research communications
tert-butylphenolato-κ3N,N′,O)bromidonickel(II)
of (2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-aDepartment of Chemistry & Biochemistry, 1068 W. Sheridan Rd., Chicago, IL 60660, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., W. Lafayette, IN 47907-2084, USA
*Correspondence e-mail: wlee5@luc.edu
The title compound, [NiBr(C25H29N2O)], contains an NiII atom with a slightly distorted square-planar coordination environment defined by one O and two N atoms from the 2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-tert-butylphenolate ligand and a bromide anion. The Ni—O and Ni—N bond lengths are slightly longer than those observed in the phenyl backbone counterpart, which can be attributed to the larger of the naphthyl group in the structure of the title compound. The molecule as a whole is substantially distorted, with both the planar naphthalene-1,8-diamine and imino–methyl–phenolate substitutents rotated against the NiN2OBr plane by 38.92 (7) and 37.22 (8)°, respectively, giving the molecule a twisted appearance. N—H⋯Br hydrogen bonds and N—H⋯C(π) contacts connect the molecules into dimers, and additional C—H⋯Br contacts, C—H⋯π interactions, and an offset stacking interaction between naphthyl units interconnect these dimers into a three-dimensional network.
CCDC reference: 1827007
1. Chemical context
There has been an emergent interest in the design and synthesis of non-symmetrical iminoaryl bis(salen)-based ligands because of their facile synthesis and tunable properties. As a result, their nickel complexes have been used in a variety of applications and properties, including metal–organic frameworks (Crane & MacLachlan, 2012), catalysis for styrene polymerization (Ding et al., 2017), unique redox behavior (Rotthaus et al., 2006; Kochem et al., 2013), and non-linear optics (Cisterna et al., 2015; Trujillo et al., 2010). One of the synthetic methods utilizes the half-unit Schiff base as a precursor for the preparation of non-symmetrical iminoaryl bis(salen) ligands. Surprisingly, ligands are mostly limited to phenyl derivatives as the backbone. Some metal complexes bearing non-symmetrical iminonaphthyl bis(salen) ligands have been reported in the literature (Villaverde et al., 2011; Boghaei & Mohebi, 2002; Sundaravadivel et al., 2013, 2014), but their crystal structures were not determined. As part of our work on the synthesis of nickel complexes bearing non-symmetrical iminoaryl bis(salen)-based ligands, we report here the of (2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-tert-butylphenolato-κ3N,N′,O)bromidonickel(II), (I).
2. Structural commentary
The molecular structure of the title compound, (I), is given in Fig. 1, with selected bond lengths and angles collated in Table 1. The structure confirms the nickel cation to be four-coordinate and bound by two N atoms (imine N1 and amine N2), the phenolic O atom (O1), and the Br atom (Br1). The amino nitrogen atom (N2H2) is neutral, with both hydrogen atoms well-defined in difference electron density maps. The O1—C1 bond length of 1.312 (4) Å indicates a phenolate resonance form for the ligand. The Schiff base double N1=C7 bond is within the range expected for a metal-coordinating Schiff base–imine fragment.
|
The coordination environment around the NiII cation can be best described as slightly distorted square-planar, with an r.m.s deviation from planarity for the NiN2OBr fragment of 0.0943 Å. Interestingly, the Ni1—N1, Ni1—N2, and Ni1—O1 bond lengths are slightly longer than those observed in the phenyl backbone counterpart of (I), [Ni(NNO)OAc] (II) (NNO = 2-{[(2-aminophenyl)imino]methyl}-4,6-di-tert-butylphenolate; Ding et al., 2017), which could be attributed to the increased steric bulk of the naphthyl backbone in (I). In line with this increased steric demand are the value for the angle N2—Ni1—O1 [170.15 (11)°], and that of the torsion angle C6—C7—N1—C16 [163.1 (3)°], which are significantly larger than those observed for (II) (176 and 178°, respectively). The steric profile of the aryl backbone appears to play an important role in altering both bond lengths and angles around the coordination center.
The increased steric demand in (I) does not substantially affect the bond lengths and angles of the individual ligand fragments. Both the naphtyl as well as the iminomethyl phenolate fragments are essentially planar, with r.m.s deviations from planarity of only 0.062 and 0.072 Å, respectively (the least-squares planes include the N and O atoms attached to the fragments). They do, however, yield to the by substantially rotating out of the plane of the NiN2OBr plane, and with respect to each other, giving the molecule as a whole a twisted appearance. The dihedral angle of the naphthalene-1,8-diamine unit with the central NiN2OBr plane is 38.92 (7)°, the equivalent angle of the iminomethyl phenolate substitutent is 37.22 (8)°. The interplanar angle between the two organic fragments is 50.33 (5)°. This contrasts starkly with (II). The less sterically strained counterpart of (I) is essentially planar, with interplanar angles of the NiN2O2 fragment with the phenylene di-amine of only 5.91 and 7.39° [note that there are two independent molecules in the structure of (II)], and of only 7.08 and 3.58° towards the iminomethyl phenolate fragments.
3. Supramolecular features
The crystal-packing of (I) is steered by a number of medium strength and weak intermolecular interactions. Most prominent is an intermolecular N—H⋯Br hydrogen bond, Table 2, which connects individual molecules into dimers. The hydrogen bond involves H2B of the amine group. The other amine H atom, H2A, does not form a hydrogen bond. Instead, it interacts with the π electron cloud of the phenolate ring, with two close N—H⋯C(π) contacts (Table 2). These latter interactions appear to provide additional synergy for the formation of the N—H⋯Br bridged dimers, Fig. 2. Other intermolecular interactions in (I) are less directional. They involve a series of C—H⋯Br contacts, C—H⋯π interactions, and an offset stacking interaction between naphthyl units of neighboring molecules. Combined, these interactions connect the more tightly bound dimers into a three-dimensional network, Fig. 3.
4. Database survey
The most recent version of the Cambridge Structural Database (Version 5.39, updated November 2017; Groom et al., 2016) has no entries related to iminonaphthyl mono(salen) supported metal complexes. However, a closely related compound, a nickel(II) complex bearing an iminophenyl mono(salen) ligand, has been reported as its acetate complex, and has been compared to the title compound in the Structural commentary. A broader exploration showed eight entries corresponding to iminophenyl mono(salen) ligands, including two aluminum (Muñoz-Hernández et al., 2000), one copper (Ding et al., 2014), two palladium (Vicente et al., 1993, Liu et al., 2010), one rhenium (Lane et al., 2011), one ruthenium (Eltayeb et al., 2007), and one tin (Yearwood et al., 2002) complexes.
5. Synthesis and crystallization
Starting materials were commercially available and were used without further purification.
Ligand synthesis: 3,5-di-tertbutyl-2-hydrobenzaldehyde (1.00 g, 4.27 mmol) dissolved in ethanol (20 ml) was added to 1,8-diaminonaphthalene (1.36 g, 8.53 mmol) in ethanol (20 ml) in a 100 ml round-bottom flask. The reaction mixture was refluxed for 24 h. Volatiles were removed under reduced pressure, and the residue was crystallized at 253 K to yield light-purple crystals (1.17 g, 73%). 1H NMR (300 MHz, C6D6, d): δ, 8.76 (s, 1H, CH), 7.63 (d, 1H, J = 2.1 Hz, ArH), 7.26 (d, 2H, J = 8.1 Hz, ArH), 7.18–7.13 (m, 2H, ArH), 6.81 (d, 1H, J = 1.8 Hz, ArH), 6.05 (d, 2H, J = 7.2 Hz, ArH), 4.66 (s, 1H, OH), 3.72 (s, 2H, NH2), 1.71 [s, 9H, ArC(CH3)], 1.41 [s, 9H, ArC(CH3)].
Synthesis of the title compound: To a stirred solution of (E)-2-{[(8-aminonaphthalen-1-yl)imino]methyl}-4,6-di-tert-butylphenol (80 mg, 0.21 mmol) in THF (3 mL) at ambient temperature under an N2 atmosphere was added a suspension of potassium tert-butoxide (26 mg, 0.24 mmol) in THF (2 mL) for 2 h. Solid NiBr2(DME) (69 mg, 0.22 mmol) was added, and the resulting slurry was stirred for 18 h at ambient temperature. Volatiles were removed under reduced pressure, and the residue was extracted with toluene and filtered through Celite. The filtrate was dried in vacuo to yield a dark-red solid (21 mg, 95%). Crystals suitable for X-ray diffraction were grown from a concentrated solution in Et2O at ambient temperature.
6. Refinement
Crystal data, data collection and structure . H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H bond lengths of 0.95 Å for alkene and aromatic moieties, and 0.98 Å for aliphatic CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Amine H atom positions were refined with N—H distances restrained to 0.88 (2) Å. Uiso(H) values were set to a multiple of Ueq(C/N) with 1.5 for CH3, and 1.2 for C—H and N—H units, respectively. Reflections (0 0 2), ( 0 2) and (0 1 3) were obstructed by the beam stop and were omitted from the refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1827007
https://doi.org/10.1107/S2056989018003651/wm5439sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003651/wm5439Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[NiBr(C25H29N2O)] | F(000) = 1056 |
Mr = 512.12 | Dx = 1.463 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7626 (3) Å | Cell parameters from 11680 reflections |
b = 10.9008 (4) Å | θ = 2.1–30.1° |
c = 22.0679 (7) Å | µ = 2.57 mm−1 |
β = 98.0315 (14)° | T = 100 K |
V = 2325.43 (13) Å3 | Plate, black |
Z = 4 | 0.55 × 0.44 × 0.12 mm |
Nonius KappaCCD diffractometer | 5755 independent reflections |
Radiation source: fine focus X-ray tube | 4738 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω and φ scans | θmax = 30.1°, θmin = 2.1° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | h = 0→13 |
Tmin = 0.245, Tmax = 0.735 | k = 0→15 |
11680 measured reflections | l = −30→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: mixed |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0631P)2 + 4.3983P] where P = (Fo2 + 2Fc2)/3 |
5755 reflections | (Δ/σ)max < 0.001 |
283 parameters | Δρmax = 1.07 e Å−3 |
2 restraints | Δρmin = −1.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0553 (3) | 0.4478 (3) | 0.14421 (13) | 0.0207 (6) | |
C2 | −0.1176 (3) | 0.5200 (3) | 0.18765 (13) | 0.0215 (6) | |
C3 | −0.2474 (3) | 0.4849 (3) | 0.19962 (14) | 0.0231 (6) | |
H3 | −0.288647 | 0.532890 | 0.228138 | 0.028* | |
C4 | −0.3239 (3) | 0.3836 (3) | 0.17296 (14) | 0.0230 (6) | |
C5 | −0.2624 (3) | 0.3152 (3) | 0.13236 (14) | 0.0228 (6) | |
H5 | −0.310127 | 0.246173 | 0.113465 | 0.027* | |
C6 | −0.1295 (3) | 0.3445 (3) | 0.11769 (13) | 0.0202 (6) | |
C7 | −0.0640 (3) | 0.2563 (3) | 0.08365 (13) | 0.0208 (6) | |
H7 | −0.111370 | 0.180965 | 0.074598 | 0.025* | |
C8 | −0.0394 (3) | 0.6284 (3) | 0.22098 (14) | 0.0230 (6) | |
C9 | 0.0896 (3) | 0.5782 (3) | 0.26142 (16) | 0.0295 (7) | |
H9A | 0.150747 | 0.538983 | 0.235565 | 0.044* | |
H9B | 0.061397 | 0.517857 | 0.290193 | 0.044* | |
H9C | 0.138719 | 0.645847 | 0.284265 | 0.044* | |
C10 | 0.0052 (4) | 0.7237 (3) | 0.17568 (16) | 0.0301 (7) | |
H10A | 0.064332 | 0.683952 | 0.149067 | 0.045* | |
H10B | 0.056620 | 0.790083 | 0.198582 | 0.045* | |
H10C | −0.077039 | 0.757407 | 0.150692 | 0.045* | |
C11 | −0.1291 (4) | 0.6966 (3) | 0.26186 (15) | 0.0281 (7) | |
H11A | −0.213815 | 0.725748 | 0.236934 | 0.042* | |
H11B | −0.077523 | 0.766708 | 0.281208 | 0.042* | |
H11C | −0.153307 | 0.640822 | 0.293557 | 0.042* | |
C12 | −0.4634 (3) | 0.3499 (4) | 0.19290 (16) | 0.0288 (7) | |
C13 | −0.5585 (5) | 0.4609 (5) | 0.1875 (3) | 0.0651 (16) | |
H13A | −0.573130 | 0.489421 | 0.144959 | 0.098* | |
H13B | −0.516131 | 0.526707 | 0.214029 | 0.098* | |
H13C | −0.647545 | 0.438227 | 0.199999 | 0.098* | |
C14 | −0.5341 (5) | 0.2460 (6) | 0.1546 (3) | 0.075 (2) | |
H14A | −0.550635 | 0.270893 | 0.111563 | 0.112* | |
H14B | −0.622540 | 0.227022 | 0.168740 | 0.112* | |
H14C | −0.474709 | 0.173182 | 0.158954 | 0.112* | |
C15 | −0.4382 (5) | 0.3110 (5) | 0.2604 (2) | 0.0546 (13) | |
H15A | −0.526967 | 0.293766 | 0.274528 | 0.082* | |
H15B | −0.390898 | 0.377284 | 0.284997 | 0.082* | |
H15C | −0.380507 | 0.237058 | 0.264654 | 0.082* | |
C16 | 0.1225 (3) | 0.1628 (3) | 0.04555 (14) | 0.0218 (6) | |
C17 | 0.1062 (3) | 0.0524 (3) | 0.07443 (15) | 0.0247 (6) | |
H17 | 0.048093 | 0.048630 | 0.105510 | 0.030* | |
C18 | 0.1736 (4) | −0.0540 (3) | 0.05882 (16) | 0.0283 (7) | |
H18 | 0.158249 | −0.129379 | 0.078375 | 0.034* | |
C19 | 0.2612 (3) | −0.0504 (3) | 0.01577 (15) | 0.0277 (7) | |
H19 | 0.306526 | −0.123154 | 0.005685 | 0.033* | |
C20 | 0.2850 (3) | 0.0613 (3) | −0.01401 (14) | 0.0246 (6) | |
C21 | 0.2139 (3) | 0.1693 (3) | 0.00004 (13) | 0.0220 (6) | |
C22 | 0.3818 (4) | 0.0675 (4) | −0.05633 (15) | 0.0307 (8) | |
H22 | 0.426691 | −0.005268 | −0.066781 | 0.037* | |
C23 | 0.4111 (4) | 0.1759 (4) | −0.08210 (16) | 0.0322 (8) | |
H23 | 0.479367 | 0.179134 | −0.108810 | 0.039* | |
C24 | 0.3404 (4) | 0.2833 (4) | −0.06927 (15) | 0.0310 (7) | |
H24 | 0.360980 | 0.358951 | −0.087370 | 0.037* | |
C25 | 0.2425 (3) | 0.2789 (3) | −0.03089 (14) | 0.0238 (6) | |
N1 | 0.0550 (3) | 0.2692 (3) | 0.06375 (11) | 0.0217 (5) | |
N2 | 0.1631 (3) | 0.3879 (3) | −0.02205 (12) | 0.0259 (6) | |
H2A | 0.205 (4) | 0.450 (3) | −0.0365 (18) | 0.031* | |
H2B | 0.076 (2) | 0.376 (4) | −0.0368 (18) | 0.031* | |
O1 | 0.0677 (2) | 0.4768 (2) | 0.13117 (10) | 0.0229 (4) | |
Ni1 | 0.12898 (4) | 0.42762 (4) | 0.05935 (2) | 0.02024 (11) | |
Br1 | 0.23263 (4) | 0.61856 (3) | 0.05095 (2) | 0.02840 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0199 (13) | 0.0223 (16) | 0.0202 (13) | 0.0005 (11) | 0.0044 (10) | 0.0015 (11) |
C2 | 0.0218 (14) | 0.0229 (17) | 0.0196 (13) | 0.0028 (11) | 0.0026 (10) | −0.0005 (11) |
C3 | 0.0237 (14) | 0.0261 (17) | 0.0200 (13) | 0.0030 (12) | 0.0047 (11) | −0.0005 (12) |
C4 | 0.0185 (13) | 0.0284 (18) | 0.0221 (14) | 0.0012 (12) | 0.0032 (11) | 0.0018 (12) |
C5 | 0.0244 (15) | 0.0221 (17) | 0.0220 (13) | −0.0017 (12) | 0.0035 (11) | 0.0000 (11) |
C6 | 0.0222 (14) | 0.0196 (16) | 0.0189 (13) | 0.0023 (11) | 0.0037 (10) | 0.0006 (11) |
C7 | 0.0228 (14) | 0.0192 (16) | 0.0208 (13) | −0.0014 (11) | 0.0042 (10) | −0.0018 (11) |
C8 | 0.0238 (14) | 0.0224 (17) | 0.0234 (14) | 0.0001 (12) | 0.0056 (11) | −0.0047 (11) |
C9 | 0.0249 (16) | 0.034 (2) | 0.0285 (16) | 0.0002 (13) | 0.0018 (12) | −0.0083 (14) |
C10 | 0.0367 (19) | 0.0199 (18) | 0.0345 (17) | −0.0037 (13) | 0.0081 (14) | −0.0065 (13) |
C11 | 0.0293 (16) | 0.0271 (19) | 0.0284 (15) | 0.0013 (13) | 0.0062 (12) | −0.0089 (13) |
C12 | 0.0220 (15) | 0.035 (2) | 0.0311 (16) | −0.0027 (13) | 0.0090 (12) | −0.0011 (14) |
C13 | 0.026 (2) | 0.060 (3) | 0.112 (5) | 0.010 (2) | 0.021 (2) | 0.019 (3) |
C14 | 0.049 (3) | 0.107 (5) | 0.078 (4) | −0.048 (3) | 0.040 (3) | −0.055 (3) |
C15 | 0.038 (2) | 0.081 (4) | 0.047 (2) | −0.013 (2) | 0.0134 (19) | 0.019 (2) |
C16 | 0.0240 (14) | 0.0201 (16) | 0.0216 (13) | 0.0020 (11) | 0.0040 (11) | −0.0047 (11) |
C17 | 0.0294 (16) | 0.0200 (17) | 0.0257 (14) | −0.0015 (12) | 0.0078 (12) | −0.0027 (12) |
C18 | 0.0323 (17) | 0.0193 (18) | 0.0332 (17) | −0.0002 (13) | 0.0038 (13) | −0.0007 (13) |
C19 | 0.0280 (16) | 0.0242 (18) | 0.0303 (16) | 0.0030 (13) | 0.0027 (12) | −0.0071 (13) |
C20 | 0.0230 (14) | 0.0266 (18) | 0.0236 (14) | 0.0031 (12) | 0.0017 (11) | −0.0053 (12) |
C21 | 0.0221 (14) | 0.0228 (17) | 0.0209 (13) | 0.0022 (12) | 0.0019 (11) | −0.0023 (11) |
C22 | 0.0285 (17) | 0.038 (2) | 0.0263 (15) | 0.0092 (14) | 0.0057 (13) | −0.0048 (14) |
C23 | 0.0296 (17) | 0.043 (2) | 0.0264 (15) | 0.0091 (15) | 0.0109 (13) | 0.0027 (14) |
C24 | 0.0334 (18) | 0.036 (2) | 0.0242 (15) | 0.0051 (14) | 0.0075 (13) | 0.0040 (14) |
C25 | 0.0254 (15) | 0.0248 (18) | 0.0209 (13) | 0.0040 (12) | 0.0023 (11) | −0.0026 (12) |
N1 | 0.0243 (13) | 0.0207 (14) | 0.0206 (11) | 0.0014 (10) | 0.0051 (9) | −0.0025 (10) |
N2 | 0.0311 (15) | 0.0260 (16) | 0.0218 (12) | 0.0034 (11) | 0.0081 (11) | 0.0010 (11) |
O1 | 0.0234 (11) | 0.0219 (12) | 0.0251 (10) | −0.0017 (9) | 0.0086 (8) | −0.0029 (9) |
Ni1 | 0.0229 (2) | 0.0184 (2) | 0.02046 (19) | 0.00083 (14) | 0.00663 (14) | −0.00010 (14) |
Br1 | 0.03690 (19) | 0.0209 (2) | 0.02905 (17) | −0.00314 (13) | 0.01042 (13) | 0.00202 (12) |
N1—Ni1 | 1.880 (3) | C12—C13 | 1.520 (6) |
N2—Ni1 | 1.922 (3) | C12—C14 | 1.520 (6) |
N2—H2A | 0.878 (19) | C12—C15 | 1.535 (5) |
N2—H2B | 0.878 (19) | C13—H13A | 0.9800 |
O1—Ni1 | 1.850 (2) | C13—H13B | 0.9800 |
Ni1—Br1 | 2.3330 (5) | C13—H13C | 0.9800 |
C1—O1 | 1.312 (4) | C14—H14A | 0.9800 |
C1—C6 | 1.420 (4) | C14—H14B | 0.9800 |
C1—C2 | 1.439 (4) | C14—H14C | 0.9800 |
C2—C3 | 1.384 (4) | C15—H15A | 0.9800 |
C2—C8 | 1.537 (4) | C15—H15B | 0.9800 |
C3—C4 | 1.414 (5) | C15—H15C | 0.9800 |
C3—H3 | 0.9500 | C16—C17 | 1.381 (5) |
C4—C5 | 1.367 (4) | C16—N1 | 1.420 (4) |
C4—C12 | 1.533 (4) | C16—C21 | 1.435 (4) |
C5—C6 | 1.418 (4) | C17—C18 | 1.400 (5) |
C5—H5 | 0.9500 | C17—H17 | 0.9500 |
C6—C7 | 1.426 (4) | C18—C19 | 1.365 (5) |
C7—N1 | 1.305 (4) | C18—H18 | 0.9500 |
C7—H7 | 0.9500 | C19—C20 | 1.418 (5) |
C8—C11 | 1.534 (4) | C19—H19 | 0.9500 |
C8—C9 | 1.538 (5) | C20—C22 | 1.420 (5) |
C8—C10 | 1.546 (5) | C20—C21 | 1.423 (5) |
C9—H9A | 0.9800 | C21—C25 | 1.422 (5) |
C9—H9B | 0.9800 | C22—C23 | 1.359 (6) |
C9—H9C | 0.9800 | C22—H22 | 0.9500 |
C10—H10A | 0.9800 | C23—C24 | 1.408 (5) |
C10—H10B | 0.9800 | C23—H23 | 0.9500 |
C10—H10C | 0.9800 | C24—C25 | 1.364 (5) |
C11—H11A | 0.9800 | C24—H24 | 0.9500 |
C11—H11B | 0.9800 | C25—N2 | 1.447 (4) |
C11—H11C | 0.9800 | ||
O1—C1—C6 | 122.0 (3) | C12—C14—H14B | 109.5 |
O1—C1—C2 | 120.0 (3) | H14A—C14—H14B | 109.5 |
C6—C1—C2 | 118.0 (3) | C12—C14—H14C | 109.5 |
C3—C2—C1 | 117.4 (3) | H14A—C14—H14C | 109.5 |
C3—C2—C8 | 121.8 (3) | H14B—C14—H14C | 109.5 |
C1—C2—C8 | 120.8 (3) | C12—C15—H15A | 109.5 |
C2—C3—C4 | 125.5 (3) | C12—C15—H15B | 109.5 |
C2—C3—H3 | 117.3 | H15A—C15—H15B | 109.5 |
C4—C3—H3 | 117.3 | C12—C15—H15C | 109.5 |
C5—C4—C3 | 116.4 (3) | H15A—C15—H15C | 109.5 |
C5—C4—C12 | 123.1 (3) | H15B—C15—H15C | 109.5 |
C3—C4—C12 | 120.4 (3) | C17—C16—N1 | 119.5 (3) |
C4—C5—C6 | 121.8 (3) | C17—C16—C21 | 119.3 (3) |
C4—C5—H5 | 119.1 | N1—C16—C21 | 121.1 (3) |
C6—C5—H5 | 119.1 | C16—C17—C18 | 121.3 (3) |
C5—C6—C1 | 121.0 (3) | C16—C17—H17 | 119.4 |
C5—C6—C7 | 117.4 (3) | C18—C17—H17 | 119.4 |
C1—C6—C7 | 120.8 (3) | C19—C18—C17 | 120.6 (3) |
N1—C7—C6 | 126.2 (3) | C19—C18—H18 | 119.7 |
N1—C7—H7 | 116.9 | C17—C18—H18 | 119.7 |
C6—C7—H7 | 116.9 | C18—C19—C20 | 120.4 (3) |
C11—C8—C2 | 111.6 (3) | C18—C19—H19 | 119.8 |
C11—C8—C9 | 108.6 (3) | C20—C19—H19 | 119.8 |
C2—C8—C9 | 108.4 (3) | C19—C20—C22 | 120.9 (3) |
C11—C8—C10 | 106.9 (3) | C19—C20—C21 | 119.6 (3) |
C2—C8—C10 | 111.9 (3) | C22—C20—C21 | 119.6 (3) |
C9—C8—C10 | 109.4 (3) | C25—C21—C20 | 117.1 (3) |
C8—C9—H9A | 109.5 | C25—C21—C16 | 124.1 (3) |
C8—C9—H9B | 109.5 | C20—C21—C16 | 118.7 (3) |
H9A—C9—H9B | 109.5 | C23—C22—C20 | 121.0 (3) |
C8—C9—H9C | 109.5 | C23—C22—H22 | 119.5 |
H9A—C9—H9C | 109.5 | C20—C22—H22 | 119.5 |
H9B—C9—H9C | 109.5 | C22—C23—C24 | 120.1 (3) |
C8—C10—H10A | 109.5 | C22—C23—H23 | 120.0 |
C8—C10—H10B | 109.5 | C24—C23—H23 | 120.0 |
H10A—C10—H10B | 109.5 | C25—C24—C23 | 120.1 (3) |
C8—C10—H10C | 109.5 | C25—C24—H24 | 120.0 |
H10A—C10—H10C | 109.5 | C23—C24—H24 | 120.0 |
H10B—C10—H10C | 109.5 | C24—C25—C21 | 122.0 (3) |
C8—C11—H11A | 109.5 | C24—C25—N2 | 119.3 (3) |
C8—C11—H11B | 109.5 | C21—C25—N2 | 118.7 (3) |
H11A—C11—H11B | 109.5 | C7—N1—C16 | 118.5 (3) |
C8—C11—H11C | 109.5 | C7—N1—Ni1 | 118.9 (2) |
H11A—C11—H11C | 109.5 | C16—N1—Ni1 | 122.6 (2) |
H11B—C11—H11C | 109.5 | C25—N2—Ni1 | 118.5 (2) |
C13—C12—C14 | 108.9 (4) | C25—N2—H2A | 108 (3) |
C13—C12—C4 | 110.2 (3) | Ni1—N2—H2A | 108 (3) |
C14—C12—C4 | 111.8 (3) | C25—N2—H2B | 110 (3) |
C13—C12—C15 | 108.1 (4) | Ni1—N2—H2B | 95 (3) |
C14—C12—C15 | 109.4 (4) | H2A—N2—H2B | 117 (4) |
C4—C12—C15 | 108.4 (3) | C1—O1—Ni1 | 122.3 (2) |
C12—C13—H13A | 109.5 | O1—Ni1—N1 | 92.82 (10) |
C12—C13—H13B | 109.5 | O1—Ni1—N2 | 170.15 (11) |
H13A—C13—H13B | 109.5 | N1—Ni1—N2 | 87.66 (12) |
C12—C13—H13C | 109.5 | O1—Ni1—Br1 | 90.32 (7) |
H13A—C13—H13C | 109.5 | N1—Ni1—Br1 | 176.24 (8) |
H13B—C13—H13C | 109.5 | N2—Ni1—Br1 | 89.61 (9) |
C12—C14—H14A | 109.5 | ||
O1—C1—C2—C3 | −179.9 (3) | C18—C19—C20—C21 | −1.7 (5) |
C6—C1—C2—C3 | −1.3 (4) | C19—C20—C21—C25 | 179.6 (3) |
O1—C1—C2—C8 | −2.3 (4) | C22—C20—C21—C25 | 1.4 (4) |
C6—C1—C2—C8 | 176.3 (3) | C19—C20—C21—C16 | 1.7 (4) |
C1—C2—C3—C4 | 0.3 (5) | C22—C20—C21—C16 | −176.4 (3) |
C8—C2—C3—C4 | −177.3 (3) | C17—C16—C21—C25 | −177.6 (3) |
C2—C3—C4—C5 | 0.4 (5) | N1—C16—C21—C25 | −1.2 (5) |
C2—C3—C4—C12 | 176.4 (3) | C17—C16—C21—C20 | 0.1 (4) |
C3—C4—C5—C6 | −0.2 (5) | N1—C16—C21—C20 | 176.5 (3) |
C12—C4—C5—C6 | −176.1 (3) | C19—C20—C22—C23 | −175.9 (3) |
C4—C5—C6—C1 | −0.8 (5) | C21—C20—C22—C23 | 2.2 (5) |
C4—C5—C6—C7 | 169.1 (3) | C20—C22—C23—C24 | −3.0 (5) |
O1—C1—C6—C5 | −179.8 (3) | C22—C23—C24—C25 | 0.1 (5) |
C2—C1—C6—C5 | 1.6 (4) | C23—C24—C25—C21 | 3.7 (5) |
O1—C1—C6—C7 | 10.6 (5) | C23—C24—C25—N2 | −175.1 (3) |
C2—C1—C6—C7 | −168.0 (3) | C20—C21—C25—C24 | −4.4 (5) |
C5—C6—C7—N1 | 176.8 (3) | C16—C21—C25—C24 | 173.3 (3) |
C1—C6—C7—N1 | −13.2 (5) | C20—C21—C25—N2 | 174.4 (3) |
C3—C2—C8—C11 | −6.1 (4) | C16—C21—C25—N2 | −7.9 (5) |
C1—C2—C8—C11 | 176.4 (3) | C6—C7—N1—C16 | 163.1 (3) |
C3—C2—C8—C9 | 113.5 (3) | C6—C7—N1—Ni1 | −17.6 (4) |
C1—C2—C8—C9 | −64.0 (4) | C17—C16—N1—C7 | −31.8 (4) |
C3—C2—C8—C10 | −125.7 (3) | C21—C16—N1—C7 | 151.9 (3) |
C1—C2—C8—C10 | 56.7 (4) | C17—C16—N1—Ni1 | 149.0 (2) |
C5—C4—C12—C13 | −130.8 (4) | C21—C16—N1—Ni1 | −27.3 (4) |
C3—C4—C12—C13 | 53.5 (5) | C24—C25—N2—Ni1 | −137.7 (3) |
C5—C4—C12—C14 | −9.5 (5) | C21—C25—N2—Ni1 | 43.4 (4) |
C3—C4—C12—C14 | 174.8 (4) | C6—C1—O1—Ni1 | 23.3 (4) |
C5—C4—C12—C15 | 111.1 (4) | C2—C1—O1—Ni1 | −158.1 (2) |
C3—C4—C12—C15 | −64.6 (4) | C1—O1—Ni1—N1 | −41.9 (2) |
N1—C16—C17—C18 | −178.5 (3) | C1—O1—Ni1—Br1 | 140.2 (2) |
C21—C16—C17—C18 | −2.1 (5) | C7—N1—Ni1—O1 | 37.9 (2) |
C16—C17—C18—C19 | 2.1 (5) | C16—N1—Ni1—O1 | −142.9 (2) |
C17—C18—C19—C20 | −0.2 (5) | C7—N1—Ni1—N2 | −132.3 (2) |
C18—C19—C20—C22 | 176.4 (3) | C16—N1—Ni1—N2 | 46.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···Br1i | 0.88 (2) | 2.98 (2) | 3.827 (3) | 162 (4) |
N2—H2A···C1i | 0.88 (2) | 2.84 (4) | 3.285 (4) | 113 (3) |
N2—H2A···C6i | 0.88 (2) | 2.90 (3) | 3.589 (4) | 137 (3) |
C18—H18···Br1ii | 0.95 | 2.93 | 3.624 (4) | 131 |
C13—H13A···Br1iii | 0.98 | 2.96 | 3.804 (6) | 145 |
C11—H11B···C1iv | 0.98 | 2.77 | 3.741 (5) | 169 |
C9—H9C···C5iv | 0.98 | 2.76 | 3.730 (5) | 169 |
C7—H7···C19v | 0.95 | 2.71 | 3.518 (5) | 144 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z; (iii) x−1, y, z; (iv) −x, y+1/2, −z+1/2; (v) −x, −y, −z. |
Funding information
Funding from Loyola University Chicago is gratefully acknowledged.
References
Boghaei, D. M. & Mohebi, S. (2002). Tetrahedron, 58, 5357–5366. Web of Science CrossRef CAS Google Scholar
Cisterna, J., Dorcet, V., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Carrillo, D. (2015). Inorg. Chim. Acta, 430, 82–90. Web of Science CSD CrossRef CAS Google Scholar
Crane, A. K. & MacLachlan, M. J. (2012). Eur. J. Inorg. Chem. 2012, 17–30. Web of Science CrossRef CAS Google Scholar
Ding, L., Liang, S., Zhang, J., Ding, C., Chen, Y. & Lü, X. (2014). Inorg. Chem. Commun. 44, 173–176. Web of Science CSD CrossRef CAS Google Scholar
Ding, L., Zhang, Y., Chen, X. & Lü, X. (2017). Inorg. Chem. Commun. 76, 100–102. Web of Science CSD CrossRef CAS Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2269–m2270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kochem, A., Gellon, G., Leconte, N., Baptiste, B., Philouze, C., Jarjayes, O., Orio, M. & Thomas, F. (2013). Chem. Eur. J. 19, 16707–16721. Web of Science CSD CrossRef CAS Google Scholar
Lane, S. R., Sisay, N., Carney, B., Dannoon, S., Williams, S., Engelbrecht, H. P., Barnes, C. L. & Jurisson, S. S. (2011). Dalton Trans. 40, 269–276. Web of Science CSD CrossRef CAS Google Scholar
Liu, P., Feng, X.-J. & He, R. (2010). Tetrahedron, 66, 631–636. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muñoz-Hernández, M.-A., Keizer, T. S., Parkin, S., Patrick, B. & Atwood, D. A. (2000). Organometallics, 19, 4416–4421. Google Scholar
Nonius (1998). COLLECT Users Manual. Nonius Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Perez Del Valle, C., Saint-Aman, E. & Pierre, J.-L. (2006). Chem. Eur. J. 12, 2293–2302. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sundaravadivel, E., Muthusamy, K. & Varghese, B. (2013). Polyhedron, 61, 33–44. Web of Science CSD CrossRef CAS Google Scholar
Sundaravadivel, E., Vedavalli, S., Kandaswamy, M., Varghese, B. & Madankumar, P. (2014). RSC Adv. 4, 40763–40775. Web of Science CSD CrossRef CAS Google Scholar
Trujillo, A., Fuentealba, M., Carrillo, D., Manzur, C., Ledoux-Rak, I., Hamon, J.-R. & Saillard, J.-Y. (2010). Inorg. Chem. 49, 2750–2764. CSD CrossRef CAS Google Scholar
Vicente, J., Abad, J. A., Gil-Rubio, J., Jones, P. G. & Bembenek, E. (1993). Organometallics, 12, 4151–4160. CSD CrossRef CAS Web of Science Google Scholar
Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F. & Snejko, N. (2011). Dalton Trans. 40, 9589–9600. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yearwood, B., Parkin, S. & Atwood, D. A. (2002). Inorg. Chim. Acta, 333, 124–131. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.