research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­aqua­bis­­(N,N-di­ethyl­nicotinamide-κN1)bis­­(2,4,6-tri­methyl­benzoato-κO)manganese(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail:

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 16 February 2018; accepted 27 February 2018; online 2 March 2018)

In the title centrosymmetric complex, [Mn(C10H11O2)2(C10H14N2O)2(H2O)2], the MnII cation is located on an inversion centre. The four O atoms form a slightly distorted square-planar arrangement around the MnII cation, and the distorted octa­hedral coordination is completed by two pyridine N atoms at distances of 2.3289 (15) Å. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 87.73 (16)°, while the benzene and pyridine rings are oriented at a dihedral angle of 43.03 (8)°. In the crystal, the water mol­ecules are involved in both intra­molecular (to the non-coordinating carboxyl­ate O atom) and inter­molecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100). These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional supra­molecular network. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (70.0%), H⋯O/O⋯H (15.5%) and H⋯C/C⋯H (14.0%) inter­actions. One of the ethyl groups of the di­ethyl­nicotinamide ligand is disordered over two sets of sites, with an occupancy ratio of 0.282 (10):0.718 (10).

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-Di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). The crystal structure of the complex [Co(CH3CO2)2(DENA)2(H2O)2] (Mikelashvili, 1982[Mikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia.]) is isostructural with the analogous Ni, Mn, Zn and Cd complexes (Sergienko et al., 1980[Sergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606-1609.]). The structures of some complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA), N,N-Di­ethyl­nicotinamide (DENA) and some benzoic acid derivatives as ligands, e.g. [Zn(NA)2(C7H5O3)2] [(II); Necefoğlu et al., 2002[Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758-m761.]], [Zn(NA)2(C8H8NO2)2]·H2O [(III); Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365-m1366.]], [Co(NA)(C9H10NO2)2(H2O)2] [(IV); Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.]], [Zn2(DENA)2(C11H14NO2)4] [(V); Hökelek et al., 2009c[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m955-m956.]], [Mn(DENA)2(C7H4ClO2)4(H2O)2 [(VI); Hökelek et al., 2009d[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m513-m514.]], [Mn(DENA)2(NCS)2] [(VII); Bigoli et al., 1973a[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39-43.]], [Zn(DENA)2(NCS)2(H2O)2] [(VIII); Bigoli et al., 1973b[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344-2348.]] and [Cd(DENA)(SCN)2] [(IX); Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]] have been determined previously. In complex (VII), DENA is a bidentate ligand, while in complexes (V), (VI), (VIII) and (IX), DENA is a monodentate ligand. In complex (V), the four 4-(di­ethyl­amino)­benzoate (DEAB) ions act as bidentate ligands bridging the two Zn atoms.

[Scheme 1]

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in MnII complexes of benzoic acid deriv­atives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, the MnII-containing title compound, (I)[link], with 2,4,6-tri­methyl­benzoate (TMB) and DENA ligands, namely di­aqua­bis­(N,N-di­ethyl­nicotinamide -κN1)bis­(2,4,6-tri­methyl­benzoato-κO1) manganese(II), [Mn(DENA)2(TMB)2(H2O)2], was synthesized and its crystal structure is reported on herein.

2. Structural commentary

The asymmetric unit of the crystal structure of the mononuclear title complex, contains one MnII cation located on an inversion centre, one 2,4,6-tri­methyl­benzoate (TMB) anion and one N,N-di­ethyl­nicotinamide (DENA) mol­ecule together with the one water mol­ecule, with all ligands coordinating to the MnII cation in a monodentate manner (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are related to labelled ones by the symmetry operation (−x, −y, −z). Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular O—H⋯O hydrogen bonds, enclosing S(6) ring motifs, are shown as dashed lines.

The MnII cation is coordinated monodentately through the two carboxyl­ate O atoms (O1 and O1i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O4 and O4i) at distances of 2.0999 (14) and 2.2230 (15) Å, respectively, to form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) at distances of 2.3289 (15) Å of the two symmetry-related DENA ligands in the axial positions [symmetry code: (i) −x, −y, −z] (Fig. 1[link]).

The near equalities of the C1—O1 [1.254 (3) Å] and C1—O2 [1.243 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Mn—O bond lengths [2.2230 (15) Å] for water oxygen atoms are by ca 0.1 Å longer than those involving the benzoate oxygen atoms [2.0999 (14) Å]. The Mn—N bond length [2.3289 (15) Å] is the longest one in the MnO4N2 octa­hedron. The Mn1 atom lies 0.0697 (1) Å above the planar (O1/O2/C1) carboxyl­ate group. The O2—C1—O1 bond angle [125.5 (2)°] seems to be significantly increased than that present in a free acid [122.2°], in which the O2—C1—O1 bond angle may be compared with the corresponding values of 123.5 (2) and 120.4 (2)° in (II), 119.2 (3) and 123.8 (2)° in (III), 123.86 (13) and 118.49 (14)° in (IV), 125.11 (13) and 124.80 (14)° in (V) and 126.65 (14)° in (VI), where the benzoate ions are coordinated to the metal atoms only bidentately in (V), only monodentately in (VI) and both monodentately and bidentately in (II), (III) and (IV). The O—Mn—O and O–Mn—N bond angles [range 87.88 (6) to 92.12 (6)° for cis angles; all trans angles are 180° due to symmetry] deviate slightly from ideal values, with same average values of 90.00 (6)°.

The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene A (C2–C7) ring is 87.73 (16)°, while the benzene A and pyridine B (N1/C11–C15) rings are oriented at a dihedral angle of A/B = 43.03 (8)°.

3. Supra­molecular features

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 1[link]) link two of the water ligands to the TMB anions, enclosing an S(6) ring motif (Fig. 1[link]). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotinamide) hydrogen bonds (Table 1[link]), leading to the formation of layers parallel to (100) (Fig. 2[link]). These layers are further linked into a three-dimensional network structure via weak C—HTMB⋯Oc (TMB = 2,4,6-tri­methyl­benzoate) and C—HDENA⋯ODENA hdyrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O3i 0.85 (3) 2.00 (3) 2.838 (2) 171 (3)
O4—H42⋯O2ii 0.80 (3) 1.90 (3) 2.660 (3) 157 (3)
C9—H9C⋯O2ix 0.96 2.48 3.366 (5) 154
C11—H11⋯O3i 0.93 2.52 3.447 (3) 179
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (ix) [-x-1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure. Only O—HW⋯OTMB and O—HW⋯ODENA (W = water, TMB = 2,4,6-tri­methyl­benzoate and DENA = N,N-di­ethyl­nicotinamide) hydrogen bonds, enclosing S(6) ring motifs, are shown as dashed lines. Only one part of the disordered group has been included and the C-bound hydrogen atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Visulization and exploration of inter­molecular close contacts in the crystal structure of the title complex is invaluable. Thus, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to investigate the locations of atom–atom short contacts with potential to form hydrogen bonds and the qu­anti­tative ratios of these inter­actions and those of the π-stacking inter­actions. In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A 153, 625-636.]). The bright-red spots appearing near DENA-O3, carboxyl­ate-O2, and hydrogen atoms H41, H42, H9C and H11 indicate their roles as the respective donors and acceptors in the dominant O—H⋯O and C—H⋯O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.6741 to 1.6440 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.1032 to 0.1415 a.u. using the STO-3G basis set at the Hartree–Fock level of theory. The O—H⋯O and C—H⋯O hydrogen-bond donors and acceptors are viewed as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title complex plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯N/N⋯H and N⋯C/C⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 6[link]bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 70.0% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The single spike in the centre at de = di = 0.96 Å in Fig. 6[link]b is due to a short inter­atomic H⋯H contact (Table 2[link]). In the fingerprint plot delineated into H⋯O/O⋯H contacts Fig. 6[link]c, the 15.5% contribution to the HS arises from inter­molecular O—H⋯O hydrogen bonding and is viewed as pair of spikes with the tip at de + di ∼1.84 Å. The short H⋯O/O⋯H contacts may be masked by strong O—H⋯O hydrogen bonding in this plot. In the presence of a weak C—H⋯π inter­action in the crystal, the two pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts with 14.0% contribution to the HS, Fig. 6[link]d, and the two pairs of thin and thick edges at de + di ∼2.91 and 2.89 Å, respectively, result from short inter­atomic H⋯C/C⋯H contacts (Table 2[link]). The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions in Fig. 7[link]ac, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯H10B 2.87 C17A⋯H15 2.78
O1⋯H13i 2.65 C17B⋯H20B 2.75
O1⋯H8C 2.82 C18A⋯H9Bv 2.87
O2⋯H42ii 1.90 (3) C18B⋯H8Bvi 2.79
O2⋯H9Ciii 2.48 C20⋯H17C 2.76
O3⋯H12iv 2.85 H4⋯H8A 2.37
O3⋯H11v 2.52 H4⋯H9A 2.38
O3⋯H41v 2.00 (3) H6⋯H10A 2.37
O3⋯H19B 2.35 H6⋯H9C 2.50
O4⋯H15ii 2.62 H8A⋯H20Avii 2.31
O4⋯H11 2.89 H8B⋯H17Aviii 2.44
C1⋯H42ii 2.61 (3) H8B⋯H18Eviii 2.14
C1⋯H8C 2.59 H11⋯H41 2.52
C1⋯H10B 2.71 H15⋯H18F 2.48
C14⋯H17D 2.40 H15⋯H17B 2.00
C14⋯H17B 2.74 H17A⋯H19A 1.96
C14⋯H18B 2.82 H17C⋯H20B 2.16
C15⋯H17D 2.88 H18A⋯H9Bv 2.50
C15⋯H17B 2.44 H18E⋯H19A 2.46
C16⋯H18B 2.80    
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [-x-1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) x, y, z-1; (viii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title complex, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) H⋯N/N⋯H and (g) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H and (c) H⋯C/C⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hartwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

The title compound was prepared by the reaction of MnSO4·H2O (0.85 g, 5 mmol) in H2O (100 ml) and N,N-di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 2,4,6-tri­methyl­benzoate (1.86 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving colourless single crystals.

6. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. Water H atoms H41 and H42 were located in a difference-Fourier map and freely refined. C-bound H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methyl­ene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for other H atoms. The disordered ethyl group (C17, C18) was refined over two sets of sites with distance restraints and SIMU and DELU restraints (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The refined occupancy ratio of the two orientations is 0.282 (10):0.718 (10).

Table 3
Experimental details

Crystal data
Chemical formula [Mn(C10H11O2)2(C10H14N2O)2(H2O)2]
Mr 773.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.1040 (4), 10.8828 (3), 15.7167 (4)
β (°) 111.570 (2)
V3) 2084.37 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.45 × 0.37 × 0.35
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.851, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 36139, 5178, 3995
Rint 0.030
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.05
No. of reflections 5178
No. of parameters 274
No. of restraints 42
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.37
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Diaquabis(N,N-diethylnicotinamide-κN1)bis(2,4,6-trimethylbenzoato-κO)manganese(II) top
Crystal data top
[Mn(C10H11O2)2(C10H14N2O)2(H2O)2]F(000) = 822
Mr = 773.83Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9985 reflections
a = 13.1040 (4) Åθ = 2.5–28.2°
b = 10.8828 (3) ŵ = 0.37 mm1
c = 15.7167 (4) ÅT = 296 K
β = 111.570 (2)°Block, translucent light colourless
V = 2084.37 (10) Å30.45 × 0.37 × 0.35 mm
Z = 2
Data collection top
Bruker SMART BREEZE CCD
diffractometer
5178 independent reflections
Radiation source: fine-focus sealed tube3995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1717
Tmin = 0.851, Tmax = 0.882k = 1413
36139 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.7599P]
where P = (Fo2 + 2Fc2)/3
5178 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.51 e Å3
42 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.00000.00000.00000.04559 (14)
O10.14717 (12)0.04378 (15)0.10765 (9)0.0615 (4)
O20.25400 (18)0.1155 (2)0.11016 (17)0.1263 (10)
O30.02706 (15)0.12536 (14)0.39218 (9)0.0699 (4)
O40.08409 (16)0.14917 (14)0.04553 (11)0.0590 (4)
H410.058 (2)0.220 (3)0.0636 (19)0.077 (8)*
H420.143 (2)0.153 (2)0.005 (2)0.075 (9)*
N10.04496 (14)0.13195 (15)0.09755 (10)0.0534 (4)
N20.1788 (2)0.0256 (3)0.30478 (15)0.0975 (8)
C10.23618 (19)0.0138 (2)0.13796 (16)0.0667 (6)
C20.32465 (17)0.0468 (2)0.21779 (15)0.0633 (5)
C30.3318 (2)0.0191 (2)0.30595 (17)0.0696 (6)
C40.4057 (2)0.0847 (3)0.37831 (17)0.0805 (7)
H40.41010.06770.43750.097*
C50.4726 (2)0.1739 (3)0.36515 (19)0.0837 (8)
C60.4672 (2)0.1957 (3)0.2775 (2)0.0871 (8)
H60.51420.25360.26800.104*
C70.3934 (2)0.1337 (3)0.20238 (17)0.0763 (6)
C80.2595 (3)0.0781 (3)0.3224 (2)0.0988 (9)
H8A0.25850.06880.38280.148*
H8B0.28750.15790.31660.148*
H8C0.18620.06970.27810.148*
C90.5484 (3)0.2479 (4)0.4452 (3)0.1240 (14)
H9A0.56210.20310.50090.186*
H9B0.51450.32510.44830.186*
H9C0.61650.26230.43700.186*
C100.3879 (3)0.1594 (4)0.1064 (2)0.1176 (12)
H10A0.43270.22950.10700.176*
H10B0.31340.17600.06760.176*
H10C0.41430.08920.08360.176*
C110.0577 (2)0.2526 (2)0.08377 (14)0.0671 (6)
H110.05010.28560.03190.081*
C120.0817 (3)0.3307 (2)0.14275 (16)0.0805 (8)
H120.08870.41470.13110.097*
C130.0952 (2)0.2834 (2)0.21932 (14)0.0661 (6)
H130.11080.33450.26040.079*
C140.08498 (16)0.15840 (18)0.23330 (11)0.0508 (4)
C150.05883 (18)0.08718 (18)0.17157 (12)0.0532 (4)
H150.05040.00300.18220.064*
C160.09574 (19)0.10153 (18)0.31679 (12)0.0580 (5)
C17A0.2372 (10)0.0494 (10)0.2202 (6)0.085 (4)0.282 (10)
H17A0.26080.12850.23480.102*0.282 (10)
H17B0.19260.06120.18350.102*0.282 (10)
C17B0.2820 (5)0.0332 (6)0.2173 (4)0.0939 (18)0.718 (10)
H17C0.34620.04790.23260.113*0.718 (10)
H17D0.27520.10010.17900.113*0.718 (10)
C18A0.3339 (15)0.036 (2)0.1740 (14)0.155 (8)0.282 (10)
H18A0.35820.02690.10890.233*0.282 (10)
H18B0.31140.11990.19020.233*0.282 (10)
H18C0.39290.01650.19400.233*0.282 (10)
C18B0.2932 (6)0.0862 (6)0.1678 (5)0.142 (3)0.718 (10)
H18D0.35310.08110.11000.213*0.718 (10)
H18E0.30710.15070.20380.213*0.718 (10)
H18F0.22660.10340.15790.213*0.718 (10)
C190.1838 (4)0.0419 (4)0.3858 (2)0.1213 (14)
H19A0.20420.12670.36910.146*
H19B0.11180.04150.43420.146*
C200.2624 (5)0.0130 (5)0.4194 (3)0.171 (3)
H20A0.26560.03430.46990.257*
H20B0.33350.01410.37130.257*
H20C0.24020.09550.43920.257*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0618 (2)0.0489 (2)0.02981 (18)0.00067 (16)0.02117 (16)0.00058 (13)
O10.0652 (9)0.0672 (8)0.0465 (7)0.0039 (7)0.0140 (6)0.0079 (6)
O20.0932 (14)0.1235 (18)0.1255 (18)0.0337 (13)0.0030 (13)0.0690 (15)
O30.1131 (12)0.0614 (8)0.0348 (7)0.0133 (8)0.0266 (7)0.0056 (6)
O40.0774 (10)0.0539 (8)0.0500 (8)0.0010 (7)0.0286 (8)0.0088 (6)
N10.0761 (10)0.0536 (9)0.0367 (7)0.0019 (7)0.0281 (7)0.0001 (6)
N20.127 (2)0.1230 (19)0.0551 (12)0.0580 (16)0.0490 (13)0.0147 (12)
C10.0634 (12)0.0778 (15)0.0558 (12)0.0048 (10)0.0184 (10)0.0167 (10)
C20.0560 (11)0.0751 (13)0.0557 (11)0.0062 (10)0.0170 (9)0.0126 (10)
C30.0635 (12)0.0839 (16)0.0574 (12)0.0026 (11)0.0178 (10)0.0092 (10)
C40.0739 (15)0.107 (2)0.0550 (13)0.0008 (14)0.0166 (11)0.0126 (12)
C50.0642 (14)0.107 (2)0.0733 (16)0.0069 (13)0.0180 (12)0.0277 (14)
C60.0677 (15)0.105 (2)0.0923 (19)0.0159 (14)0.0339 (14)0.0174 (16)
C70.0677 (13)0.0976 (18)0.0669 (14)0.0037 (13)0.0287 (11)0.0072 (12)
C80.117 (2)0.098 (2)0.0807 (19)0.0161 (18)0.0365 (17)0.0007 (16)
C90.099 (2)0.162 (4)0.100 (2)0.040 (2)0.0236 (18)0.059 (2)
C100.123 (3)0.161 (3)0.080 (2)0.015 (2)0.051 (2)0.004 (2)
C110.1095 (18)0.0582 (11)0.0469 (10)0.0063 (11)0.0442 (11)0.0089 (9)
C120.143 (2)0.0507 (11)0.0622 (13)0.0147 (13)0.0547 (15)0.0080 (10)
C130.1038 (17)0.0565 (11)0.0481 (10)0.0091 (11)0.0397 (11)0.0032 (8)
C140.0689 (11)0.0549 (10)0.0320 (8)0.0057 (8)0.0224 (8)0.0043 (7)
C150.0819 (13)0.0471 (9)0.0360 (8)0.0005 (9)0.0280 (8)0.0004 (7)
C160.0904 (14)0.0546 (10)0.0381 (9)0.0074 (10)0.0344 (9)0.0077 (7)
C17A0.129 (9)0.068 (6)0.059 (6)0.048 (6)0.037 (5)0.022 (4)
C17B0.098 (4)0.109 (4)0.085 (3)0.031 (3)0.046 (3)0.017 (3)
C18A0.121 (12)0.197 (19)0.103 (12)0.017 (10)0.011 (9)0.007 (13)
C18B0.144 (5)0.143 (5)0.142 (5)0.059 (4)0.057 (4)0.071 (4)
C190.183 (4)0.124 (3)0.080 (2)0.064 (3)0.077 (2)0.0064 (19)
C200.164 (4)0.283 (7)0.100 (3)0.063 (4)0.088 (3)0.019 (3)
Geometric parameters (Å, º) top
Mn1—O12.0999 (14)C9—H9C0.9600
Mn1—O1i2.0999 (14)C10—H10A0.9600
Mn1—O42.2230 (15)C10—H10B0.9600
Mn1—O4i2.2230 (15)C10—H10C0.9600
Mn1—N12.3289 (15)C11—C121.377 (3)
Mn1—N1i2.3289 (15)C11—H110.9300
O1—C11.254 (3)C12—H120.9300
O2—C11.243 (3)C13—C121.379 (3)
O3—C161.224 (3)C13—H130.9300
O4—H410.85 (3)C14—C131.376 (3)
O4—H420.80 (3)C14—C151.380 (2)
N1—C111.331 (3)C14—C161.504 (2)
N1—C151.334 (2)C15—H150.9300
N2—C17A1.506 (9)C16—N21.324 (3)
N2—C17B1.536 (7)C17A—C18A1.526 (17)
N2—C191.493 (3)C17A—H17A0.9700
C2—C11.511 (3)C17A—H17B0.9700
C2—C31.387 (3)C17B—C18B1.493 (8)
C2—C71.388 (4)C17B—H17C0.9700
C3—C81.505 (4)C17B—H17D0.9700
C4—C31.390 (3)C18A—H18A0.9600
C4—C51.373 (4)C18A—H18B0.9600
C4—H40.9300C18A—H18C0.9600
C5—C61.373 (4)C18B—H18D0.9600
C5—C91.516 (4)C18B—H18E0.9600
C6—H60.9300C18B—H18F0.9600
C7—C61.395 (4)C19—C201.447 (6)
C7—C101.510 (4)C19—H19A0.9700
C8—H8A0.9600C19—H19B0.9700
C8—H8B0.9600C20—H20A0.9600
C8—H8C0.9600C20—H20B0.9600
C9—H9A0.9600C20—H20C0.9600
C9—H9B0.9600
O1···H10B2.87C16···H18B2.80
O1···H13ii2.65C16···H41v2.93 (3)
O1···H8C2.82C17A···H152.78
O2···H42i1.90 (3)C17B···H20B2.75
O2···H9Ciii2.48C18A···H9Bv2.87
O3···H12iv2.85C18B···H8Bvi2.79
O3···H11v2.52C18B···H19A2.97
O3···H41v2.00 (3)C19···H18E2.97
O3···H19B2.35C20···H17C2.76
O4···H15i2.62H4···H8A2.37
O4···H112.89H4···H9A2.38
C1···H10C2.98H6···H10A2.37
C1···H42i2.61 (3)H6···H9C2.50
C1···H8C2.59H8A···H20Avii2.31
C1···H10B2.71H8B···H17Aviii2.44
C5···H18Bii2.98H8B···H18Eviii2.14
C13···H17D2.97H11···H412.52
C14···H17D2.40H15···H18F2.48
C14···H17B2.74H15···H17B2.00
C14···H18B2.82H17A···H19A1.96
C15···H17D2.88H17C···H20B2.16
C15···H17B2.44H18A···H9Bv2.50
C15···H18F2.97H18E···H19A2.46
O1i—Mn1—O1180.00 (7)H9A—C9—H9B109.5
O1—Mn1—O489.54 (6)H9A—C9—H9C109.5
O1i—Mn1—O490.46 (6)H9B—C9—H9C109.5
O1—Mn1—O4i90.46 (6)C7—C10—H10A109.5
O1i—Mn1—O4i89.54 (6)C7—C10—H10B109.5
O1—Mn1—N190.62 (6)C7—C10—H10C109.5
O1i—Mn1—N189.38 (6)H10A—C10—H10B109.5
O1—Mn1—N1i89.38 (6)H10A—C10—H10C109.5
O1i—Mn1—N1i90.62 (6)H10B—C10—H10C109.5
O4i—Mn1—O4180.00 (9)N1—C11—C12123.08 (18)
O4—Mn1—N192.12 (6)N1—C11—H11118.5
O4i—Mn1—N187.88 (6)C12—C11—H11118.5
O4—Mn1—N1i87.88 (6)C11—C12—C13119.4 (2)
O4i—Mn1—N1i92.12 (6)C11—C12—H12120.3
N1—Mn1—N1i180.00 (7)C13—C12—H12120.3
Mn1—O4—H41126.1 (18)C12—C13—H13120.9
Mn1—O4—H42103 (2)C14—C13—C12118.18 (18)
H41—O4—H42111 (3)C14—C13—H13120.9
C1—O1—Mn1130.03 (14)C13—C14—C15118.53 (17)
C11—N1—Mn1123.24 (12)C13—C14—C16120.74 (16)
C11—N1—C15116.92 (16)C15—C14—C16120.64 (17)
C15—N1—Mn1119.84 (12)N1—C15—C14123.83 (18)
C16—N2—C17A126.0 (4)N1—C15—H15118.1
C16—N2—C17B120.1 (3)C14—C15—H15118.1
C16—N2—C19118.5 (2)O3—C16—N2122.95 (19)
C19—N2—C17A108.6 (4)O3—C16—C14119.10 (19)
C19—N2—C17B119.3 (3)N2—C16—C14117.94 (18)
O1—C1—C2114.81 (19)N2—C17A—C18A98.7 (12)
O2—C1—O1125.5 (2)N2—C17A—H17A112.0
O2—C1—C2119.7 (2)N2—C17A—H17B112.0
C3—C2—C1118.9 (2)C18A—C17A—H17A112.0
C3—C2—C7120.9 (2)C18A—C17A—H17B112.0
C7—C2—C1120.1 (2)H17A—C17A—H17B109.7
C2—C3—C4118.4 (2)N2—C17B—H17C110.1
C2—C3—C8120.6 (2)N2—C17B—H17D110.1
C4—C3—C8121.0 (2)C18B—C17B—N2107.8 (6)
C3—C4—H4118.9C18B—C17B—H17C110.1
C5—C4—C3122.1 (3)C18B—C17B—H17D110.1
C5—C4—H4118.9H17C—C17B—H17D108.5
C4—C5—C6118.2 (2)C17B—C18B—H18D109.5
C4—C5—C9120.7 (3)C17B—C18B—H18E109.5
C6—C5—C9121.1 (3)C17B—C18B—H18F109.5
C5—C6—C7122.0 (3)H18D—C18B—H18E109.5
C5—C6—H6119.0H18D—C18B—H18F109.5
C7—C6—H6119.0H18E—C18B—H18F109.5
C2—C7—C6118.3 (2)N2—C19—H19A109.3
C2—C7—C10120.4 (3)N2—C19—H19B109.3
C6—C7—C10121.3 (3)C20—C19—N2111.6 (4)
C3—C8—H8A109.5C20—C19—H19A109.3
C3—C8—H8B109.5C20—C19—H19B109.3
C3—C8—H8C109.5H19A—C19—H19B108.0
H8A—C8—H8B109.5C19—C20—H20A109.5
H8A—C8—H8C109.5C19—C20—H20B109.5
H8B—C8—H8C109.5C19—C20—H20C109.5
C5—C9—H9A109.5H20A—C20—H20B109.5
C5—C9—H9B109.5H20A—C20—H20C109.5
C5—C9—H9C109.5H20B—C20—H20C109.5
O4—Mn1—O1—C1168.4 (2)C1—C2—C3—C85.5 (4)
O4i—Mn1—O1—C111.6 (2)C7—C2—C3—C43.1 (4)
N1—Mn1—O1—C199.5 (2)C7—C2—C3—C8178.0 (2)
N1i—Mn1—O1—C180.5 (2)C1—C2—C7—C6174.2 (2)
O1—Mn1—N1—C1162.66 (19)C1—C2—C7—C106.0 (4)
O1i—Mn1—N1—C11117.34 (19)C3—C2—C7—C62.3 (4)
O1—Mn1—N1—C15117.53 (16)C3—C2—C7—C10177.6 (3)
O1i—Mn1—N1—C1562.47 (16)C5—C4—C3—C21.1 (4)
O4—Mn1—N1—C1126.91 (19)C5—C4—C3—C8179.9 (3)
O4i—Mn1—N1—C11153.09 (19)C3—C4—C5—C61.7 (4)
O4—Mn1—N1—C15152.91 (16)C3—C4—C5—C9177.1 (3)
O4i—Mn1—N1—C1527.09 (16)C4—C5—C6—C72.6 (4)
Mn1—O1—C1—O22.5 (4)C9—C5—C6—C7176.2 (3)
Mn1—O1—C1—C2179.51 (14)C2—C7—C6—C50.6 (4)
Mn1—N1—C11—C12178.4 (2)C10—C7—C6—C5179.5 (3)
C15—N1—C11—C121.4 (4)N1—C11—C12—C131.1 (4)
Mn1—N1—C15—C14179.68 (16)C14—C13—C12—C110.6 (4)
C11—N1—C15—C140.1 (3)C15—C14—C13—C121.7 (4)
C16—N2—C17A—C18A96.6 (11)C16—C14—C13—C12178.3 (2)
C17B—N2—C17A—C18A0.4 (10)C13—C14—C15—N11.5 (3)
C19—N2—C17A—C18A113.2 (10)C16—C14—C15—N1178.04 (19)
C16—N2—C17B—C18B117.7 (4)C13—C14—C16—O365.7 (3)
C17A—N2—C17B—C18B6.0 (7)C13—C14—C16—N2115.6 (3)
C19—N2—C17B—C18B78.9 (5)C15—C14—C16—O3110.9 (2)
C16—N2—C19—C20102.2 (4)C15—C14—C16—N267.9 (3)
C17A—N2—C19—C20105.0 (7)O3—C16—N2—C17A152.8 (7)
C17B—N2—C19—C2061.5 (5)O3—C16—N2—C17B158.4 (3)
C3—C2—C1—O189.8 (3)O3—C16—N2—C195.2 (4)
C3—C2—C1—O287.4 (3)C14—C16—N2—C17A26.0 (8)
C7—C2—C1—O186.7 (3)C14—C16—N2—C17B22.9 (4)
C7—C2—C1—O296.0 (3)C14—C16—N2—C19173.5 (3)
C1—C2—C3—C4173.4 (2)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x1, y1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y1/2, z+1/2; (vii) x, y, z1; (viii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O3ii0.85 (3)2.00 (3)2.838 (2)171 (3)
O4—H42···O2i0.80 (3)1.90 (3)2.660 (3)157 (3)
C9—H9C···O2ix0.962.483.366 (5)154
C11—H11···O3ii0.932.523.447 (3)179
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (ix) x1, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39–43.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344–2348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1365–m1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia.  Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606–1609.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds