research communications
Synthesis,
and aggregation-induced emission of a new pyrene-based compound, 3,3-diphenyl-2-[4-(pyren-1-yl)phenyl]acrylonitrileaSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: zhanglifang@cumt.edu.cn
The title organic compound, C37H23N, crystallizing in the triclinic P, has been designed, synthesized and characterized by single-crystal X-ray diffaction, MS, NMR and elemental analysis. There are alternating relatively strong and weak intermolecular π–π interactions between adjacent pyrene ring systems, forming a one-dimensional supramolecular structure. The compound is weakly fluorescent in THF solution, but it is highly emissive in the condensed phase, revealing distinct aggregation-induced emission (AIE) characteristics.
Keywords: synthesis; aggregation-induced emission; pyrene; crystal structure.
CCDC reference: 1834096
1. Chemical context
Over the last several decades, research on organic fluorescent materials has gained important momentum because of their wide range of applications in organic light-emitting diodes (OLED), organic field-effect transistors (OFET), organic lasers, fluorescent sensors and solar cells and so on (Indumathi et al., 2017; Mishra et al., 2011; Nie et al., 2017; Sasabe et al., 2011; Zhao et al., 2010). As a well known fluorophore, pyrene and its derivatives have attracted much attention owing to its pure blue fluorescence with high exceptionally long fluorescence lifetime, excellent thermal stability and high charge-carrier mobility (Figueira-Duarte et al., 2011; Luo et al., 2001; Zhang et al., 2016d, 2017). However, pyrene-based compounds show notorious aggregation-caused quenching (ACQ), which severely limits their application range. Encouragingly, the discovery of aggregation-induced emission (AIE) by Tang and co-workers has opened up a new approach for excellent emission materials in the solid state (Yuan et al., 2013). Indeed, propeller-like conformations such as tetraphenylethene (TPE) and triphenylacrylonitrile (TPAN) have been widely used for the design of AIE-active compounds because of their easy preparation and outstanding AIE effects (Han et al., 2016; Jadhav et al., 2015; Lu et al., 2015; Tasso et al., 2015; Zhang et al., 2016a). Compared to the propeller-shaped AIE-active moiety TPE, TPAN also exhibits typical crystallization-induced emission (CIE) behaviours, so the combination of TPAN with other fluorophores can readily generate mechanochromic materials, displaying reversible solid-state emission upon mechanical stimuli and solvent evaporation (Hirata et al., 2006; Zhang et al., 2016b). As a result of their promising potential applications in optical recording and as fluorescent switches and security inks, these mechanochromic materials have attracted considerable attention (Srinivasan et al., 2009; Zhang et al., 2018). Herein, we report the synthesis and of a new pyrene-based triphenylacrylonitrile, 2-[4-(1-pyrenyl)phenyl]-3,3-diphenylacrylonitrile, using a Suzuki cross-coupling reaction between 2-(4-bromophenyl)-3,3-diphenylacrylonitrile and 1-pyrenylboronic acid, which may exhibit both AIE and mechanochromic characteristics.
2. Structural commentary
The single X-ray . The 2,3,3-triphenylacrylonitrile unit, which exhibits the typical propeller-shaped structure, is linked by a planar pyrenyl unit at one phenyl segment. The length of the central C2—C3 bond is 1.3623 (14) Å, which is typical for a double C=C bond. The C—N bond length is 1.1479 (14) Å, which is comparable with those of other cyanide-containing organic or inorganic compounds, showing the existence of a cyanide group. The pyrenyl ring system is almost strictly planar, with the largest derivation from the mean plane being 0.027 (3) Å for atom C31.
agrees well with the expected structure of the title compound, as shown in Fig. 13. Supramolecular features
In the crystal, there are alternating relatively strong and weak intermolecular π–π interactions between adjacent pyrene ring systems with shortest interatomic distances C26⋯C37(1 − x, −y, 2 − z) = 3.511 (3) and C31⋯C31(2 − x, −y, 2 − z) = 3.306 (3) Å, which link the molecules into a one-dimensional supramolecular structure. In addition, there are C6—H6⋯N1 interactions with a C⋯N distance of 3.3563 (17) Å (Table 1) between the cyanide nitrogen atom and a benzene carbon atom, which link the above one-dimensional supramolecular structures into two-dimensional supramolecular networks parallel to (010), as shown in Fig. 2. These intermolecular interactions can be compared with those in 1-pyrenyl-based triarylamines (Zhang et al., 2016c).
4. Aggregation-induced emission
The corresponding emission spectra of the title compound in aqueous THF with different water/THF ratios at a concentration of 5 × 10−5 M are shown in Fig. 3. It can be seen that the title compound shows weak fluorescence when the water fraction is below 70%, which is ascribed to the active intramolecular rotations of the genuinely dissolved luminogens in these mixtures. The yellow fluorescence starts to increase gradually at a water content of 80%, at which the luminogens begin to aggregate, and reaches a maximum, which is nearly 50 times stronger than that in the pure THF solution, when the water content is 90%. The title compound therefore exhibits typical aggregation-induced emission (AIE) activity.
5. Database Suvey
The structure of the title compound can be compared with our previously reported seriors of pyrenyl-based triarylamines in which two compounds crystallize in the same P (Zhang et al., 2016c). In these compounds, the substituent groups are all at the 1-position of the pyrene ring system. Importantly, because of the existence of the relatively larger planar pyrene ring system, there are intermolecular π–π interactions between adjacent pyrene ring systems, providing evidence that the presence of a pyrene ring system is favorable for the formation of strong intermolecular interactions.
6. Synthesis and crystallization
The starting material 2-(4-bromophenyl)-3,3-diphenylacrylonitrile was synthesized according to the literature (Wang et al., 2000). All other chemicals were purchased from commercial sources and used as received without further purification. A mixture of 2-(4-bromophenyl)-3,3-diphenylacrylonitrile (1.8013 g, 5 mmol), 1-pyrenylboronic acid (1.2304 g, 5 mmol), catalyst Pd(PPh3)4 (0.1156 g, 2 mol%), K2CO3 (2.7642 g, 20 mmol, dissolved in 5 mL of water) and 20 mL of MeOH in 80 mL of toluene was stirred at 353 K for 16 h. The reaction mixture was then cooled down and extracted with methylene dichloride. The combined organic layer was dried over anhydrous MgSO4 and filtered. The solvent was removed and the residue was purified by silica gel using hexane/methylene dichloride (v/v = 1:1) as to afford the title compound (2.0683 g; yield 86%). Light-yellow block-shaped crystals were obtained by slow evaporation of a hexane/methylene dichloride solution (v/v = 1:1)
1H NMR (600 MHz, chloroform-d) δ 8.27–8.18 (m, 3H), 8.16–8.10 (m, 3H), 8.09–8.02 (m, 2H), 7.97 (d, J = 7.8 Hz, 1H), 7.59–7.46 (m, 9H), 7.40–7.29 (m, 3H), 7.21–7.15 (m, 2H). MALDI–TOF MS: m/z calculated for C37H23N 481.5853, found 481.5806 [M]+. Elemental analysis calculated for C37H23N: C, 92.18%; H, 4.86%; N, 2.85%; found: C, 92.28%, H, 4.81%; N, 2.91%.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed in calculated positions C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1834096
https://doi.org/10.1107/S2056989018005182/eb2006sup1.cif
contains datablocks I, 1. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005182/eb2006Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005182/eb2006Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C37H23N | Z = 2 |
Mr = 481.51 | F(000) = 504 |
Triclinic, P1 | Dx = 1.283 Mg m−3 |
a = 9.2277 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6445 (3) Å | Cell parameters from 2445 reflections |
c = 14.639 (2) Å | θ = 3.0–26.4° |
α = 105.169 (2)° | µ = 0.07 mm−1 |
β = 94.806 (2)° | T = 123 K |
γ = 113.255 (2)° | Block, yellow |
V = 1246.38 (18) Å3 | 0.12 × 0.12 × 0.10 mm |
Bruker APEXII CCD area-detector diffractometer | 4402 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
φ and ω scans | θmax = 26.4°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2015) | h = −11→11 |
Tmin = 0.981, Tmax = 0.995 | k = −13→13 |
22549 measured reflections | l = −17→18 |
5093 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2438P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5093 reflections | Δρmax = 0.22 e Å−3 |
343 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 1.02807 (12) | 0.88812 (10) | 0.68529 (7) | 0.0324 (2) | |
C1 | 0.94092 (13) | 0.76789 (11) | 0.65188 (7) | 0.0229 (2) | |
C2 | 0.83242 (12) | 0.61531 (11) | 0.61689 (7) | 0.0196 (2) | |
C3 | 0.77520 (11) | 0.54507 (11) | 0.52005 (7) | 0.0191 (2) | |
C4 | 0.80379 (11) | 0.62187 (11) | 0.44699 (7) | 0.0200 (2) | |
C5 | 0.79817 (13) | 0.75520 (12) | 0.46234 (8) | 0.0241 (2) | |
H5 | 0.7715 | 0.7965 | 0.5187 | 0.029* | |
C6 | 0.83202 (14) | 0.82631 (12) | 0.39420 (8) | 0.0279 (2) | |
H6 | 0.8284 | 0.9150 | 0.4054 | 0.033* | |
C7 | 0.87130 (13) | 0.76576 (12) | 0.30952 (8) | 0.0273 (2) | |
H7 | 0.8958 | 0.8144 | 0.2645 | 0.033* | |
C8 | 0.87392 (13) | 0.63244 (12) | 0.29233 (8) | 0.0266 (2) | |
H8 | 0.8992 | 0.5912 | 0.2353 | 0.032* | |
C9 | 0.83892 (12) | 0.56010 (11) | 0.35990 (7) | 0.0228 (2) | |
H9 | 0.8388 | 0.4698 | 0.3472 | 0.027* | |
C10 | 0.68717 (12) | 0.38450 (11) | 0.48036 (7) | 0.0208 (2) | |
C11 | 0.54277 (13) | 0.31868 (12) | 0.41204 (7) | 0.0265 (2) | |
H11 | 0.4995 | 0.3752 | 0.3924 | 0.032* | |
C12 | 0.46275 (15) | 0.16898 (13) | 0.37298 (8) | 0.0369 (3) | |
H12 | 0.3654 | 0.1259 | 0.3282 | 0.044* | |
C13 | 0.52712 (17) | 0.08421 (13) | 0.40034 (9) | 0.0420 (3) | |
H13 | 0.4735 | −0.0159 | 0.3740 | 0.050* | |
C14 | 0.67154 (18) | 0.14849 (13) | 0.46697 (10) | 0.0402 (3) | |
H14 | 0.7157 | 0.0914 | 0.4849 | 0.048* | |
C15 | 0.75108 (14) | 0.29761 (12) | 0.50735 (9) | 0.0297 (3) | |
H15 | 0.8476 | 0.3399 | 0.5527 | 0.036* | |
C16 | 0.79833 (12) | 0.55102 (10) | 0.69650 (7) | 0.0191 (2) | |
C17 | 0.64459 (12) | 0.44808 (12) | 0.69409 (8) | 0.0243 (2) | |
H17 | 0.5606 | 0.4181 | 0.6418 | 0.029* | |
C18 | 0.61664 (12) | 0.39052 (12) | 0.76912 (8) | 0.0251 (2) | |
H18 | 0.5137 | 0.3226 | 0.7666 | 0.030* | |
C19 | 0.74037 (12) | 0.43273 (11) | 0.84834 (7) | 0.0197 (2) | |
C20 | 0.89266 (12) | 0.53771 (11) | 0.85158 (7) | 0.0215 (2) | |
H20 | 0.9763 | 0.5683 | 0.9042 | 0.026* | |
C21 | 0.92078 (12) | 0.59701 (11) | 0.77726 (7) | 0.0207 (2) | |
H21 | 1.0225 | 0.6683 | 0.7813 | 0.025* | |
C22 | 0.71039 (11) | 0.36891 (11) | 0.92838 (7) | 0.0197 (2) | |
C23 | 0.65220 (12) | 0.42907 (11) | 1.00476 (8) | 0.0228 (2) | |
H23 | 0.6337 | 0.5090 | 1.0052 | 0.027* | |
C24 | 0.62136 (12) | 0.37253 (11) | 1.07996 (7) | 0.0239 (2) | |
H24 | 0.5815 | 0.4142 | 1.1296 | 0.029* | |
C25 | 0.64954 (11) | 0.25348 (11) | 1.08188 (7) | 0.0205 (2) | |
C26 | 0.62014 (12) | 0.19169 (12) | 1.15898 (7) | 0.0254 (2) | |
H26 | 0.5804 | 0.2318 | 1.2094 | 0.031* | |
C27 | 0.64880 (13) | 0.07757 (12) | 1.15974 (8) | 0.0275 (2) | |
H27 | 0.6296 | 0.0412 | 1.2110 | 0.033* | |
C28 | 0.70848 (12) | 0.01052 (11) | 1.08316 (8) | 0.0242 (2) | |
C29 | 0.73803 (13) | −0.10905 (12) | 1.08179 (9) | 0.0306 (3) | |
H29 | 0.7200 | −0.1470 | 1.1324 | 0.037* | |
C30 | 0.79388 (14) | −0.17187 (12) | 1.00585 (9) | 0.0327 (3) | |
H30 | 0.8124 | −0.2516 | 1.0061 | 0.039* | |
C31 | 0.82237 (13) | −0.11705 (12) | 0.92967 (9) | 0.0287 (2) | |
H31 | 0.8589 | −0.1607 | 0.8790 | 0.034* | |
C32 | 0.79652 (12) | 0.00371 (11) | 0.92856 (8) | 0.0227 (2) | |
C33 | 0.83002 (12) | 0.06669 (11) | 0.85275 (8) | 0.0233 (2) | |
H33 | 0.8716 | 0.0273 | 0.8032 | 0.028* | |
C34 | 0.80244 (12) | 0.18199 (11) | 0.85180 (7) | 0.0214 (2) | |
H34 | 0.8242 | 0.2193 | 0.8011 | 0.026* | |
C35 | 0.74010 (11) | 0.24854 (10) | 0.92750 (7) | 0.0182 (2) | |
C36 | 0.70957 (11) | 0.19041 (11) | 1.00497 (7) | 0.0187 (2) | |
C37 | 0.73828 (11) | 0.06826 (11) | 1.00549 (7) | 0.0205 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0421 (6) | 0.0230 (5) | 0.0248 (5) | 0.0069 (4) | 0.0025 (4) | 0.0092 (4) |
C1 | 0.0288 (5) | 0.0241 (6) | 0.0177 (5) | 0.0112 (5) | 0.0060 (4) | 0.0100 (4) |
C2 | 0.0196 (5) | 0.0189 (5) | 0.0221 (5) | 0.0087 (4) | 0.0052 (4) | 0.0087 (4) |
C3 | 0.0165 (4) | 0.0208 (5) | 0.0224 (5) | 0.0093 (4) | 0.0049 (4) | 0.0085 (4) |
C4 | 0.0171 (4) | 0.0214 (5) | 0.0199 (5) | 0.0067 (4) | 0.0027 (4) | 0.0073 (4) |
C5 | 0.0273 (5) | 0.0268 (5) | 0.0221 (5) | 0.0139 (4) | 0.0077 (4) | 0.0097 (4) |
C6 | 0.0331 (6) | 0.0272 (6) | 0.0292 (6) | 0.0151 (5) | 0.0082 (5) | 0.0144 (5) |
C7 | 0.0278 (5) | 0.0326 (6) | 0.0236 (5) | 0.0101 (5) | 0.0072 (4) | 0.0163 (5) |
C8 | 0.0252 (5) | 0.0317 (6) | 0.0202 (5) | 0.0095 (5) | 0.0067 (4) | 0.0078 (4) |
C9 | 0.0220 (5) | 0.0221 (5) | 0.0225 (5) | 0.0084 (4) | 0.0044 (4) | 0.0062 (4) |
C10 | 0.0214 (5) | 0.0210 (5) | 0.0201 (5) | 0.0081 (4) | 0.0083 (4) | 0.0073 (4) |
C11 | 0.0244 (5) | 0.0308 (6) | 0.0204 (5) | 0.0081 (4) | 0.0067 (4) | 0.0076 (4) |
C12 | 0.0323 (6) | 0.0337 (6) | 0.0232 (6) | −0.0020 (5) | 0.0087 (5) | 0.0006 (5) |
C13 | 0.0559 (8) | 0.0195 (6) | 0.0365 (7) | 0.0037 (6) | 0.0234 (6) | 0.0025 (5) |
C14 | 0.0576 (8) | 0.0267 (6) | 0.0465 (7) | 0.0232 (6) | 0.0239 (6) | 0.0157 (6) |
C15 | 0.0318 (6) | 0.0273 (6) | 0.0342 (6) | 0.0154 (5) | 0.0088 (5) | 0.0117 (5) |
C16 | 0.0218 (5) | 0.0177 (5) | 0.0199 (5) | 0.0099 (4) | 0.0054 (4) | 0.0072 (4) |
C17 | 0.0193 (5) | 0.0295 (6) | 0.0234 (5) | 0.0082 (4) | 0.0008 (4) | 0.0121 (4) |
C18 | 0.0174 (5) | 0.0274 (5) | 0.0280 (5) | 0.0049 (4) | 0.0031 (4) | 0.0133 (4) |
C19 | 0.0214 (5) | 0.0188 (5) | 0.0212 (5) | 0.0101 (4) | 0.0053 (4) | 0.0080 (4) |
C20 | 0.0201 (5) | 0.0218 (5) | 0.0198 (5) | 0.0070 (4) | 0.0007 (4) | 0.0067 (4) |
C21 | 0.0192 (5) | 0.0176 (5) | 0.0227 (5) | 0.0049 (4) | 0.0045 (4) | 0.0069 (4) |
C22 | 0.0154 (4) | 0.0203 (5) | 0.0196 (5) | 0.0042 (4) | 0.0009 (4) | 0.0071 (4) |
C23 | 0.0213 (5) | 0.0206 (5) | 0.0260 (5) | 0.0089 (4) | 0.0048 (4) | 0.0071 (4) |
C24 | 0.0215 (5) | 0.0254 (5) | 0.0201 (5) | 0.0078 (4) | 0.0057 (4) | 0.0034 (4) |
C25 | 0.0153 (4) | 0.0222 (5) | 0.0170 (5) | 0.0024 (4) | 0.0008 (4) | 0.0054 (4) |
C26 | 0.0197 (5) | 0.0317 (6) | 0.0163 (5) | 0.0033 (4) | 0.0028 (4) | 0.0070 (4) |
C27 | 0.0211 (5) | 0.0332 (6) | 0.0207 (5) | 0.0010 (4) | 0.0005 (4) | 0.0149 (4) |
C28 | 0.0168 (5) | 0.0236 (5) | 0.0252 (5) | 0.0010 (4) | −0.0032 (4) | 0.0113 (4) |
C29 | 0.0230 (5) | 0.0263 (6) | 0.0361 (6) | 0.0013 (4) | −0.0045 (5) | 0.0180 (5) |
C30 | 0.0257 (6) | 0.0203 (5) | 0.0477 (7) | 0.0062 (4) | −0.0038 (5) | 0.0137 (5) |
C31 | 0.0230 (5) | 0.0202 (5) | 0.0377 (6) | 0.0072 (4) | 0.0003 (4) | 0.0062 (5) |
C32 | 0.0169 (5) | 0.0194 (5) | 0.0259 (5) | 0.0046 (4) | −0.0015 (4) | 0.0053 (4) |
C33 | 0.0207 (5) | 0.0239 (5) | 0.0216 (5) | 0.0087 (4) | 0.0038 (4) | 0.0033 (4) |
C34 | 0.0206 (5) | 0.0243 (5) | 0.0169 (5) | 0.0070 (4) | 0.0039 (4) | 0.0072 (4) |
C35 | 0.0147 (4) | 0.0185 (5) | 0.0170 (5) | 0.0037 (4) | 0.0007 (4) | 0.0050 (4) |
C36 | 0.0142 (4) | 0.0191 (5) | 0.0169 (5) | 0.0025 (4) | −0.0005 (3) | 0.0051 (4) |
C37 | 0.0147 (5) | 0.0192 (5) | 0.0212 (5) | 0.0021 (4) | −0.0027 (4) | 0.0069 (4) |
N1—C1 | 1.1479 (14) | C19—C20 | 1.3953 (14) |
C1—C2 | 1.4482 (14) | C19—C22 | 1.4945 (13) |
C2—C3 | 1.3623 (14) | C20—C21 | 1.3881 (14) |
C2—C16 | 1.4947 (13) | C20—H20 | 0.9300 |
C3—C4 | 1.4889 (13) | C21—H21 | 0.9300 |
C3—C10 | 1.4911 (14) | C22—C23 | 1.3950 (14) |
C4—C5 | 1.4002 (15) | C22—C35 | 1.4094 (14) |
C4—C9 | 1.4006 (14) | C23—C24 | 1.3853 (15) |
C5—C6 | 1.3878 (14) | C23—H23 | 0.9300 |
C5—H5 | 0.9300 | C24—C25 | 1.3971 (15) |
C6—C7 | 1.3876 (16) | C24—H24 | 0.9300 |
C6—H6 | 0.9300 | C25—C36 | 1.4240 (14) |
C7—C8 | 1.3852 (16) | C25—C26 | 1.4419 (14) |
C7—H7 | 0.9300 | C26—C27 | 1.3438 (17) |
C8—C9 | 1.3898 (15) | C26—H26 | 0.9300 |
C8—H8 | 0.9300 | C27—C28 | 1.4369 (17) |
C9—H9 | 0.9300 | C27—H27 | 0.9300 |
C10—C11 | 1.3926 (15) | C28—C29 | 1.3986 (16) |
C10—C15 | 1.3938 (15) | C28—C37 | 1.4251 (14) |
C11—C12 | 1.3909 (16) | C29—C30 | 1.3884 (19) |
C11—H11 | 0.9300 | C29—H29 | 0.9300 |
C12—C13 | 1.378 (2) | C30—C31 | 1.3864 (17) |
C12—H12 | 0.9300 | C30—H30 | 0.9300 |
C13—C14 | 1.382 (2) | C31—C32 | 1.4007 (15) |
C13—H13 | 0.9300 | C31—H31 | 0.9300 |
C14—C15 | 1.3871 (17) | C32—C37 | 1.4203 (15) |
C14—H14 | 0.9300 | C32—C33 | 1.4352 (15) |
C15—H15 | 0.9300 | C33—C34 | 1.3514 (15) |
C16—C21 | 1.3967 (14) | C33—H33 | 0.9300 |
C16—C17 | 1.3994 (14) | C34—C35 | 1.4417 (14) |
C17—C18 | 1.3868 (14) | C34—H34 | 0.9300 |
C17—H17 | 0.9300 | C35—C36 | 1.4254 (13) |
C18—C19 | 1.3967 (14) | C36—C37 | 1.4275 (15) |
C18—H18 | 0.9300 | ||
N1—C1—C2 | 175.73 (11) | C21—C20—C19 | 120.78 (9) |
C3—C2—C1 | 120.14 (9) | C21—C20—H20 | 119.6 |
C3—C2—C16 | 126.86 (9) | C19—C20—H20 | 119.6 |
C1—C2—C16 | 112.98 (8) | C20—C21—C16 | 120.86 (9) |
C2—C3—C4 | 122.58 (9) | C20—C21—H21 | 119.6 |
C2—C3—C10 | 121.61 (9) | C16—C21—H21 | 119.6 |
C4—C3—C10 | 115.73 (8) | C23—C22—C35 | 119.64 (9) |
C5—C4—C9 | 118.34 (9) | C23—C22—C19 | 119.62 (9) |
C5—C4—C3 | 122.32 (9) | C35—C22—C19 | 120.74 (9) |
C9—C4—C3 | 119.33 (9) | C24—C23—C22 | 121.53 (10) |
C6—C5—C4 | 120.63 (10) | C24—C23—H23 | 119.2 |
C6—C5—H5 | 119.7 | C22—C23—H23 | 119.2 |
C4—C5—H5 | 119.7 | C23—C24—C25 | 120.60 (9) |
C7—C6—C5 | 120.35 (10) | C23—C24—H24 | 119.7 |
C7—C6—H6 | 119.8 | C25—C24—H24 | 119.7 |
C5—C6—H6 | 119.8 | C24—C25—C36 | 118.98 (9) |
C8—C7—C6 | 119.69 (10) | C24—C25—C26 | 122.48 (10) |
C8—C7—H7 | 120.2 | C36—C25—C26 | 118.54 (10) |
C6—C7—H7 | 120.2 | C27—C26—C25 | 121.57 (10) |
C7—C8—C9 | 120.26 (10) | C27—C26—H26 | 119.2 |
C7—C8—H8 | 119.9 | C25—C26—H26 | 119.2 |
C9—C8—H8 | 119.9 | C26—C27—C28 | 121.50 (9) |
C8—C9—C4 | 120.67 (10) | C26—C27—H27 | 119.3 |
C8—C9—H9 | 119.7 | C28—C27—H27 | 119.3 |
C4—C9—H9 | 119.7 | C29—C28—C37 | 118.84 (10) |
C11—C10—C15 | 118.72 (10) | C29—C28—C27 | 122.65 (10) |
C11—C10—C3 | 120.39 (9) | C37—C28—C27 | 118.52 (10) |
C15—C10—C3 | 120.83 (9) | C30—C29—C28 | 120.91 (10) |
C12—C11—C10 | 120.46 (11) | C30—C29—H29 | 119.5 |
C12—C11—H11 | 119.8 | C28—C29—H29 | 119.5 |
C10—C11—H11 | 119.8 | C31—C30—C29 | 120.71 (10) |
C13—C12—C11 | 120.26 (12) | C31—C30—H30 | 119.6 |
C13—C12—H12 | 119.9 | C29—C30—H30 | 119.6 |
C11—C12—H12 | 119.9 | C30—C31—C32 | 120.40 (11) |
C12—C13—C14 | 119.74 (11) | C30—C31—H31 | 119.8 |
C12—C13—H13 | 120.1 | C32—C31—H31 | 119.8 |
C14—C13—H13 | 120.1 | C31—C32—C37 | 119.40 (10) |
C13—C14—C15 | 120.42 (12) | C31—C32—C33 | 122.04 (10) |
C13—C14—H14 | 119.8 | C37—C32—C33 | 118.55 (9) |
C15—C14—H14 | 119.8 | C34—C33—C32 | 121.47 (9) |
C14—C15—C10 | 120.38 (11) | C34—C33—H33 | 119.3 |
C14—C15—H15 | 119.8 | C32—C33—H33 | 119.3 |
C10—C15—H15 | 119.8 | C33—C34—C35 | 121.57 (9) |
C21—C16—C17 | 118.43 (9) | C33—C34—H34 | 119.2 |
C21—C16—C2 | 119.78 (9) | C35—C34—H34 | 119.2 |
C17—C16—C2 | 121.76 (9) | C22—C35—C36 | 119.10 (9) |
C18—C17—C16 | 120.43 (9) | C22—C35—C34 | 122.76 (9) |
C18—C17—H17 | 119.8 | C36—C35—C34 | 118.13 (9) |
C16—C17—H17 | 119.8 | C25—C36—C35 | 120.14 (9) |
C17—C18—C19 | 121.18 (9) | C25—C36—C37 | 119.75 (9) |
C17—C18—H18 | 119.4 | C35—C36—C37 | 120.11 (9) |
C19—C18—H18 | 119.4 | C32—C37—C28 | 119.74 (10) |
C20—C19—C18 | 118.26 (9) | C32—C37—C36 | 120.13 (9) |
C20—C19—C22 | 120.70 (9) | C28—C37—C36 | 120.13 (10) |
C18—C19—C22 | 121.04 (9) | ||
C1—C2—C3—C4 | −7.36 (15) | C35—C22—C23—C24 | −0.53 (15) |
C16—C2—C3—C4 | 173.99 (9) | C19—C22—C23—C24 | 179.41 (9) |
C1—C2—C3—C10 | 169.22 (9) | C22—C23—C24—C25 | 0.67 (15) |
C16—C2—C3—C10 | −9.43 (15) | C23—C24—C25—C36 | −0.39 (15) |
C2—C3—C4—C5 | −39.58 (14) | C23—C24—C25—C26 | 179.60 (9) |
C10—C3—C4—C5 | 143.65 (10) | C24—C25—C26—C27 | −179.66 (10) |
C2—C3—C4—C9 | 139.89 (10) | C36—C25—C26—C27 | 0.33 (15) |
C10—C3—C4—C9 | −36.88 (12) | C25—C26—C27—C28 | −0.70 (16) |
C9—C4—C5—C6 | −2.14 (15) | C26—C27—C28—C29 | −179.46 (10) |
C3—C4—C5—C6 | 177.33 (9) | C26—C27—C28—C37 | 0.40 (15) |
C4—C5—C6—C7 | 0.29 (16) | C37—C28—C29—C30 | −0.64 (15) |
C5—C6—C7—C8 | 1.12 (17) | C27—C28—C29—C30 | 179.22 (10) |
C6—C7—C8—C9 | −0.62 (16) | C28—C29—C30—C31 | 0.28 (16) |
C7—C8—C9—C4 | −1.29 (15) | C29—C30—C31—C32 | 0.57 (16) |
C5—C4—C9—C8 | 2.65 (15) | C30—C31—C32—C37 | −1.02 (15) |
C3—C4—C9—C8 | −176.85 (9) | C30—C31—C32—C33 | 177.76 (9) |
C2—C3—C10—C11 | 132.68 (10) | C31—C32—C33—C34 | 179.06 (10) |
C4—C3—C10—C11 | −50.52 (12) | C37—C32—C33—C34 | −2.15 (15) |
C2—C3—C10—C15 | −50.29 (14) | C32—C33—C34—C35 | 0.84 (15) |
C4—C3—C10—C15 | 126.51 (10) | C23—C22—C35—C36 | 0.13 (14) |
C15—C10—C11—C12 | 1.15 (15) | C19—C22—C35—C36 | −179.81 (8) |
C3—C10—C11—C12 | 178.24 (9) | C23—C22—C35—C34 | −179.06 (9) |
C10—C11—C12—C13 | −1.11 (16) | C19—C22—C35—C34 | 1.00 (14) |
C11—C12—C13—C14 | 0.13 (18) | C33—C34—C35—C22 | 179.93 (9) |
C12—C13—C14—C15 | 0.79 (18) | C33—C34—C35—C36 | 0.73 (14) |
C13—C14—C15—C10 | −0.73 (18) | C24—C25—C36—C35 | −0.01 (14) |
C11—C10—C15—C14 | −0.24 (16) | C26—C25—C36—C35 | 180.00 (8) |
C3—C10—C15—C14 | −177.31 (10) | C24—C25—C36—C37 | −179.68 (9) |
C3—C2—C16—C21 | 141.70 (11) | C26—C25—C36—C37 | 0.33 (14) |
C1—C2—C16—C21 | −37.03 (13) | C22—C35—C36—C25 | 0.13 (14) |
C3—C2—C16—C17 | −40.26 (15) | C34—C35—C36—C25 | 179.36 (8) |
C1—C2—C16—C17 | 141.01 (10) | C22—C35—C36—C37 | 179.80 (8) |
C21—C16—C17—C18 | −1.85 (16) | C34—C35—C36—C37 | −0.97 (14) |
C2—C16—C17—C18 | −179.92 (10) | C31—C32—C37—C28 | 0.64 (14) |
C16—C17—C18—C19 | −0.35 (17) | C33—C32—C37—C28 | −178.18 (9) |
C17—C18—C19—C20 | 1.73 (16) | C31—C32—C37—C36 | −179.31 (9) |
C17—C18—C19—C22 | −179.10 (10) | C33—C32—C37—C36 | 1.87 (14) |
C18—C19—C20—C21 | −0.91 (15) | C29—C28—C37—C32 | 0.18 (14) |
C22—C19—C20—C21 | 179.93 (9) | C27—C28—C37—C32 | −179.68 (9) |
C19—C20—C21—C16 | −1.31 (16) | C29—C28—C37—C36 | −179.88 (9) |
C17—C16—C21—C20 | 2.68 (15) | C27—C28—C37—C36 | 0.26 (14) |
C2—C16—C21—C20 | −179.22 (9) | C25—C36—C37—C32 | 179.33 (8) |
C20—C19—C22—C23 | 93.06 (12) | C35—C36—C37—C32 | −0.34 (14) |
C18—C19—C22—C23 | −86.08 (13) | C25—C36—C37—C28 | −0.61 (14) |
C20—C19—C22—C35 | −87.00 (12) | C35—C36—C37—C28 | 179.71 (8) |
C18—C19—C22—C35 | 93.85 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···N1i | 0.93 | 2.73 | 3.3563 (17) | 125 |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Acknowledgements
The work was supported by the Fundamental Research Funds for the Central Universities (No. 2017BSCXA05).
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Figueira-Duarte, T. M. & Müllen, K. (2011). Chem. Rev. 111, 7260–7314. Web of Science CAS PubMed Google Scholar
Han, F. F., Zhang, R., Zhang, Z. M., Su, J. G. & Ni, Z. H. (2016). RSC Adv. 6, 68178–68184. Web of Science CSD CrossRef CAS Google Scholar
Hirata, S. & Watanabe, T. (2006). Adv. Mater. 18, 2725–2729. Web of Science CrossRef CAS Google Scholar
Indumathi, C., Sabari Girisun, T. C., Anitha, K. & Alfred Cecil Raj, S. (2017). J. Phys. Chem. Solids, 106, 37–43. CAS Google Scholar
Jadhav, T., Dhokale, B., Mobin, S. M. & Misra, R. (2015). J. Mater. Chem. C, 3, 9981–9988. Web of Science CSD CrossRef CAS Google Scholar
Lu, Q. Y., Li, X. F., Li, J., Yang, Z. Y., Xu, B. J., Chi, Z. G., Xu, J. R. & Zhang, Y. (2015). J. Mater. Chem. C, 3, 1225–1234. Web of Science CSD CrossRef CAS Google Scholar
Luo, J. D., Xie, Z. L., Lam, J. W. Y., Cheng, L., Chen, H. Y., Qiu, C. F., Kwok, H. S., Zhan, X. W., Liu, Y. Q., Zhu, D. P. & Tang, B. Z. (2001). Chem. Commun. 18, 1740–1741. Web of Science CrossRef Google Scholar
Mishra, A., Uhrich, C., Reinole, E., Pfeiffer, M. & Bauerle, P. (2011). Adv. Enery Mater. 2, 265–273. Web of Science CrossRef Google Scholar
Nie, J., Li, N., Ni, Z. H., Zhao, Y. & Zhang, L. F. (2017). Tetrahedron Lett. 58, 1980–1984. Web of Science CrossRef CAS Google Scholar
Sasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621–630. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasan, S., Babu, P. A., Mahesh, S. & Ajayaghosh, A. (2009). J. Am. Chem. Soc. 131, 15122–15123. Web of Science CrossRef CAS Google Scholar
Tasso, T. T., Furuyama, T. & Kobayashi, N. (2015). Chem. Eur. J. 21, 4817–4824. Web of Science CSD CrossRef CAS Google Scholar
Wang, S. J., Oldham, W. J., Hudack, R. A. Jr & Bazan, G. C. (2000). J. Am. Chem. Soc. 122, 5695–5709. Web of Science CSD CrossRef CAS Google Scholar
Yuan, W. Z., Tan, Y. Q., Gong, Y. Y., Lu, P., Lam, J. W. Y., Shen, X. Y., Feng, C. F., Sung, H. Y., Lu, Y. W., Williams, L. D., Sun, J. Z., Zhang, Y. M. & Tang, B. Z. (2013). Adv. Mater. 25, 2837–2843. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Z. M., Han, F. F., Zhang, R., Li, N. & Ni, Z. H. (2016a). Tetrahedron Lett. 57, 1917–1920. Web of Science CrossRef CAS Google Scholar
Zhang, R., Zhang, T. F., Xu, L., Han, F. F., Zhao, Y. & Ni, Z. H. (2017). J. Mol. Struct. 1127, 237–246. Web of Science CrossRef CAS Google Scholar
Zhang, T. F., Zhang, R., Zhao, Z. M. & Ni, Z. H. (2016b). RSC Adv. 6, 79871–79878. Web of Science CSD CrossRef CAS Google Scholar
Zhang, T. F., Zhang, R., Zhao, Y. & Ni, Z. H. (2018). Dyes Pigm. 148, 276–285. Web of Science CSD CrossRef CAS Google Scholar
Zhang, R., Zhao, Y., Li, G. L., Yang, D. S. & Ni, Z. H. (2016c). RSC Adv. 6, 9037–9048. Web of Science CSD CrossRef CAS Google Scholar
Zhang, R., Zhao, Y., Zhang, T. F., Xu, L. & Ni, Z. H. (2016d). Dyes Pigm. 130, 106–115. Web of Science CrossRef CAS Google Scholar
Zhao, Z. J., Chen, S. M., Lam, J. W. Y., Lu, P., Zhong, Y. C., Wong, K. S., Kwok, H. S. & Tang, B. Z. (2010). Chem. Commun. 46, 2221–2223. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.