

Ligand synthesis: 3,5-di-tertbutyl-2-hydro­benzaldehyde (1.00 g, 4.27 mmol) dissolved in ethanol (20 ml) was added to 1,8-di­aminona­phthalene (1.36 g, 8.53 mmol) in ethanol (20 ml) in a 100 ml round-bottom flask. The reaction mixture was refluxed for 24 h. Volatiles were removed under reduced pressure, and the residue was crystallized at 253 K to yield light-purple crystals (1.17 g, 73%). 1H NMR (300 MHz, C6D6, d): δ, 8.76 (s, 1H, CH), 7.63 (d, 1H, J = 2.1 Hz, ArH), 7.26 (d, 2H, J = 8.1 Hz, ArH), 7.18–7.13 (m, 2H, ArH), 6.81 (d, 1H, J = 1.8 Hz, ArH), 6.05 (d, 2H, J = 7.2 Hz, ArH), 4.66 (s, 1H, OH), 3.72 (s, 2H, NH2), 1.71 [s, 9H, ArC(CH3)], 1.41 [s, 9H, ArC(CH3)].

Synthesis of the title compound: To a stirred solution of (E)-2-{[(8-aminona­phthalen-1-yl)imino]­meth­yl}-4,6-di-tert-butyl­phenol (80 mg, 0.21 mmol) in THF (3 mL) at ambient temperature under an N2 atmosphere was added a suspension of potassium tert-butoxide (26 mg, 0.24 mmol) in THF (2 mL) for 2 h. Solid NiBr2(DME) (69 mg, 0.22 mmol) was added, and the resulting slurry was stirred for 18 h at ambient temperature. Volatiles were removed under reduced pressure, and the residue was extracted with toluene and filtered through Celite. The filtrate was dried in vacuo to yield a dark-red solid (21 mg, 95%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in Et2O at ambient temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H bond lengths of 0.95 Å for alkene and aromatic moieties, and 0.98 Å for aliphatic CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Amine H atom positions were refined with N—H distances restrained to 0.88 (2) Å. Uiso(H) values were set to a multiple of Ueq(C/N) with 1.5 for CH3, and 1.2 for C—H and N—H units, respectively. Reflections (0 0 2), ([\overline{1}] 0 2) and (0 1 3) were obstructed by the beam stop and were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula [NiBr(C25H29N2O)]
Mr 512.12
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.7626 (3), 10.9008 (4), 22.0679 (7)
β (°) 98.0315 (14)
V3) 2325.43 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.57
Crystal size (mm) 0.55 × 0.44 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.245, 0.735
No. of measured, independent and observed [I > 2σ(I)] reflections 11680, 5755, 4738
Rint 0.045
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.07
No. of reflections 5755
No. of parameters 283
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.07, −1.25
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT Users Manual. Nonius Delft, The Netherlands.]), HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(2-{[(8-Aminonaphthalen-1-yl)imino]methyl}-4,6-di-tert-butylphenolato-κ3N,N',O)bromidonickel(II) top
Crystal data top
[NiBr(C25H29N2O)]F(000) = 1056
Mr = 512.12Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7626 (3) ÅCell parameters from 11680 reflections
b = 10.9008 (4) Åθ = 2.1–30.1°
c = 22.0679 (7) ŵ = 2.57 mm1
β = 98.0315 (14)°T = 100 K
V = 2325.43 (13) Å3Plate, black
Z = 40.55 × 0.44 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
5755 independent reflections
Radiation source: fine focus X-ray tube4738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω and φ scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 013
Tmin = 0.245, Tmax = 0.735k = 015
11680 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0631P)2 + 4.3983P]
where P = (Fo2 + 2Fc2)/3
5755 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 1.07 e Å3
2 restraintsΔρmin = 1.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0553 (3)0.4478 (3)0.14421 (13)0.0207 (6)
C20.1176 (3)0.5200 (3)0.18765 (13)0.0215 (6)
C30.2474 (3)0.4849 (3)0.19962 (14)0.0231 (6)
H30.2886470.5328900.2281380.028*
C40.3239 (3)0.3836 (3)0.17296 (14)0.0230 (6)
C50.2624 (3)0.3152 (3)0.13236 (14)0.0228 (6)
H50.3101270.2461730.1134650.027*
C60.1295 (3)0.3445 (3)0.11769 (13)0.0202 (6)
C70.0640 (3)0.2563 (3)0.08365 (13)0.0208 (6)
H70.1113700.1809650.0745980.025*
C80.0394 (3)0.6284 (3)0.22098 (14)0.0230 (6)
C90.0896 (3)0.5782 (3)0.26142 (16)0.0295 (7)
H9A0.1507470.5389830.2355650.044*
H9B0.0613970.5178570.2901930.044*
H9C0.1387190.6458470.2842650.044*
C100.0052 (4)0.7237 (3)0.17568 (16)0.0301 (7)
H10A0.0643320.6839520.1490670.045*
H10B0.0566200.7900830.1985820.045*
H10C0.0770390.7574070.1506920.045*
C110.1291 (4)0.6966 (3)0.26186 (15)0.0281 (7)
H11A0.2138150.7257480.2369340.042*
H11B0.0775230.7667080.2812080.042*
H11C0.1533070.6408220.2935570.042*
C120.4634 (3)0.3499 (4)0.19290 (16)0.0288 (7)
C130.5585 (5)0.4609 (5)0.1875 (3)0.0651 (16)
H13A0.5731300.4894210.1449590.098*
H13B0.5161310.5267070.2140290.098*
H13C0.6475450.4382270.1999990.098*
C140.5341 (5)0.2460 (6)0.1546 (3)0.075 (2)
H14A0.5506350.2708930.1115630.112*
H14B0.6225400.2270220.1687400.112*
H14C0.4747090.1731820.1589540.112*
C150.4382 (5)0.3110 (5)0.2604 (2)0.0546 (13)
H15A0.5269670.2937660.2745280.082*
H15B0.3908980.3772840.2849970.082*
H15C0.3805070.2370580.2646540.082*
C160.1225 (3)0.1628 (3)0.04555 (14)0.0218 (6)
C170.1062 (3)0.0524 (3)0.07443 (15)0.0247 (6)
H170.0480930.0486300.1055100.030*
C180.1736 (4)0.0540 (3)0.05882 (16)0.0283 (7)
H180.1582490.1293790.0783750.034*
C190.2612 (3)0.0504 (3)0.01577 (15)0.0277 (7)
H190.3065260.1231540.0056850.033*
C200.2850 (3)0.0613 (3)0.01401 (14)0.0246 (6)
C210.2139 (3)0.1693 (3)0.00004 (13)0.0220 (6)
C220.3818 (4)0.0675 (4)0.05633 (15)0.0307 (8)
H220.4266910.0052680.0667810.037*
C230.4111 (4)0.1759 (4)0.08210 (16)0.0322 (8)
H230.4793670.1791340.1088100.039*
C240.3404 (4)0.2833 (4)0.06927 (15)0.0310 (7)
H240.3609800.3589510.0873700.037*
C250.2425 (3)0.2789 (3)0.03089 (14)0.0238 (6)
N10.0550 (3)0.2692 (3)0.06375 (11)0.0217 (5)
N20.1631 (3)0.3879 (3)0.02205 (12)0.0259 (6)
H2A0.205 (4)0.450 (3)0.0365 (18)0.031*
H2B0.076 (2)0.376 (4)0.0368 (18)0.031*
O10.0677 (2)0.4768 (2)0.13117 (10)0.0229 (4)
Ni10.12898 (4)0.42762 (4)0.05935 (2)0.02024 (11)
Br10.23263 (4)0.61856 (3)0.05095 (2)0.02840 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0199 (13)0.0223 (16)0.0202 (13)0.0005 (11)0.0044 (10)0.0015 (11)
C20.0218 (14)0.0229 (17)0.0196 (13)0.0028 (11)0.0026 (10)0.0005 (11)
C30.0237 (14)0.0261 (17)0.0200 (13)0.0030 (12)0.0047 (11)0.0005 (12)
C40.0185 (13)0.0284 (18)0.0221 (14)0.0012 (12)0.0032 (11)0.0018 (12)
C50.0244 (15)0.0221 (17)0.0220 (13)0.0017 (12)0.0035 (11)0.0000 (11)
C60.0222 (14)0.0196 (16)0.0189 (13)0.0023 (11)0.0037 (10)0.0006 (11)
C70.0228 (14)0.0192 (16)0.0208 (13)0.0014 (11)0.0042 (10)0.0018 (11)
C80.0238 (14)0.0224 (17)0.0234 (14)0.0001 (12)0.0056 (11)0.0047 (11)
C90.0249 (16)0.034 (2)0.0285 (16)0.0002 (13)0.0018 (12)0.0083 (14)
C100.0367 (19)0.0199 (18)0.0345 (17)0.0037 (13)0.0081 (14)0.0065 (13)
C110.0293 (16)0.0271 (19)0.0284 (15)0.0013 (13)0.0062 (12)0.0089 (13)
C120.0220 (15)0.035 (2)0.0311 (16)0.0027 (13)0.0090 (12)0.0011 (14)
C130.026 (2)0.060 (3)0.112 (5)0.010 (2)0.021 (2)0.019 (3)
C140.049 (3)0.107 (5)0.078 (4)0.048 (3)0.040 (3)0.055 (3)
C150.038 (2)0.081 (4)0.047 (2)0.013 (2)0.0134 (19)0.019 (2)
C160.0240 (14)0.0201 (16)0.0216 (13)0.0020 (11)0.0040 (11)0.0047 (11)
C170.0294 (16)0.0200 (17)0.0257 (14)0.0015 (12)0.0078 (12)0.0027 (12)
C180.0323 (17)0.0193 (18)0.0332 (17)0.0002 (13)0.0038 (13)0.0007 (13)
C190.0280 (16)0.0242 (18)0.0303 (16)0.0030 (13)0.0027 (12)0.0071 (13)
C200.0230 (14)0.0266 (18)0.0236 (14)0.0031 (12)0.0017 (11)0.0053 (12)
C210.0221 (14)0.0228 (17)0.0209 (13)0.0022 (12)0.0019 (11)0.0023 (11)
C220.0285 (17)0.038 (2)0.0263 (15)0.0092 (14)0.0057 (13)0.0048 (14)
C230.0296 (17)0.043 (2)0.0264 (15)0.0091 (15)0.0109 (13)0.0027 (14)
C240.0334 (18)0.036 (2)0.0242 (15)0.0051 (14)0.0075 (13)0.0040 (14)
C250.0254 (15)0.0248 (18)0.0209 (13)0.0040 (12)0.0023 (11)0.0026 (12)
N10.0243 (13)0.0207 (14)0.0206 (11)0.0014 (10)0.0051 (9)0.0025 (10)
N20.0311 (15)0.0260 (16)0.0218 (12)0.0034 (11)0.0081 (11)0.0010 (11)
O10.0234 (11)0.0219 (12)0.0251 (10)0.0017 (9)0.0086 (8)0.0029 (9)
Ni10.0229 (2)0.0184 (2)0.02046 (19)0.00083 (14)0.00663 (14)0.00010 (14)
Br10.03690 (19)0.0209 (2)0.02905 (17)0.00314 (13)0.01042 (13)0.00202 (12)
Geometric parameters (Å, º) top
N1—Ni11.880 (3)C12—C131.520 (6)
N2—Ni11.922 (3)C12—C141.520 (6)
N2—H2A0.878 (19)C12—C151.535 (5)
N2—H2B0.878 (19)C13—H13A0.9800
O1—Ni11.850 (2)C13—H13B0.9800
Ni1—Br12.3330 (5)C13—H13C0.9800
C1—O11.312 (4)C14—H14A0.9800
C1—C61.420 (4)C14—H14B0.9800
C1—C21.439 (4)C14—H14C0.9800
C2—C31.384 (4)C15—H15A0.9800
C2—C81.537 (4)C15—H15B0.9800
C3—C41.414 (5)C15—H15C0.9800
C3—H30.9500C16—C171.381 (5)
C4—C51.367 (4)C16—N11.420 (4)
C4—C121.533 (4)C16—C211.435 (4)
C5—C61.418 (4)C17—C181.400 (5)
C5—H50.9500C17—H170.9500
C6—C71.426 (4)C18—C191.365 (5)
C7—N11.305 (4)C18—H180.9500
C7—H70.9500C19—C201.418 (5)
C8—C111.534 (4)C19—H190.9500
C8—C91.538 (5)C20—C221.420 (5)
C8—C101.546 (5)C20—C211.423 (5)
C9—H9A0.9800C21—C251.422 (5)
C9—H9B0.9800C22—C231.359 (6)
C9—H9C0.9800C22—H220.9500
C10—H10A0.9800C23—C241.408 (5)
C10—H10B0.9800C23—H230.9500
C10—H10C0.9800C24—C251.364 (5)
C11—H11A0.9800C24—H240.9500
C11—H11B0.9800C25—N21.447 (4)
C11—H11C0.9800
O1—C1—C6122.0 (3)C12—C14—H14B109.5
O1—C1—C2120.0 (3)H14A—C14—H14B109.5
C6—C1—C2118.0 (3)C12—C14—H14C109.5
C3—C2—C1117.4 (3)H14A—C14—H14C109.5
C3—C2—C8121.8 (3)H14B—C14—H14C109.5
C1—C2—C8120.8 (3)C12—C15—H15A109.5
C2—C3—C4125.5 (3)C12—C15—H15B109.5
C2—C3—H3117.3H15A—C15—H15B109.5
C4—C3—H3117.3C12—C15—H15C109.5
C5—C4—C3116.4 (3)H15A—C15—H15C109.5
C5—C4—C12123.1 (3)H15B—C15—H15C109.5
C3—C4—C12120.4 (3)C17—C16—N1119.5 (3)
C4—C5—C6121.8 (3)C17—C16—C21119.3 (3)
C4—C5—H5119.1N1—C16—C21121.1 (3)
C6—C5—H5119.1C16—C17—C18121.3 (3)
C5—C6—C1121.0 (3)C16—C17—H17119.4
C5—C6—C7117.4 (3)C18—C17—H17119.4
C1—C6—C7120.8 (3)C19—C18—C17120.6 (3)
N1—C7—C6126.2 (3)C19—C18—H18119.7
N1—C7—H7116.9C17—C18—H18119.7
C6—C7—H7116.9C18—C19—C20120.4 (3)
C11—C8—C2111.6 (3)C18—C19—H19119.8
C11—C8—C9108.6 (3)C20—C19—H19119.8
C2—C8—C9108.4 (3)C19—C20—C22120.9 (3)
C11—C8—C10106.9 (3)C19—C20—C21119.6 (3)
C2—C8—C10111.9 (3)C22—C20—C21119.6 (3)
C9—C8—C10109.4 (3)C25—C21—C20117.1 (3)
C8—C9—H9A109.5C25—C21—C16124.1 (3)
C8—C9—H9B109.5C20—C21—C16118.7 (3)
H9A—C9—H9B109.5C23—C22—C20121.0 (3)
C8—C9—H9C109.5C23—C22—H22119.5
H9A—C9—H9C109.5C20—C22—H22119.5
H9B—C9—H9C109.5C22—C23—C24120.1 (3)
C8—C10—H10A109.5C22—C23—H23120.0
C8—C10—H10B109.5C24—C23—H23120.0
H10A—C10—H10B109.5C25—C24—C23120.1 (3)
C8—C10—H10C109.5C25—C24—H24120.0
H10A—C10—H10C109.5C23—C24—H24120.0
H10B—C10—H10C109.5C24—C25—C21122.0 (3)
C8—C11—H11A109.5C24—C25—N2119.3 (3)
C8—C11—H11B109.5C21—C25—N2118.7 (3)
H11A—C11—H11B109.5C7—N1—C16118.5 (3)
C8—C11—H11C109.5C7—N1—Ni1118.9 (2)
H11A—C11—H11C109.5C16—N1—Ni1122.6 (2)
H11B—C11—H11C109.5C25—N2—Ni1118.5 (2)
C13—C12—C14108.9 (4)C25—N2—H2A108 (3)
C13—C12—C4110.2 (3)Ni1—N2—H2A108 (3)
C14—C12—C4111.8 (3)C25—N2—H2B110 (3)
C13—C12—C15108.1 (4)Ni1—N2—H2B95 (3)
C14—C12—C15109.4 (4)H2A—N2—H2B117 (4)
C4—C12—C15108.4 (3)C1—O1—Ni1122.3 (2)
C12—C13—H13A109.5O1—Ni1—N192.82 (10)
C12—C13—H13B109.5O1—Ni1—N2170.15 (11)
H13A—C13—H13B109.5N1—Ni1—N287.66 (12)
C12—C13—H13C109.5O1—Ni1—Br190.32 (7)
H13A—C13—H13C109.5N1—Ni1—Br1176.24 (8)
H13B—C13—H13C109.5N2—Ni1—Br189.61 (9)
C12—C14—H14A109.5
O1—C1—C2—C3179.9 (3)C18—C19—C20—C211.7 (5)
C6—C1—C2—C31.3 (4)C19—C20—C21—C25179.6 (3)
O1—C1—C2—C82.3 (4)C22—C20—C21—C251.4 (4)
C6—C1—C2—C8176.3 (3)C19—C20—C21—C161.7 (4)
C1—C2—C3—C40.3 (5)C22—C20—C21—C16176.4 (3)
C8—C2—C3—C4177.3 (3)C17—C16—C21—C25177.6 (3)
C2—C3—C4—C50.4 (5)N1—C16—C21—C251.2 (5)
C2—C3—C4—C12176.4 (3)C17—C16—C21—C200.1 (4)
C3—C4—C5—C60.2 (5)N1—C16—C21—C20176.5 (3)
C12—C4—C5—C6176.1 (3)C19—C20—C22—C23175.9 (3)
C4—C5—C6—C10.8 (5)C21—C20—C22—C232.2 (5)
C4—C5—C6—C7169.1 (3)C20—C22—C23—C243.0 (5)
O1—C1—C6—C5179.8 (3)C22—C23—C24—C250.1 (5)
C2—C1—C6—C51.6 (4)C23—C24—C25—C213.7 (5)
O1—C1—C6—C710.6 (5)C23—C24—C25—N2175.1 (3)
C2—C1—C6—C7168.0 (3)C20—C21—C25—C244.4 (5)
C5—C6—C7—N1176.8 (3)C16—C21—C25—C24173.3 (3)
C1—C6—C7—N113.2 (5)C20—C21—C25—N2174.4 (3)
C3—C2—C8—C116.1 (4)C16—C21—C25—N27.9 (5)
C1—C2—C8—C11176.4 (3)C6—C7—N1—C16163.1 (3)
C3—C2—C8—C9113.5 (3)C6—C7—N1—Ni117.6 (4)
C1—C2—C8—C964.0 (4)C17—C16—N1—C731.8 (4)
C3—C2—C8—C10125.7 (3)C21—C16—N1—C7151.9 (3)
C1—C2—C8—C1056.7 (4)C17—C16—N1—Ni1149.0 (2)
C5—C4—C12—C13130.8 (4)C21—C16—N1—Ni127.3 (4)
C3—C4—C12—C1353.5 (5)C24—C25—N2—Ni1137.7 (3)
C5—C4—C12—C149.5 (5)C21—C25—N2—Ni143.4 (4)
C3—C4—C12—C14174.8 (4)C6—C1—O1—Ni123.3 (4)
C5—C4—C12—C15111.1 (4)C2—C1—O1—Ni1158.1 (2)
C3—C4—C12—C1564.6 (4)C1—O1—Ni1—N141.9 (2)
N1—C16—C17—C18178.5 (3)C1—O1—Ni1—Br1140.2 (2)
C21—C16—C17—C182.1 (5)C7—N1—Ni1—O137.9 (2)
C16—C17—C18—C192.1 (5)C16—N1—Ni1—O1142.9 (2)
C17—C18—C19—C200.2 (5)C7—N1—Ni1—N2132.3 (2)
C18—C19—C20—C22176.4 (3)C16—N1—Ni1—N246.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br1i0.88 (2)2.98 (2)3.827 (3)162 (4)
N2—H2A···C1i0.88 (2)2.84 (4)3.285 (4)113 (3)
N2—H2A···C6i0.88 (2)2.90 (3)3.589 (4)137 (3)
C18—H18···Br1ii0.952.933.624 (4)131
C13—H13A···Br1iii0.982.963.804 (6)145
C11—H11B···C1iv0.982.773.741 (5)169
C9—H9C···C5iv0.982.763.730 (5)169
C7—H7···C19v0.952.713.518 (5)144
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x, y, z.
 

Funding information

Funding from Loyola University Chicago is gratefully acknowledged.

References

First citationBoghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357–5366.  Web of Science CrossRef CAS Google Scholar
First citationCisterna, J., Dorcet, V., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Carrillo, D. (2015). Inorg. Chim. Acta, 430, 82–90.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrane, A. K. & MacLachlan, M. J. (2012). Eur. J. Inorg. Chem. 2012, 17–30.  Web of Science CrossRef CAS Google Scholar
First citationDing, L., Liang, S., Zhang, J., Ding, C., Chen, Y. & Lü, X. (2014). Inorg. Chem. Commun. 44, 173–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, L., Zhang, Y., Chen, X. & Lü, X. (2017). Inorg. Chem. Commun. 76, 100–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2269–m2270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKochem, A., Gellon, G., Leconte, N., Baptiste, B., Philouze, C., Jarjayes, O., Orio, M. & Thomas, F. (2013). Chem. Eur. J. 19, 16707–16721.  Web of Science CSD CrossRef CAS Google Scholar
First citationLane, S. R., Sisay, N., Carney, B., Dannoon, S., Williams, S., Engelbrecht, H. P., Barnes, C. L. & Jurisson, S. S. (2011). Dalton Trans. 40, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, P., Feng, X.-J. & He, R. (2010). Tetrahedron, 66, 631–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuñoz-Hernández, M.-A., Keizer, T. S., Parkin, S., Patrick, B. & Atwood, D. A. (2000). Organometallics, 19, 4416–4421.  Google Scholar
First citationNonius (1998). COLLECT Users Manual. Nonius Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Perez Del Valle, C., Saint-Aman, E. & Pierre, J.-L. (2006). Chem. Eur. J. 12, 2293–2302.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSundaravadivel, E., Muthusamy, K. & Varghese, B. (2013). Polyhedron, 61, 33–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationSundaravadivel, E., Vedavalli, S., Kandaswamy, M., Varghese, B. & Madankumar, P. (2014). RSC Adv. 4, 40763–40775.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Saillard, J.-Y. (2010). Inorg. Chem. 49, 2750–2764.  CSD CrossRef CAS Google Scholar
First citationVicente, J., Abad, J. A., Gil-Rubio, J., Jones, P. G. & Bembenek, E. (1993). Organometallics, 12, 4151–4160.  CSD CrossRef CAS Web of Science Google Scholar
First citationVillaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F. & Snejko, N. (2011). Dalton Trans. 40, 9589–9600.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYearwood, B., Parkin, S. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124–131.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds