research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and aggregation-induced emission of a new pyrene-based compound, 3,3-di­phenyl-2-[4-(pyren-1-yl)phen­yl]acrylo­nitrile

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: zhanglifang@cumt.edu.cn

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 8 February 2018; accepted 2 April 2018; online 6 April 2018)

The title organic compound, C37H23N, crystallizing in the triclinic space group P[\overline{1}], has been designed, synthesized and characterized by single-crystal X-ray diffaction, MS, NMR and elemental analysis. There are alternating relatively strong and weak intermolecular ππ interactions between adjacent pyrene ring systems, forming a one-dimensional supramolecular structure. The compound is weakly fluorescent in THF solution, but it is highly emissive in the condensed phase, revealing distinct aggregation-induced emission (AIE) characteristics.

1. Chemical context

Over the last several decades, research on organic fluorescent materials has gained important momentum because of their wide range of applications in organic light-emitting diodes (OLED), organic field-effect transistors (OFET), organic lasers, fluorescent sensors and solar cells and so on (Indumathi et al., 2017[Indumathi, C., Sabari Girisun, T. C., Anitha, K. & Alfred Cecil Raj, S. (2017). J. Phys. Chem. Solids, 106, 37-43.]; Mishra et al., 2011[Mishra, A., Uhrich, C., Reinole, E., Pfeiffer, M. & Bauerle, P. (2011). Adv. Enery Mater. 2, 265-273.]; Nie et al., 2017[Nie, J., Li, N., Ni, Z. H., Zhao, Y. & Zhang, L. F. (2017). Tetrahedron Lett. 58, 1980-1984.]; Sasabe et al., 2011[Sasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621-630.]; Zhao et al., 2010[Zhao, Z. J., Chen, S. M., Lam, J. W. Y., Lu, P., Zhong, Y. C., Wong, K. S., Kwok, H. S. & Tang, B. Z. (2010). Chem. Commun. 46, 2221-2223.]). As a well known fluoro­phore, pyrene and its derivatives have attracted much attention owing to its pure blue fluorescence with high quantum yield, exceptionally long fluorescence lifetime, excellent thermal stability and high charge-carrier mobility (Figueira-Duarte et al., 2011[Figueira-Duarte, T. M. & Müllen, K. (2011). Chem. Rev. 111, 7260-7314.]; Luo et al., 2001[Luo, J. D., Xie, Z. L., Lam, J. W. Y., Cheng, L., Chen, H. Y., Qiu, C. F., Kwok, H. S., Zhan, X. W., Liu, Y. Q., Zhu, D. P. & Tang, B. Z. (2001). Chem. Commun. 18, 1740-1741.]; Zhang et al., 2016d[Zhang, R., Zhao, Y., Zhang, T. F., Xu, L. & Ni, Z. H. (2016d). Dyes Pigm. 130, 106-115.], 2017[Zhang, R., Zhang, T. F., Xu, L., Han, F. F., Zhao, Y. & Ni, Z. H. (2017). J. Mol. Struct. 1127, 237-246.]). However, pyrene-based compounds show notorious aggregation-caused quenching (ACQ), which severely limits their application range. Encouragingly, the discovery of aggregation-induced emission (AIE) by Tang and co-workers has opened up a new approach for excellent emission materials in the solid state (Yuan et al., 2013[Yuan, W. Z., Tan, Y. Q., Gong, Y. Y., Lu, P., Lam, J. W. Y., Shen, X. Y., Feng, C. F., Sung, H. Y., Lu, Y. W., Williams, L. D., Sun, J. Z., Zhang, Y. M. & Tang, B. Z. (2013). Adv. Mater. 25, 2837-2843.]). Indeed, propeller-like conformations such as tetra­phenyl­ethene (TPE) and tri­phenyl­acrylo­nitrile (TPAN) have been widely used for the design of AIE-active compounds because of their easy preparation and outstanding AIE effects (Han et al., 2016[Han, F. F., Zhang, R., Zhang, Z. M., Su, J. G. & Ni, Z. H. (2016). RSC Adv. 6, 68178-68184.]; Jadhav et al., 2015[Jadhav, T., Dhokale, B., Mobin, S. M. & Misra, R. (2015). J. Mater. Chem. C, 3, 9981-9988.]; Lu et al., 2015[Lu, Q. Y., Li, X. F., Li, J., Yang, Z. Y., Xu, B. J., Chi, Z. G., Xu, J. R. & Zhang, Y. (2015). J. Mater. Chem. C, 3, 1225-1234.]; Tasso et al., 2015[Tasso, T. T., Furuyama, T. & Kobayashi, N. (2015). Chem. Eur. J. 21, 4817-4824.]; Zhang et al., 2016a[Zhang, Z. M., Han, F. F., Zhang, R., Li, N. & Ni, Z. H. (2016a). Tetrahedron Lett. 57, 1917-1920.]). Compared to the propeller-shaped AIE-active moiety TPE, TPAN also exhibits typical crystallization-induced emission (CIE) behaviours, so the combination of TPAN with other fluoro­phores can readily generate mechanochromic materials, displaying reversible solid-state emission upon mechanical stimuli and solvent evaporation (Hirata et al., 2006[Hirata, S. & Watanabe, T. (2006). Adv. Mater. 18, 2725-2729.]; Zhang et al., 2016b[Zhang, T. F., Zhang, R., Zhao, Z. M. & Ni, Z. H. (2016b). RSC Adv. 6, 79871-79878.]). As a result of their promising potential applications in optical recording and as fluorescent switches and security inks, these mechanochromic materials have attracted considerable attention (Srinivasan et al., 2009[Srinivasan, S., Babu, P. A., Mahesh, S. & Ajayaghosh, A. (2009). J. Am. Chem. Soc. 131, 15122-15123.]; Zhang et al., 2018[Zhang, T. F., Zhang, R., Zhao, Y. & Ni, Z. H. (2018). Dyes Pigm. 148, 276-285.]). Herein, we report the synthesis and crystal structure of a new pyrene-based tri­phenyl­acrylo­nitrile, 2-[4-(1-pyren­yl)phen­yl]-3,3-di­phenyl­acrylo­nitrile, using a Suzuki cross-coupling reaction between 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile and 1-pyrenylboronic acid, which may exhibit both AIE and mechanochromic characteristics.

[Scheme 1]

2. Structural commentary

The single X-ray diffraction analysis agrees well with the expected structure of the title compound, as shown in Fig. 1[link]. The 2,3,3-tri­phenyl­acrylo­nitrile unit, which exhibits the typical propeller-shaped structure, is linked by a planar pyrenyl unit at one phenyl segment. The length of the central C2—C3 bond is 1.3623 (14) Å, which is typical for a double C=C bond. The C—N bond length is 1.1479 (14) Å, which is comparable with those of other cyanide-containing organic or inorganic compounds, showing the existence of a cyanide group. The pyrenyl ring system is almost strictly planar, with the largest derivation from the mean plane being 0.027 (3) Å for atom C31.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with 30% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, there are alternating relatively strong and weak inter­molecular ππ inter­actions between adjacent pyrene ring systems with shortest inter­atomic distances C26⋯C37(1 − x, −y, 2 − z) = 3.511 (3) and C31⋯C31(2 − x, −y, 2 − z) = 3.306 (3) Å, which link the mol­ecules into a one-dimensional supra­molecular structure. In addition, there are C6—H6⋯N1 inter­actions with a C⋯N distance of 3.3563 (17) Å (Table 1[link]) between the cyanide nitro­gen atom and a benzene carbon atom, which link the above one-dimensional supra­molecular structures into two-dimensional supra­molecular networks parallel to (010), as shown in Fig. 2[link]. These inter­molecular inter­actions can be compared with those in 1-pyrenyl-based triaryl­amines (Zhang et al., 2016c[Zhang, R., Zhao, Y., Li, G. L., Yang, D. S. & Ni, Z. H. (2016c). RSC Adv. 6, 9037-9048.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.73 3.3563 (17) 125
Symmetry code: (i) -x+2, -y+2, -z+1.
[Figure 2]
Figure 2
The supra­molecular structure of the title compound built up through ππ and C—H⋯N inter­actions.

4. Aggregation-induced emission

The corresponding emission spectra of the title compound in aqueous THF with different water/THF ratios at a concentration of 5 × 10−5 M are shown in Fig. 3[link]. It can be seen that the title compound shows weak fluorescence when the water fraction is below 70%, which is ascribed to the active intra­molecular rotations of the genuinely dissolved luminogens in these mixtures. The yellow fluorescence starts to increase gradually at a water content of 80%, at which the luminogens begin to aggregate, and reaches a maximum, which is nearly 50 times stronger than that in the pure THF solution, when the water content is 90%. The title compound therefore exhibits typical aggregation-induced emission (AIE) activity.

[Figure 3]
Figure 3
Fluorescence spectra of the title compound in water–THF mixtures with different water fractions.

5. Database Suvey

The structure of the title compound can be compared with our previously reported seriors of pyrenyl-based triaryl­amines in which two compounds crystallize in the same P[\overline{1}] space group (Zhang et al., 2016c[Zhang, R., Zhao, Y., Li, G. L., Yang, D. S. & Ni, Z. H. (2016c). RSC Adv. 6, 9037-9048.]). In these compounds, the substituent groups are all at the 1-position of the pyrene ring system. Importantly, because of the existence of the relatively larger planar pyrene ring system, there are inter­molecular ππ inter­actions between adjacent pyrene ring systems, providing evidence that the presence of a pyrene ring system is favorable for the formation of strong inter­molecular inter­actions.

6. Synthesis and crystallization

The starting material 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile was synthesized according to the literature (Wang et al., 2000[Wang, S. J., Oldham, W. J., Hudack, R. A. Jr & Bazan, G. C. (2000). J. Am. Chem. Soc. 122, 5695-5709.]). All other chemicals were purchased from commercial sources and used as received without further purification. A mixture of 2-(4-bromo­phen­yl)-3,3-di­phenyl­acrylo­nitrile (1.8013 g, 5 mmol), 1-pyrenylboronic acid (1.2304 g, 5 mmol), catalyst Pd(PPh3)4 (0.1156 g, 2 mol%), K2CO3 (2.7642 g, 20 mmol, dissolved in 5 mL of water) and 20 mL of MeOH in 80 mL of toluene was stirred at 353 K for 16 h. The reaction mixture was then cooled down and extracted with methyl­ene dichloride. The combined organic layer was dried over anhydrous MgSO4 and filtered. The solvent was removed and the residue was purified by silica gel chromatography using hexa­ne/methyl­ene dichloride (v/v = 1:1) as eluent to afford the title compound (2.0683 g; yield 86%). Light-yellow block-shaped crystals were obtained by slow evaporation of a hexa­ne/methyl­ene dichloride solution (v/v = 1:1)

1H NMR (600 MHz, chloro­form-d) δ 8.27–8.18 (m, 3H), 8.16–8.10 (m, 3H), 8.09–8.02 (m, 2H), 7.97 (d, J = 7.8 Hz, 1H), 7.59–7.46 (m, 9H), 7.40–7.29 (m, 3H), 7.21–7.15 (m, 2H). MALDI–TOF MS: m/z calculated for C37H23N 481.5853, found 481.5806 [M]+. Elemental analysis calculated for C37H23N: C, 92.18%; H, 4.86%; N, 2.85%; found: C, 92.28%, H, 4.81%; N, 2.91%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed in calculated positions C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C37H23N
Mr 481.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 9.2277 (2), 10.6445 (3), 14.639 (2)
α, β, γ (°) 105.169 (2), 94.806 (2), 113.255 (2)
V3) 1246.38 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.12 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])
Tmin, Tmax 0.981, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 22549, 5093, 4402
Rint 0.026
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.04
No. of reflections 5093
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: APEX2 and SAINT-Plus (Bruker, 2001[Bruker (2001). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3,3-Diphenyl-2-[4-(pyren-1-yl)phenyl]acrylonitrile top
Crystal data top
C37H23NZ = 2
Mr = 481.51F(000) = 504
Triclinic, P1Dx = 1.283 Mg m3
a = 9.2277 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6445 (3) ÅCell parameters from 2445 reflections
c = 14.639 (2) Åθ = 3.0–26.4°
α = 105.169 (2)°µ = 0.07 mm1
β = 94.806 (2)°T = 123 K
γ = 113.255 (2)°Block, yellow
V = 1246.38 (18) Å30.12 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
φ and ω scansθmax = 26.4°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2015)
h = 1111
Tmin = 0.981, Tmax = 0.995k = 1313
22549 measured reflectionsl = 1718
5093 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2438P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5093 reflectionsΔρmax = 0.22 e Å3
343 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.02807 (12)0.88812 (10)0.68529 (7)0.0324 (2)
C10.94092 (13)0.76789 (11)0.65188 (7)0.0229 (2)
C20.83242 (12)0.61531 (11)0.61689 (7)0.0196 (2)
C30.77520 (11)0.54507 (11)0.52005 (7)0.0191 (2)
C40.80379 (11)0.62187 (11)0.44699 (7)0.0200 (2)
C50.79817 (13)0.75520 (12)0.46234 (8)0.0241 (2)
H50.77150.79650.51870.029*
C60.83202 (14)0.82631 (12)0.39420 (8)0.0279 (2)
H60.82840.91500.40540.033*
C70.87130 (13)0.76576 (12)0.30952 (8)0.0273 (2)
H70.89580.81440.26450.033*
C80.87392 (13)0.63244 (12)0.29233 (8)0.0266 (2)
H80.89920.59120.23530.032*
C90.83892 (12)0.56010 (11)0.35990 (7)0.0228 (2)
H90.83880.46980.34720.027*
C100.68717 (12)0.38450 (11)0.48036 (7)0.0208 (2)
C110.54277 (13)0.31868 (12)0.41204 (7)0.0265 (2)
H110.49950.37520.39240.032*
C120.46275 (15)0.16898 (13)0.37298 (8)0.0369 (3)
H120.36540.12590.32820.044*
C130.52712 (17)0.08421 (13)0.40034 (9)0.0420 (3)
H130.47350.01590.37400.050*
C140.67154 (18)0.14849 (13)0.46697 (10)0.0402 (3)
H140.71570.09140.48490.048*
C150.75108 (14)0.29761 (12)0.50735 (9)0.0297 (3)
H150.84760.33990.55270.036*
C160.79833 (12)0.55102 (10)0.69650 (7)0.0191 (2)
C170.64459 (12)0.44808 (12)0.69409 (8)0.0243 (2)
H170.56060.41810.64180.029*
C180.61664 (12)0.39052 (12)0.76912 (8)0.0251 (2)
H180.51370.32260.76660.030*
C190.74037 (12)0.43273 (11)0.84834 (7)0.0197 (2)
C200.89266 (12)0.53771 (11)0.85158 (7)0.0215 (2)
H200.97630.56830.90420.026*
C210.92078 (12)0.59701 (11)0.77726 (7)0.0207 (2)
H211.02250.66830.78130.025*
C220.71039 (11)0.36891 (11)0.92838 (7)0.0197 (2)
C230.65220 (12)0.42907 (11)1.00476 (8)0.0228 (2)
H230.63370.50901.00520.027*
C240.62136 (12)0.37253 (11)1.07996 (7)0.0239 (2)
H240.58150.41421.12960.029*
C250.64954 (11)0.25348 (11)1.08188 (7)0.0205 (2)
C260.62014 (12)0.19169 (12)1.15898 (7)0.0254 (2)
H260.58040.23181.20940.031*
C270.64880 (13)0.07757 (12)1.15974 (8)0.0275 (2)
H270.62960.04121.21100.033*
C280.70848 (12)0.01052 (11)1.08316 (8)0.0242 (2)
C290.73803 (13)0.10905 (12)1.08179 (9)0.0306 (3)
H290.72000.14701.13240.037*
C300.79388 (14)0.17187 (12)1.00585 (9)0.0327 (3)
H300.81240.25161.00610.039*
C310.82237 (13)0.11705 (12)0.92967 (9)0.0287 (2)
H310.85890.16070.87900.034*
C320.79652 (12)0.00371 (11)0.92856 (8)0.0227 (2)
C330.83002 (12)0.06669 (11)0.85275 (8)0.0233 (2)
H330.87160.02730.80320.028*
C340.80244 (12)0.18199 (11)0.85180 (7)0.0214 (2)
H340.82420.21930.80110.026*
C350.74010 (11)0.24854 (10)0.92750 (7)0.0182 (2)
C360.70957 (11)0.19041 (11)1.00497 (7)0.0187 (2)
C370.73828 (11)0.06826 (11)1.00549 (7)0.0205 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0421 (6)0.0230 (5)0.0248 (5)0.0069 (4)0.0025 (4)0.0092 (4)
C10.0288 (5)0.0241 (6)0.0177 (5)0.0112 (5)0.0060 (4)0.0100 (4)
C20.0196 (5)0.0189 (5)0.0221 (5)0.0087 (4)0.0052 (4)0.0087 (4)
C30.0165 (4)0.0208 (5)0.0224 (5)0.0093 (4)0.0049 (4)0.0085 (4)
C40.0171 (4)0.0214 (5)0.0199 (5)0.0067 (4)0.0027 (4)0.0073 (4)
C50.0273 (5)0.0268 (5)0.0221 (5)0.0139 (4)0.0077 (4)0.0097 (4)
C60.0331 (6)0.0272 (6)0.0292 (6)0.0151 (5)0.0082 (5)0.0144 (5)
C70.0278 (5)0.0326 (6)0.0236 (5)0.0101 (5)0.0072 (4)0.0163 (5)
C80.0252 (5)0.0317 (6)0.0202 (5)0.0095 (5)0.0067 (4)0.0078 (4)
C90.0220 (5)0.0221 (5)0.0225 (5)0.0084 (4)0.0044 (4)0.0062 (4)
C100.0214 (5)0.0210 (5)0.0201 (5)0.0081 (4)0.0083 (4)0.0073 (4)
C110.0244 (5)0.0308 (6)0.0204 (5)0.0081 (4)0.0067 (4)0.0076 (4)
C120.0323 (6)0.0337 (6)0.0232 (6)0.0020 (5)0.0087 (5)0.0006 (5)
C130.0559 (8)0.0195 (6)0.0365 (7)0.0037 (6)0.0234 (6)0.0025 (5)
C140.0576 (8)0.0267 (6)0.0465 (7)0.0232 (6)0.0239 (6)0.0157 (6)
C150.0318 (6)0.0273 (6)0.0342 (6)0.0154 (5)0.0088 (5)0.0117 (5)
C160.0218 (5)0.0177 (5)0.0199 (5)0.0099 (4)0.0054 (4)0.0072 (4)
C170.0193 (5)0.0295 (6)0.0234 (5)0.0082 (4)0.0008 (4)0.0121 (4)
C180.0174 (5)0.0274 (5)0.0280 (5)0.0049 (4)0.0031 (4)0.0133 (4)
C190.0214 (5)0.0188 (5)0.0212 (5)0.0101 (4)0.0053 (4)0.0080 (4)
C200.0201 (5)0.0218 (5)0.0198 (5)0.0070 (4)0.0007 (4)0.0067 (4)
C210.0192 (5)0.0176 (5)0.0227 (5)0.0049 (4)0.0045 (4)0.0069 (4)
C220.0154 (4)0.0203 (5)0.0196 (5)0.0042 (4)0.0009 (4)0.0071 (4)
C230.0213 (5)0.0206 (5)0.0260 (5)0.0089 (4)0.0048 (4)0.0071 (4)
C240.0215 (5)0.0254 (5)0.0201 (5)0.0078 (4)0.0057 (4)0.0034 (4)
C250.0153 (4)0.0222 (5)0.0170 (5)0.0024 (4)0.0008 (4)0.0054 (4)
C260.0197 (5)0.0317 (6)0.0163 (5)0.0033 (4)0.0028 (4)0.0070 (4)
C270.0211 (5)0.0332 (6)0.0207 (5)0.0010 (4)0.0005 (4)0.0149 (4)
C280.0168 (5)0.0236 (5)0.0252 (5)0.0010 (4)0.0032 (4)0.0113 (4)
C290.0230 (5)0.0263 (6)0.0361 (6)0.0013 (4)0.0045 (5)0.0180 (5)
C300.0257 (6)0.0203 (5)0.0477 (7)0.0062 (4)0.0038 (5)0.0137 (5)
C310.0230 (5)0.0202 (5)0.0377 (6)0.0072 (4)0.0003 (4)0.0062 (5)
C320.0169 (5)0.0194 (5)0.0259 (5)0.0046 (4)0.0015 (4)0.0053 (4)
C330.0207 (5)0.0239 (5)0.0216 (5)0.0087 (4)0.0038 (4)0.0033 (4)
C340.0206 (5)0.0243 (5)0.0169 (5)0.0070 (4)0.0039 (4)0.0072 (4)
C350.0147 (4)0.0185 (5)0.0170 (5)0.0037 (4)0.0007 (4)0.0050 (4)
C360.0142 (4)0.0191 (5)0.0169 (5)0.0025 (4)0.0005 (3)0.0051 (4)
C370.0147 (5)0.0192 (5)0.0212 (5)0.0021 (4)0.0027 (4)0.0069 (4)
Geometric parameters (Å, º) top
N1—C11.1479 (14)C19—C201.3953 (14)
C1—C21.4482 (14)C19—C221.4945 (13)
C2—C31.3623 (14)C20—C211.3881 (14)
C2—C161.4947 (13)C20—H200.9300
C3—C41.4889 (13)C21—H210.9300
C3—C101.4911 (14)C22—C231.3950 (14)
C4—C51.4002 (15)C22—C351.4094 (14)
C4—C91.4006 (14)C23—C241.3853 (15)
C5—C61.3878 (14)C23—H230.9300
C5—H50.9300C24—C251.3971 (15)
C6—C71.3876 (16)C24—H240.9300
C6—H60.9300C25—C361.4240 (14)
C7—C81.3852 (16)C25—C261.4419 (14)
C7—H70.9300C26—C271.3438 (17)
C8—C91.3898 (15)C26—H260.9300
C8—H80.9300C27—C281.4369 (17)
C9—H90.9300C27—H270.9300
C10—C111.3926 (15)C28—C291.3986 (16)
C10—C151.3938 (15)C28—C371.4251 (14)
C11—C121.3909 (16)C29—C301.3884 (19)
C11—H110.9300C29—H290.9300
C12—C131.378 (2)C30—C311.3864 (17)
C12—H120.9300C30—H300.9300
C13—C141.382 (2)C31—C321.4007 (15)
C13—H130.9300C31—H310.9300
C14—C151.3871 (17)C32—C371.4203 (15)
C14—H140.9300C32—C331.4352 (15)
C15—H150.9300C33—C341.3514 (15)
C16—C211.3967 (14)C33—H330.9300
C16—C171.3994 (14)C34—C351.4417 (14)
C17—C181.3868 (14)C34—H340.9300
C17—H170.9300C35—C361.4254 (13)
C18—C191.3967 (14)C36—C371.4275 (15)
C18—H180.9300
N1—C1—C2175.73 (11)C21—C20—C19120.78 (9)
C3—C2—C1120.14 (9)C21—C20—H20119.6
C3—C2—C16126.86 (9)C19—C20—H20119.6
C1—C2—C16112.98 (8)C20—C21—C16120.86 (9)
C2—C3—C4122.58 (9)C20—C21—H21119.6
C2—C3—C10121.61 (9)C16—C21—H21119.6
C4—C3—C10115.73 (8)C23—C22—C35119.64 (9)
C5—C4—C9118.34 (9)C23—C22—C19119.62 (9)
C5—C4—C3122.32 (9)C35—C22—C19120.74 (9)
C9—C4—C3119.33 (9)C24—C23—C22121.53 (10)
C6—C5—C4120.63 (10)C24—C23—H23119.2
C6—C5—H5119.7C22—C23—H23119.2
C4—C5—H5119.7C23—C24—C25120.60 (9)
C7—C6—C5120.35 (10)C23—C24—H24119.7
C7—C6—H6119.8C25—C24—H24119.7
C5—C6—H6119.8C24—C25—C36118.98 (9)
C8—C7—C6119.69 (10)C24—C25—C26122.48 (10)
C8—C7—H7120.2C36—C25—C26118.54 (10)
C6—C7—H7120.2C27—C26—C25121.57 (10)
C7—C8—C9120.26 (10)C27—C26—H26119.2
C7—C8—H8119.9C25—C26—H26119.2
C9—C8—H8119.9C26—C27—C28121.50 (9)
C8—C9—C4120.67 (10)C26—C27—H27119.3
C8—C9—H9119.7C28—C27—H27119.3
C4—C9—H9119.7C29—C28—C37118.84 (10)
C11—C10—C15118.72 (10)C29—C28—C27122.65 (10)
C11—C10—C3120.39 (9)C37—C28—C27118.52 (10)
C15—C10—C3120.83 (9)C30—C29—C28120.91 (10)
C12—C11—C10120.46 (11)C30—C29—H29119.5
C12—C11—H11119.8C28—C29—H29119.5
C10—C11—H11119.8C31—C30—C29120.71 (10)
C13—C12—C11120.26 (12)C31—C30—H30119.6
C13—C12—H12119.9C29—C30—H30119.6
C11—C12—H12119.9C30—C31—C32120.40 (11)
C12—C13—C14119.74 (11)C30—C31—H31119.8
C12—C13—H13120.1C32—C31—H31119.8
C14—C13—H13120.1C31—C32—C37119.40 (10)
C13—C14—C15120.42 (12)C31—C32—C33122.04 (10)
C13—C14—H14119.8C37—C32—C33118.55 (9)
C15—C14—H14119.8C34—C33—C32121.47 (9)
C14—C15—C10120.38 (11)C34—C33—H33119.3
C14—C15—H15119.8C32—C33—H33119.3
C10—C15—H15119.8C33—C34—C35121.57 (9)
C21—C16—C17118.43 (9)C33—C34—H34119.2
C21—C16—C2119.78 (9)C35—C34—H34119.2
C17—C16—C2121.76 (9)C22—C35—C36119.10 (9)
C18—C17—C16120.43 (9)C22—C35—C34122.76 (9)
C18—C17—H17119.8C36—C35—C34118.13 (9)
C16—C17—H17119.8C25—C36—C35120.14 (9)
C17—C18—C19121.18 (9)C25—C36—C37119.75 (9)
C17—C18—H18119.4C35—C36—C37120.11 (9)
C19—C18—H18119.4C32—C37—C28119.74 (10)
C20—C19—C18118.26 (9)C32—C37—C36120.13 (9)
C20—C19—C22120.70 (9)C28—C37—C36120.13 (10)
C18—C19—C22121.04 (9)
C1—C2—C3—C47.36 (15)C35—C22—C23—C240.53 (15)
C16—C2—C3—C4173.99 (9)C19—C22—C23—C24179.41 (9)
C1—C2—C3—C10169.22 (9)C22—C23—C24—C250.67 (15)
C16—C2—C3—C109.43 (15)C23—C24—C25—C360.39 (15)
C2—C3—C4—C539.58 (14)C23—C24—C25—C26179.60 (9)
C10—C3—C4—C5143.65 (10)C24—C25—C26—C27179.66 (10)
C2—C3—C4—C9139.89 (10)C36—C25—C26—C270.33 (15)
C10—C3—C4—C936.88 (12)C25—C26—C27—C280.70 (16)
C9—C4—C5—C62.14 (15)C26—C27—C28—C29179.46 (10)
C3—C4—C5—C6177.33 (9)C26—C27—C28—C370.40 (15)
C4—C5—C6—C70.29 (16)C37—C28—C29—C300.64 (15)
C5—C6—C7—C81.12 (17)C27—C28—C29—C30179.22 (10)
C6—C7—C8—C90.62 (16)C28—C29—C30—C310.28 (16)
C7—C8—C9—C41.29 (15)C29—C30—C31—C320.57 (16)
C5—C4—C9—C82.65 (15)C30—C31—C32—C371.02 (15)
C3—C4—C9—C8176.85 (9)C30—C31—C32—C33177.76 (9)
C2—C3—C10—C11132.68 (10)C31—C32—C33—C34179.06 (10)
C4—C3—C10—C1150.52 (12)C37—C32—C33—C342.15 (15)
C2—C3—C10—C1550.29 (14)C32—C33—C34—C350.84 (15)
C4—C3—C10—C15126.51 (10)C23—C22—C35—C360.13 (14)
C15—C10—C11—C121.15 (15)C19—C22—C35—C36179.81 (8)
C3—C10—C11—C12178.24 (9)C23—C22—C35—C34179.06 (9)
C10—C11—C12—C131.11 (16)C19—C22—C35—C341.00 (14)
C11—C12—C13—C140.13 (18)C33—C34—C35—C22179.93 (9)
C12—C13—C14—C150.79 (18)C33—C34—C35—C360.73 (14)
C13—C14—C15—C100.73 (18)C24—C25—C36—C350.01 (14)
C11—C10—C15—C140.24 (16)C26—C25—C36—C35180.00 (8)
C3—C10—C15—C14177.31 (10)C24—C25—C36—C37179.68 (9)
C3—C2—C16—C21141.70 (11)C26—C25—C36—C370.33 (14)
C1—C2—C16—C2137.03 (13)C22—C35—C36—C250.13 (14)
C3—C2—C16—C1740.26 (15)C34—C35—C36—C25179.36 (8)
C1—C2—C16—C17141.01 (10)C22—C35—C36—C37179.80 (8)
C21—C16—C17—C181.85 (16)C34—C35—C36—C370.97 (14)
C2—C16—C17—C18179.92 (10)C31—C32—C37—C280.64 (14)
C16—C17—C18—C190.35 (17)C33—C32—C37—C28178.18 (9)
C17—C18—C19—C201.73 (16)C31—C32—C37—C36179.31 (9)
C17—C18—C19—C22179.10 (10)C33—C32—C37—C361.87 (14)
C18—C19—C20—C210.91 (15)C29—C28—C37—C320.18 (14)
C22—C19—C20—C21179.93 (9)C27—C28—C37—C32179.68 (9)
C19—C20—C21—C161.31 (16)C29—C28—C37—C36179.88 (9)
C17—C16—C21—C202.68 (15)C27—C28—C37—C360.26 (14)
C2—C16—C21—C20179.22 (9)C25—C36—C37—C32179.33 (8)
C20—C19—C22—C2393.06 (12)C35—C36—C37—C320.34 (14)
C18—C19—C22—C2386.08 (13)C25—C36—C37—C280.61 (14)
C20—C19—C22—C3587.00 (12)C35—C36—C37—C28179.71 (8)
C18—C19—C22—C3593.85 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.733.3563 (17)125
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (No. 2017BSCXA05).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFigueira-Duarte, T. M. & Müllen, K. (2011). Chem. Rev. 111, 7260–7314.  Web of Science CAS PubMed Google Scholar
First citationHan, F. F., Zhang, R., Zhang, Z. M., Su, J. G. & Ni, Z. H. (2016). RSC Adv. 6, 68178–68184.  Web of Science CSD CrossRef CAS Google Scholar
First citationHirata, S. & Watanabe, T. (2006). Adv. Mater. 18, 2725–2729.  Web of Science CrossRef CAS Google Scholar
First citationIndumathi, C., Sabari Girisun, T. C., Anitha, K. & Alfred Cecil Raj, S. (2017). J. Phys. Chem. Solids, 106, 37–43.  CAS Google Scholar
First citationJadhav, T., Dhokale, B., Mobin, S. M. & Misra, R. (2015). J. Mater. Chem. C, 3, 9981–9988.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Q. Y., Li, X. F., Li, J., Yang, Z. Y., Xu, B. J., Chi, Z. G., Xu, J. R. & Zhang, Y. (2015). J. Mater. Chem. C, 3, 1225–1234.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, J. D., Xie, Z. L., Lam, J. W. Y., Cheng, L., Chen, H. Y., Qiu, C. F., Kwok, H. S., Zhan, X. W., Liu, Y. Q., Zhu, D. P. & Tang, B. Z. (2001). Chem. Commun. 18, 1740–1741.  Web of Science CrossRef Google Scholar
First citationMishra, A., Uhrich, C., Reinole, E., Pfeiffer, M. & Bauerle, P. (2011). Adv. Enery Mater. 2, 265–273.  Web of Science CrossRef Google Scholar
First citationNie, J., Li, N., Ni, Z. H., Zhao, Y. & Zhang, L. F. (2017). Tetrahedron Lett. 58, 1980–1984.  Web of Science CrossRef CAS Google Scholar
First citationSasabe, H. & Kido, J. (2011). Chem. Mater. 23, 621–630.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, S., Babu, P. A., Mahesh, S. & Ajayaghosh, A. (2009). J. Am. Chem. Soc. 131, 15122–15123.  Web of Science CrossRef CAS Google Scholar
First citationTasso, T. T., Furuyama, T. & Kobayashi, N. (2015). Chem. Eur. J. 21, 4817–4824.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S. J., Oldham, W. J., Hudack, R. A. Jr & Bazan, G. C. (2000). J. Am. Chem. Soc. 122, 5695–5709.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, W. Z., Tan, Y. Q., Gong, Y. Y., Lu, P., Lam, J. W. Y., Shen, X. Y., Feng, C. F., Sung, H. Y., Lu, Y. W., Williams, L. D., Sun, J. Z., Zhang, Y. M. & Tang, B. Z. (2013). Adv. Mater. 25, 2837–2843.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Z. M., Han, F. F., Zhang, R., Li, N. & Ni, Z. H. (2016a). Tetrahedron Lett. 57, 1917–1920.  Web of Science CrossRef CAS Google Scholar
First citationZhang, R., Zhang, T. F., Xu, L., Han, F. F., Zhao, Y. & Ni, Z. H. (2017). J. Mol. Struct. 1127, 237–246.  Web of Science CrossRef CAS Google Scholar
First citationZhang, T. F., Zhang, R., Zhao, Z. M. & Ni, Z. H. (2016b). RSC Adv. 6, 79871–79878.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, T. F., Zhang, R., Zhao, Y. & Ni, Z. H. (2018). Dyes Pigm. 148, 276–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, R., Zhao, Y., Li, G. L., Yang, D. S. & Ni, Z. H. (2016c). RSC Adv. 6, 9037–9048.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, R., Zhao, Y., Zhang, T. F., Xu, L. & Ni, Z. H. (2016d). Dyes Pigm. 130, 106–115.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Z. J., Chen, S. M., Lam, J. W. Y., Lu, P., Zhong, Y. C., Wong, K. S., Kwok, H. S. & Tang, B. Z. (2010). Chem. Commun. 46, 2221–2223.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds