research communications
N,N-diethylnicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO)manganese(II)
and Hirshfeld surface analysis of diaquabis(In the title centrosymmetric complex, [Mn(C10H11O2)2(C10H14N2O)2(H2O)2], the MnII cation is located on an inversion centre. The four O atoms form a slightly distorted square-planar arrangement around the MnII cation, and the distorted octahedral coordination is completed by two pyridine N atoms at distances of 2.3289 (15) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring is 87.73 (16)°, while the benzene and pyridine rings are oriented at a dihedral angle of 43.03 (8)°. In the crystal, the water molecules are involved in both intramolecular (to the non-coordinating carboxylate O atom) and intermolecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100). These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional supramolecular network. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (70.0%), H⋯O/O⋯H (15.5%) and H⋯C/C⋯H (14.0%) interactions. One of the ethyl groups of the diethylnicotinamide ligand is disordered over two sets of sites, with an occupancy ratio of 0.282 (10):0.718 (10).
Keywords: crystal structure; manganese(II); transition metal complexes of benzoic acid and nicotinamide derivatives.
CCDC reference: 1826038
1. Chemical context
Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The of the complex [Co(CH3CO2)2(DENA)2(H2O)2] (Mikelashvili, 1982) is isostructural with the analogous Ni, Mn, Zn and Cd complexes (Sergienko et al., 1980). The structures of some complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA), N,N-Diethylnicotinamide (DENA) and some benzoic acid derivatives as ligands, e.g. [Zn(NA)2(C7H5O3)2] [(II); Necefoğlu et al., 2002], [Zn(NA)2(C8H8NO2)2]·H2O [(III); Hökelek et al., 2009a], [Co(NA)(C9H10NO2)2(H2O)2] [(IV); Hökelek et al., 2009b], [Zn2(DENA)2(C11H14NO2)4] [(V); Hökelek et al., 2009c], [Mn(DENA)2(C7H4ClO2)4(H2O)2 [(VI); Hökelek et al., 2009d], [Mn(DENA)2(NCS)2] [(VII); Bigoli et al., 1973a], [Zn(DENA)2(NCS)2(H2O)2] [(VIII); Bigoli et al., 1973b] and [Cd(DENA)(SCN)2] [(IX); Bigoli et al., 1972] have been determined previously. In complex (VII), DENA is a bidentate ligand, while in complexes (V), (VI), (VIII) and (IX), DENA is a monodentate ligand. In complex (V), the four 4-(diethylamino)benzoate (DEAB) ions act as bidentate ligands bridging the two Zn atoms.
The structure–function–coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). In this context, the MnII-containing title compound, (I), with 2,4,6-trimethylbenzoate (TMB) and DENA ligands, namely diaquabis(N,N-diethylnicotinamide -κN1)bis(2,4,6-trimethylbenzoato-κO1) manganese(II), [Mn(DENA)2(TMB)2(H2O)2], was synthesized and its is reported on herein.
2. Structural commentary
The II cation located on an inversion centre, one 2,4,6-trimethylbenzoate (TMB) anion and one N,N-diethylnicotinamide (DENA) molecule together with the one water molecule, with all ligands coordinating to the MnII cation in a monodentate manner (Fig. 1).
of the of the mononuclear title complex, contains one MnThe MnII cation is coordinated monodentately through the two carboxylate O atoms (O1 and O1i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O4 and O4i) at distances of 2.0999 (14) and 2.2230 (15) Å, respectively, to form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) at distances of 2.3289 (15) Å of the two symmetry-related DENA ligands in the axial positions [symmetry code: (i) −x, −y, −z] (Fig. 1).
The near equalities of the C1—O1 [1.254 (3) Å] and C1—O2 [1.243 (3) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Mn—O bond lengths [2.2230 (15) Å] for water oxygen atoms are by ca 0.1 Å longer than those involving the benzoate oxygen atoms [2.0999 (14) Å]. The Mn—N bond length [2.3289 (15) Å] is the longest one in the MnO4N2 octahedron. The Mn1 atom lies 0.0697 (1) Å above the planar (O1/O2/C1) carboxylate group. The O2—C1—O1 bond angle [125.5 (2)°] seems to be significantly increased than that present in a free acid [122.2°], in which the O2—C1—O1 bond angle may be compared with the corresponding values of 123.5 (2) and 120.4 (2)° in (II), 119.2 (3) and 123.8 (2)° in (III), 123.86 (13) and 118.49 (14)° in (IV), 125.11 (13) and 124.80 (14)° in (V) and 126.65 (14)° in (VI), where the benzoate ions are coordinated to the metal atoms only bidentately in (V), only monodentately in (VI) and both monodentately and bidentately in (II), (III) and (IV). The O—Mn—O and O–Mn—N bond angles [range 87.88 (6) to 92.12 (6)° for cis angles; all trans angles are 180° due to symmetry] deviate slightly from ideal values, with same average values of 90.00 (6)°.
The dihedral angle between the planar carboxylate group (O1/O2/C1) and the adjacent benzene A (C2–C7) ring is 87.73 (16)°, while the benzene A and pyridine B (N1/C11–C15) rings are oriented at a dihedral angle of A/B = 43.03 (8)°.
3. Supramolecular features
Intramolecular O—Hw⋯Oc (w = water, c = non-coordinating carboxylate O atom) hydrogen bonds (Table 1) link two of the water ligands to the TMB anions, enclosing an S(6) ring motif (Fig. 1). The other water H atom is involved in intermolecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-diethylnicotinamide) hydrogen bonds (Table 1), leading to the formation of layers parallel to (100) (Fig. 2). These layers are further linked into a three-dimensional network structure via weak C—HTMB⋯Oc (TMB = 2,4,6-trimethylbenzoate) and C—HDENA⋯ODENA hdyrogen bonds (Table 1).
4. Hirshfeld surface analysis
Visulization and exploration of intermolecular close contacts in the ; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017) to investigate the locations of atom–atom short contacts with potential to form hydrogen bonds and the quantitative ratios of these interactions and those of the π-stacking interactions. In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near DENA-O3, carboxylate-O2, and hydrogen atoms H41, H42, H9C and H11 indicate their roles as the respective donors and acceptors in the dominant O—H⋯O and C—H⋯O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggests that there are no π⋯π interactions in (I).
of the title complex is invaluable. Thus, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯N/N⋯H and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–g, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 70.0% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule. The single spike in the centre at de = di = 0.96 Å in Fig. 6b is due to a short interatomic H⋯H contact (Table 2). In the fingerprint plot delineated into H⋯O/O⋯H contacts Fig. 6c, the 15.5% contribution to the HS arises from intermolecular O—H⋯O hydrogen bonding and is viewed as pair of spikes with the tip at de + di ∼1.84 Å. The short H⋯O/O⋯H contacts may be masked by strong O—H⋯O hydrogen bonding in this plot. In the presence of a weak C—H⋯π interaction in the crystal, the two pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with 14.0% contribution to the HS, Fig. 6d, and the two pairs of thin and thick edges at de + di ∼2.91 and 2.89 Å, respectively, result from short interatomic H⋯C/C⋯H contacts (Table 2). The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H and H⋯C/C⋯H interactions in Fig. 7a–c, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hartwar et al., 2015).
5. Synthesis and crystallization
The title compound was prepared by the reaction of MnSO4·H2O (0.85 g, 5 mmol) in H2O (100 ml) and N,N-diethylnicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 2,4,6-trimethylbenzoate (1.86 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving colourless single crystals.
6. Refinement
The experimental details including the crystal data, data collection and . Water H atoms H41 and H42 were located in a difference-Fourier map and freely refined. C-bound H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for other H atoms. The disordered ethyl group (C17, C18) was refined over two sets of sites with distance restraints and SIMU and DELU restraints (Sheldrick, 2008). The refined occupancy ratio of the two orientations is 0.282 (10):0.718 (10).
are summarized in Table 3
|
Supporting information
CCDC reference: 1826038
https://doi.org/10.1107/S2056989018003377/xu5920sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018003377/xu5920Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Mn(C10H11O2)2(C10H14N2O)2(H2O)2] | F(000) = 822 |
Mr = 773.83 | Dx = 1.233 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9985 reflections |
a = 13.1040 (4) Å | θ = 2.5–28.2° |
b = 10.8828 (3) Å | µ = 0.37 mm−1 |
c = 15.7167 (4) Å | T = 296 K |
β = 111.570 (2)° | Block, translucent light colourless |
V = 2084.37 (10) Å3 | 0.45 × 0.37 × 0.35 mm |
Z = 2 |
Bruker SMART BREEZE CCD diffractometer | 5178 independent reflections |
Radiation source: fine-focus sealed tube | 3995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
φ and ω scans | θmax = 28.3°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −17→17 |
Tmin = 0.851, Tmax = 0.882 | k = −14→13 |
36139 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0696P)2 + 0.7599P] where P = (Fo2 + 2Fc2)/3 |
5178 reflections | (Δ/σ)max < 0.001 |
274 parameters | Δρmax = 0.51 e Å−3 |
42 restraints | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.0000 | 0.0000 | 0.0000 | 0.04559 (14) | |
O1 | −0.14717 (12) | 0.04378 (15) | −0.10765 (9) | 0.0615 (4) | |
O2 | −0.25400 (18) | −0.1155 (2) | −0.11016 (17) | 0.1263 (10) | |
O3 | −0.02706 (15) | 0.12536 (14) | 0.39218 (9) | 0.0699 (4) | |
O4 | 0.08409 (16) | 0.14917 (14) | −0.04553 (11) | 0.0590 (4) | |
H41 | 0.058 (2) | 0.220 (3) | −0.0636 (19) | 0.077 (8)* | |
H42 | 0.143 (2) | 0.153 (2) | −0.005 (2) | 0.075 (9)* | |
N1 | −0.04496 (14) | 0.13195 (15) | 0.09755 (10) | 0.0534 (4) | |
N2 | −0.1788 (2) | 0.0256 (3) | 0.30478 (15) | 0.0975 (8) | |
C1 | −0.23618 (19) | −0.0138 (2) | −0.13796 (16) | 0.0667 (6) | |
C2 | −0.32465 (17) | 0.0468 (2) | −0.21779 (15) | 0.0633 (5) | |
C3 | −0.3318 (2) | 0.0191 (2) | −0.30595 (17) | 0.0696 (6) | |
C4 | −0.4057 (2) | 0.0847 (3) | −0.37831 (17) | 0.0805 (7) | |
H4 | −0.4101 | 0.0677 | −0.4375 | 0.097* | |
C5 | −0.4726 (2) | 0.1739 (3) | −0.36515 (19) | 0.0837 (8) | |
C6 | −0.4672 (2) | 0.1957 (3) | −0.2775 (2) | 0.0871 (8) | |
H6 | −0.5142 | 0.2536 | −0.2680 | 0.104* | |
C7 | −0.3934 (2) | 0.1337 (3) | −0.20238 (17) | 0.0763 (6) | |
C8 | −0.2595 (3) | −0.0781 (3) | −0.3224 (2) | 0.0988 (9) | |
H8A | −0.2585 | −0.0688 | −0.3828 | 0.148* | |
H8B | −0.2875 | −0.1579 | −0.3166 | 0.148* | |
H8C | −0.1862 | −0.0697 | −0.2781 | 0.148* | |
C9 | −0.5484 (3) | 0.2479 (4) | −0.4452 (3) | 0.1240 (14) | |
H9A | −0.5621 | 0.2031 | −0.5009 | 0.186* | |
H9B | −0.5145 | 0.3251 | −0.4483 | 0.186* | |
H9C | −0.6165 | 0.2623 | −0.4370 | 0.186* | |
C10 | −0.3879 (3) | 0.1594 (4) | −0.1064 (2) | 0.1176 (12) | |
H10A | −0.4327 | 0.2295 | −0.1070 | 0.176* | |
H10B | −0.3134 | 0.1760 | −0.0676 | 0.176* | |
H10C | −0.4143 | 0.0892 | −0.0836 | 0.176* | |
C11 | −0.0577 (2) | 0.2526 (2) | 0.08377 (14) | 0.0671 (6) | |
H11 | −0.0501 | 0.2856 | 0.0319 | 0.081* | |
C12 | −0.0817 (3) | 0.3307 (2) | 0.14275 (16) | 0.0805 (8) | |
H12 | −0.0887 | 0.4147 | 0.1311 | 0.097* | |
C13 | −0.0952 (2) | 0.2834 (2) | 0.21932 (14) | 0.0661 (6) | |
H13 | −0.1108 | 0.3345 | 0.2604 | 0.079* | |
C14 | −0.08498 (16) | 0.15840 (18) | 0.23330 (11) | 0.0508 (4) | |
C15 | −0.05883 (18) | 0.08718 (18) | 0.17157 (12) | 0.0532 (4) | |
H15 | −0.0504 | 0.0030 | 0.1822 | 0.064* | |
C16 | −0.09574 (19) | 0.10153 (18) | 0.31679 (12) | 0.0580 (5) | |
C17A | −0.2372 (10) | −0.0494 (10) | 0.2202 (6) | 0.085 (4) | 0.282 (10) |
H17A | −0.2608 | −0.1285 | 0.2348 | 0.102* | 0.282 (10) |
H17B | −0.1926 | −0.0612 | 0.1835 | 0.102* | 0.282 (10) |
C17B | −0.2820 (5) | 0.0332 (6) | 0.2173 (4) | 0.0939 (18) | 0.718 (10) |
H17C | −0.3462 | 0.0479 | 0.2326 | 0.113* | 0.718 (10) |
H17D | −0.2752 | 0.1001 | 0.1790 | 0.113* | 0.718 (10) |
C18A | −0.3339 (15) | 0.036 (2) | 0.1740 (14) | 0.155 (8) | 0.282 (10) |
H18A | −0.3582 | 0.0269 | 0.1089 | 0.233* | 0.282 (10) |
H18B | −0.3114 | 0.1199 | 0.1902 | 0.233* | 0.282 (10) |
H18C | −0.3929 | 0.0165 | 0.1940 | 0.233* | 0.282 (10) |
C18B | −0.2932 (6) | −0.0862 (6) | 0.1678 (5) | 0.142 (3) | 0.718 (10) |
H18D | −0.3531 | −0.0811 | 0.1100 | 0.213* | 0.718 (10) |
H18E | −0.3071 | −0.1507 | 0.2038 | 0.213* | 0.718 (10) |
H18F | −0.2266 | −0.1034 | 0.1579 | 0.213* | 0.718 (10) |
C19 | −0.1838 (4) | −0.0419 (4) | 0.3858 (2) | 0.1213 (14) | |
H19A | −0.2042 | −0.1267 | 0.3691 | 0.146* | |
H19B | −0.1118 | −0.0415 | 0.4342 | 0.146* | |
C20 | −0.2624 (5) | 0.0130 (5) | 0.4194 (3) | 0.171 (3) | |
H20A | −0.2656 | −0.0343 | 0.4699 | 0.257* | |
H20B | −0.3335 | 0.0141 | 0.3713 | 0.257* | |
H20C | −0.2402 | 0.0955 | 0.4392 | 0.257* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0618 (2) | 0.0489 (2) | 0.02981 (18) | −0.00067 (16) | 0.02117 (16) | 0.00058 (13) |
O1 | 0.0652 (9) | 0.0672 (8) | 0.0465 (7) | −0.0039 (7) | 0.0140 (6) | 0.0079 (6) |
O2 | 0.0932 (14) | 0.1235 (18) | 0.1255 (18) | −0.0337 (13) | −0.0030 (13) | 0.0690 (15) |
O3 | 0.1131 (12) | 0.0614 (8) | 0.0348 (7) | −0.0133 (8) | 0.0266 (7) | −0.0056 (6) |
O4 | 0.0774 (10) | 0.0539 (8) | 0.0500 (8) | 0.0010 (7) | 0.0286 (8) | 0.0088 (6) |
N1 | 0.0761 (10) | 0.0536 (9) | 0.0367 (7) | 0.0019 (7) | 0.0281 (7) | 0.0001 (6) |
N2 | 0.127 (2) | 0.1230 (19) | 0.0551 (12) | −0.0580 (16) | 0.0490 (13) | −0.0147 (12) |
C1 | 0.0634 (12) | 0.0778 (15) | 0.0558 (12) | −0.0048 (10) | 0.0184 (10) | 0.0167 (10) |
C2 | 0.0560 (11) | 0.0751 (13) | 0.0557 (11) | −0.0062 (10) | 0.0170 (9) | 0.0126 (10) |
C3 | 0.0635 (12) | 0.0839 (16) | 0.0574 (12) | −0.0026 (11) | 0.0178 (10) | 0.0092 (10) |
C4 | 0.0739 (15) | 0.107 (2) | 0.0550 (13) | −0.0008 (14) | 0.0166 (11) | 0.0126 (12) |
C5 | 0.0642 (14) | 0.107 (2) | 0.0733 (16) | 0.0069 (13) | 0.0180 (12) | 0.0277 (14) |
C6 | 0.0677 (15) | 0.105 (2) | 0.0923 (19) | 0.0159 (14) | 0.0339 (14) | 0.0174 (16) |
C7 | 0.0677 (13) | 0.0976 (18) | 0.0669 (14) | −0.0037 (13) | 0.0287 (11) | 0.0072 (12) |
C8 | 0.117 (2) | 0.098 (2) | 0.0807 (19) | 0.0161 (18) | 0.0365 (17) | 0.0007 (16) |
C9 | 0.099 (2) | 0.162 (4) | 0.100 (2) | 0.040 (2) | 0.0236 (18) | 0.059 (2) |
C10 | 0.123 (3) | 0.161 (3) | 0.080 (2) | 0.015 (2) | 0.051 (2) | −0.004 (2) |
C11 | 0.1095 (18) | 0.0582 (11) | 0.0469 (10) | 0.0063 (11) | 0.0442 (11) | 0.0089 (9) |
C12 | 0.143 (2) | 0.0507 (11) | 0.0622 (13) | 0.0147 (13) | 0.0547 (15) | 0.0080 (10) |
C13 | 0.1038 (17) | 0.0565 (11) | 0.0481 (10) | 0.0091 (11) | 0.0397 (11) | −0.0032 (8) |
C14 | 0.0689 (11) | 0.0549 (10) | 0.0320 (8) | −0.0057 (8) | 0.0224 (8) | −0.0043 (7) |
C15 | 0.0819 (13) | 0.0471 (9) | 0.0360 (8) | 0.0005 (9) | 0.0280 (8) | −0.0004 (7) |
C16 | 0.0904 (14) | 0.0546 (10) | 0.0381 (9) | −0.0074 (10) | 0.0344 (9) | −0.0077 (7) |
C17A | 0.129 (9) | 0.068 (6) | 0.059 (6) | −0.048 (6) | 0.037 (5) | −0.022 (4) |
C17B | 0.098 (4) | 0.109 (4) | 0.085 (3) | −0.031 (3) | 0.046 (3) | −0.017 (3) |
C18A | 0.121 (12) | 0.197 (19) | 0.103 (12) | −0.017 (10) | −0.011 (9) | −0.007 (13) |
C18B | 0.144 (5) | 0.143 (5) | 0.142 (5) | −0.059 (4) | 0.057 (4) | −0.071 (4) |
C19 | 0.183 (4) | 0.124 (3) | 0.080 (2) | −0.064 (3) | 0.077 (2) | −0.0064 (19) |
C20 | 0.164 (4) | 0.283 (7) | 0.100 (3) | −0.063 (4) | 0.088 (3) | −0.019 (3) |
Mn1—O1 | 2.0999 (14) | C9—H9C | 0.9600 |
Mn1—O1i | 2.0999 (14) | C10—H10A | 0.9600 |
Mn1—O4 | 2.2230 (15) | C10—H10B | 0.9600 |
Mn1—O4i | 2.2230 (15) | C10—H10C | 0.9600 |
Mn1—N1 | 2.3289 (15) | C11—C12 | 1.377 (3) |
Mn1—N1i | 2.3289 (15) | C11—H11 | 0.9300 |
O1—C1 | 1.254 (3) | C12—H12 | 0.9300 |
O2—C1 | 1.243 (3) | C13—C12 | 1.379 (3) |
O3—C16 | 1.224 (3) | C13—H13 | 0.9300 |
O4—H41 | 0.85 (3) | C14—C13 | 1.376 (3) |
O4—H42 | 0.80 (3) | C14—C15 | 1.380 (2) |
N1—C11 | 1.331 (3) | C14—C16 | 1.504 (2) |
N1—C15 | 1.334 (2) | C15—H15 | 0.9300 |
N2—C17A | 1.506 (9) | C16—N2 | 1.324 (3) |
N2—C17B | 1.536 (7) | C17A—C18A | 1.526 (17) |
N2—C19 | 1.493 (3) | C17A—H17A | 0.9700 |
C2—C1 | 1.511 (3) | C17A—H17B | 0.9700 |
C2—C3 | 1.387 (3) | C17B—C18B | 1.493 (8) |
C2—C7 | 1.388 (4) | C17B—H17C | 0.9700 |
C3—C8 | 1.505 (4) | C17B—H17D | 0.9700 |
C4—C3 | 1.390 (3) | C18A—H18A | 0.9600 |
C4—C5 | 1.373 (4) | C18A—H18B | 0.9600 |
C4—H4 | 0.9300 | C18A—H18C | 0.9600 |
C5—C6 | 1.373 (4) | C18B—H18D | 0.9600 |
C5—C9 | 1.516 (4) | C18B—H18E | 0.9600 |
C6—H6 | 0.9300 | C18B—H18F | 0.9600 |
C7—C6 | 1.395 (4) | C19—C20 | 1.447 (6) |
C7—C10 | 1.510 (4) | C19—H19A | 0.9700 |
C8—H8A | 0.9600 | C19—H19B | 0.9700 |
C8—H8B | 0.9600 | C20—H20A | 0.9600 |
C8—H8C | 0.9600 | C20—H20B | 0.9600 |
C9—H9A | 0.9600 | C20—H20C | 0.9600 |
C9—H9B | 0.9600 | ||
O1···H10B | 2.87 | C16···H18B | 2.80 |
O1···H13ii | 2.65 | C16···H41v | 2.93 (3) |
O1···H8C | 2.82 | C17A···H15 | 2.78 |
O2···H42i | 1.90 (3) | C17B···H20B | 2.75 |
O2···H9Ciii | 2.48 | C18A···H9Bv | 2.87 |
O3···H12iv | 2.85 | C18B···H8Bvi | 2.79 |
O3···H11v | 2.52 | C18B···H19A | 2.97 |
O3···H41v | 2.00 (3) | C19···H18E | 2.97 |
O3···H19B | 2.35 | C20···H17C | 2.76 |
O4···H15i | 2.62 | H4···H8A | 2.37 |
O4···H11 | 2.89 | H4···H9A | 2.38 |
C1···H10C | 2.98 | H6···H10A | 2.37 |
C1···H42i | 2.61 (3) | H6···H9C | 2.50 |
C1···H8C | 2.59 | H8A···H20Avii | 2.31 |
C1···H10B | 2.71 | H8B···H17Aviii | 2.44 |
C5···H18Bii | 2.98 | H8B···H18Eviii | 2.14 |
C13···H17D | 2.97 | H11···H41 | 2.52 |
C14···H17D | 2.40 | H15···H18F | 2.48 |
C14···H17B | 2.74 | H15···H17B | 2.00 |
C14···H18B | 2.82 | H17A···H19A | 1.96 |
C15···H17D | 2.88 | H17C···H20B | 2.16 |
C15···H17B | 2.44 | H18A···H9Bv | 2.50 |
C15···H18F | 2.97 | H18E···H19A | 2.46 |
O1i—Mn1—O1 | 180.00 (7) | H9A—C9—H9B | 109.5 |
O1—Mn1—O4 | 89.54 (6) | H9A—C9—H9C | 109.5 |
O1i—Mn1—O4 | 90.46 (6) | H9B—C9—H9C | 109.5 |
O1—Mn1—O4i | 90.46 (6) | C7—C10—H10A | 109.5 |
O1i—Mn1—O4i | 89.54 (6) | C7—C10—H10B | 109.5 |
O1—Mn1—N1 | 90.62 (6) | C7—C10—H10C | 109.5 |
O1i—Mn1—N1 | 89.38 (6) | H10A—C10—H10B | 109.5 |
O1—Mn1—N1i | 89.38 (6) | H10A—C10—H10C | 109.5 |
O1i—Mn1—N1i | 90.62 (6) | H10B—C10—H10C | 109.5 |
O4i—Mn1—O4 | 180.00 (9) | N1—C11—C12 | 123.08 (18) |
O4—Mn1—N1 | 92.12 (6) | N1—C11—H11 | 118.5 |
O4i—Mn1—N1 | 87.88 (6) | C12—C11—H11 | 118.5 |
O4—Mn1—N1i | 87.88 (6) | C11—C12—C13 | 119.4 (2) |
O4i—Mn1—N1i | 92.12 (6) | C11—C12—H12 | 120.3 |
N1—Mn1—N1i | 180.00 (7) | C13—C12—H12 | 120.3 |
Mn1—O4—H41 | 126.1 (18) | C12—C13—H13 | 120.9 |
Mn1—O4—H42 | 103 (2) | C14—C13—C12 | 118.18 (18) |
H41—O4—H42 | 111 (3) | C14—C13—H13 | 120.9 |
C1—O1—Mn1 | 130.03 (14) | C13—C14—C15 | 118.53 (17) |
C11—N1—Mn1 | 123.24 (12) | C13—C14—C16 | 120.74 (16) |
C11—N1—C15 | 116.92 (16) | C15—C14—C16 | 120.64 (17) |
C15—N1—Mn1 | 119.84 (12) | N1—C15—C14 | 123.83 (18) |
C16—N2—C17A | 126.0 (4) | N1—C15—H15 | 118.1 |
C16—N2—C17B | 120.1 (3) | C14—C15—H15 | 118.1 |
C16—N2—C19 | 118.5 (2) | O3—C16—N2 | 122.95 (19) |
C19—N2—C17A | 108.6 (4) | O3—C16—C14 | 119.10 (19) |
C19—N2—C17B | 119.3 (3) | N2—C16—C14 | 117.94 (18) |
O1—C1—C2 | 114.81 (19) | N2—C17A—C18A | 98.7 (12) |
O2—C1—O1 | 125.5 (2) | N2—C17A—H17A | 112.0 |
O2—C1—C2 | 119.7 (2) | N2—C17A—H17B | 112.0 |
C3—C2—C1 | 118.9 (2) | C18A—C17A—H17A | 112.0 |
C3—C2—C7 | 120.9 (2) | C18A—C17A—H17B | 112.0 |
C7—C2—C1 | 120.1 (2) | H17A—C17A—H17B | 109.7 |
C2—C3—C4 | 118.4 (2) | N2—C17B—H17C | 110.1 |
C2—C3—C8 | 120.6 (2) | N2—C17B—H17D | 110.1 |
C4—C3—C8 | 121.0 (2) | C18B—C17B—N2 | 107.8 (6) |
C3—C4—H4 | 118.9 | C18B—C17B—H17C | 110.1 |
C5—C4—C3 | 122.1 (3) | C18B—C17B—H17D | 110.1 |
C5—C4—H4 | 118.9 | H17C—C17B—H17D | 108.5 |
C4—C5—C6 | 118.2 (2) | C17B—C18B—H18D | 109.5 |
C4—C5—C9 | 120.7 (3) | C17B—C18B—H18E | 109.5 |
C6—C5—C9 | 121.1 (3) | C17B—C18B—H18F | 109.5 |
C5—C6—C7 | 122.0 (3) | H18D—C18B—H18E | 109.5 |
C5—C6—H6 | 119.0 | H18D—C18B—H18F | 109.5 |
C7—C6—H6 | 119.0 | H18E—C18B—H18F | 109.5 |
C2—C7—C6 | 118.3 (2) | N2—C19—H19A | 109.3 |
C2—C7—C10 | 120.4 (3) | N2—C19—H19B | 109.3 |
C6—C7—C10 | 121.3 (3) | C20—C19—N2 | 111.6 (4) |
C3—C8—H8A | 109.5 | C20—C19—H19A | 109.3 |
C3—C8—H8B | 109.5 | C20—C19—H19B | 109.3 |
C3—C8—H8C | 109.5 | H19A—C19—H19B | 108.0 |
H8A—C8—H8B | 109.5 | C19—C20—H20A | 109.5 |
H8A—C8—H8C | 109.5 | C19—C20—H20B | 109.5 |
H8B—C8—H8C | 109.5 | C19—C20—H20C | 109.5 |
C5—C9—H9A | 109.5 | H20A—C20—H20B | 109.5 |
C5—C9—H9B | 109.5 | H20A—C20—H20C | 109.5 |
C5—C9—H9C | 109.5 | H20B—C20—H20C | 109.5 |
O4—Mn1—O1—C1 | 168.4 (2) | C1—C2—C3—C8 | 5.5 (4) |
O4i—Mn1—O1—C1 | −11.6 (2) | C7—C2—C3—C4 | 3.1 (4) |
N1—Mn1—O1—C1 | −99.5 (2) | C7—C2—C3—C8 | −178.0 (2) |
N1i—Mn1—O1—C1 | 80.5 (2) | C1—C2—C7—C6 | 174.2 (2) |
O1—Mn1—N1—C11 | −62.66 (19) | C1—C2—C7—C10 | −6.0 (4) |
O1i—Mn1—N1—C11 | 117.34 (19) | C3—C2—C7—C6 | −2.3 (4) |
O1—Mn1—N1—C15 | 117.53 (16) | C3—C2—C7—C10 | 177.6 (3) |
O1i—Mn1—N1—C15 | −62.47 (16) | C5—C4—C3—C2 | −1.1 (4) |
O4—Mn1—N1—C11 | 26.91 (19) | C5—C4—C3—C8 | −179.9 (3) |
O4i—Mn1—N1—C11 | −153.09 (19) | C3—C4—C5—C6 | −1.7 (4) |
O4—Mn1—N1—C15 | −152.91 (16) | C3—C4—C5—C9 | 177.1 (3) |
O4i—Mn1—N1—C15 | 27.09 (16) | C4—C5—C6—C7 | 2.6 (4) |
Mn1—O1—C1—O2 | −2.5 (4) | C9—C5—C6—C7 | −176.2 (3) |
Mn1—O1—C1—C2 | −179.51 (14) | C2—C7—C6—C5 | −0.6 (4) |
Mn1—N1—C11—C12 | −178.4 (2) | C10—C7—C6—C5 | 179.5 (3) |
C15—N1—C11—C12 | 1.4 (4) | N1—C11—C12—C13 | −1.1 (4) |
Mn1—N1—C15—C14 | 179.68 (16) | C14—C13—C12—C11 | −0.6 (4) |
C11—N1—C15—C14 | −0.1 (3) | C15—C14—C13—C12 | 1.7 (4) |
C16—N2—C17A—C18A | −96.6 (11) | C16—C14—C13—C12 | 178.3 (2) |
C17B—N2—C17A—C18A | −0.4 (10) | C13—C14—C15—N1 | −1.5 (3) |
C19—N2—C17A—C18A | 113.2 (10) | C16—C14—C15—N1 | −178.04 (19) |
C16—N2—C17B—C18B | 117.7 (4) | C13—C14—C16—O3 | −65.7 (3) |
C17A—N2—C17B—C18B | 6.0 (7) | C13—C14—C16—N2 | 115.6 (3) |
C19—N2—C17B—C18B | −78.9 (5) | C15—C14—C16—O3 | 110.9 (2) |
C16—N2—C19—C20 | 102.2 (4) | C15—C14—C16—N2 | −67.9 (3) |
C17A—N2—C19—C20 | −105.0 (7) | O3—C16—N2—C17A | −152.8 (7) |
C17B—N2—C19—C20 | −61.5 (5) | O3—C16—N2—C17B | 158.4 (3) |
C3—C2—C1—O1 | 89.8 (3) | O3—C16—N2—C19 | −5.2 (4) |
C3—C2—C1—O2 | −87.4 (3) | C14—C16—N2—C17A | 26.0 (8) |
C7—C2—C1—O1 | −86.7 (3) | C14—C16—N2—C17B | −22.9 (4) |
C7—C2—C1—O2 | 96.0 (3) | C14—C16—N2—C19 | 173.5 (3) |
C1—C2—C3—C4 | −173.4 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x−1, y−1/2, −z−1/2; (iv) −x, y−1/2, −z+1/2; (v) x, −y+1/2, z+1/2; (vi) x, −y−1/2, z+1/2; (vii) x, y, z−1; (viii) x, −y−1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H41···O3ii | 0.85 (3) | 2.00 (3) | 2.838 (2) | 171 (3) |
O4—H42···O2i | 0.80 (3) | 1.90 (3) | 2.660 (3) | 157 (3) |
C9—H9C···O2ix | 0.96 | 2.48 | 3.366 (5) | 154 |
C11—H11···O3ii | 0.93 | 2.52 | 3.447 (3) | 179 |
Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z−1/2; (ix) −x−1, y+1/2, −z−1/2. |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39–43. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344–2348. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m513–m514. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m955–m956. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CrossRef CAS PubMed Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Mikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia. Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606–1609. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.