research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an iridium(III) complex of the [C(dppm)2] PCP pincer ligand system and its conjugate CH acid form

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
*Correspondence e-mail: inge.hackl@uibk.ac.at

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 14 February 2018; accepted 26 March 2018; online 6 April 2018)

After the successful creation of the newly designed PCP carbodi­phospho­rane (CDP) ligand [Reitsamer et al. (2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]). Dalton Trans. 41, 3503–3514; Stallinger et al. (2007[Stallinger, S., Reitsamer, C., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2007). Chem. Commun. 510-512.]). Chem. Commun. pp. 510–512], the treatment of this PCP pincer system with the transition metal iridium and further the analysis of the structures by single-crystal diffraction and by NMR spectroscopy were of major inter­est. Two different iridium complexes, namely (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}methane-κ3P,C,P′)carbonyl­chlorido­hydridoiridium(III) chloride di­chloro­methane tris­olvate, [IrIII(CO){C(dppm)2-κ3P,C,P′}ClH]Cl·3CH2Cl2 (1) and the closely related (bis­{[(di­phenyl­phosphan­yl)meth­yl]di­phenyl­phosphanyl­idene}methanide(1+)-κ3P,C,P′)carbonyl­chlorido­hy­dridoirid­ium(III) dichloride–hydro­chloric acid–water (1/2/5.5), [IrIII(CO){CH(dppm)2-κ3P,C,P′)ClH]Cl}2 (2), have been designed and both complexes show a slightly distorted octa­hedral coordinated IrIII centre. The PCP pincer ligand system is arranged in a meridional manner, the CO ligand is located trans to the central PCP carbon and a hydride and chloride are located perpendicular above and below the P2C2 plane. With an Ir—CCDP distance of 2.157 (5) Å, an Ir—CO distance of 1.891 (6) Å and a quite short C—O distance of 1.117 (7) Å, complex 1 presents a strong carbonyl bond. Complex 2, the corresponding CH acid of 1, shows an additionally attached proton at the carbodi­phospho­rane carbon atom located anti­periplanar to the hydride of the metal centre. In comparison with complex 1, the Ir—CCDP distance of 2.207 (3) Å is lengthened and the Ir—C—O values indicate a weaker trans influence of the central carbodi­phospho­rane carbon atom.

1. Chemical context

Based on a great number of investigations of iridium complexes in organic synthesis (Oro & Claver, 2009[Oro, L. A. & Claver, C. (2009). Editors. Iridium Complexes in Organic Synthesis. Weinheim: Wiley-VCH.]), on the large variety of metal–pincer ligand inter­actions and reactivities (Morales-Morales & Jensen, 2007[Morales-Morales, D. & Jensen, C. (2007). The Chemistry of Pincer Compounds, 1st ed. Amsterdam: Elsevier Science.]; Choi et al., 2011[Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761-1779.]), the catalytic and stoichiometric organometallic chemistry of iridium PCP pincer complexes attracted our attention.

Up to now, diverse PCP pincer systems have been generated and these systems are, in general, classified according to the charge of the central carbon atom. Both an anionic sp2 or sp3 hybridization of the central carbon atom is possible (Table 1[link]) and the charge arises from the metallation of the pertinent C—H functionalities of the non-coordinated ligand subunits. Furthermore, neutral PCP pincer ligands containing a divalent carbon(II) donor atom, for instance an alkyl­idene carbene or a NHC, are well known (Table 1[link]; Crocker et al., 1982[Crocker, C., Empsall, H. D., Errington, R. J., Hyde, E. M., McDonald, W. S., Markham, R., Norton, M. C., Shaw, B. L. & Weeks, B. (1982). J. Chem. Soc. Dalton Trans. pp. 1217-1224.]). Moreover, PCP pincer complexes based on tropylium backbones have been reported. The cationic central carbon atom is part of a seven-membered six-electron arene fragment and because of the C—C bond lengths, designation as a cyclo­hepta­trienyl­idene carbene is allowed (Table 1[link]).

Table 1
Comparative Ir—CPCP and Ir—CCO bond lengths (Å) of different [Ir(CO)ClH(PCP)] complexes

PCP ligand or backbone (charges are omitted) PCP central carbon atom Ir—CCO Ir—CPCP Reference
C6H3-1,3-[OPR2]2 sp2 2.045 (3) 1.949 (4) Goldberg et al. (2015[Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Michael Heinekey, D. M. (2015). Organometallics, 34, 753-762.])
C6H3-1,3-[OPR2]2 sp2 2.057 (3) 1.913 (4) Goldberg et al. (2015[Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Michael Heinekey, D. M. (2015). Organometallics, 34, 753-762.])
C6H3-1,3-[OPR2]2 sp2 2.071 (2) 1.921 (3) Goldberg et al. (2015[Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Michael Heinekey, D. M. (2015). Organometallics, 34, 753-762.])
C(NCH2PR2)2C10H6 NHC 2.078 (4) 1.904 (5) Hill & McQueen (2012[Hill, A. F. & McQueen, C. M. A. (2012). Organometallics, 31, 8051-8054.])
benzotropylium alkyl­idene 2.082 1.929 Leis et al. (2014[Leis, W., Wernitz, S., Reichart, B., Ruckerbauer, D., Wielandt, J. W. & Mayer, H. A. (2014). Dalton Trans. 43, 12187-12199.])
tropylium alkyl­idene 2.093 (5) 1.916 (5) Winter et al. (2005[Winter, A. M., Eichele, K., Mack, H. G., Kaska, W. C. & Mayer, H. A. (2005). Organometallics, 24, 1837-1844.])
C6H3-1,3-[P(CF3)2]2 sp2 2.103 (2) 1.952 (3) Adams et al. (2011[Adams, J. J., Lau, A., Arulsamy, N. & Roddick, D. M. (2011). Organometallics, 30, 689-696.])
C3H3-1,2-[OPR2]2 sp3 2.126 (8) 1.880 (7) Ruhland & Herdtweck (2005[Ruhland, K. & Herdtweck, E. (2005). Adv. Synth. Catal. 347, 398-404.])
CH(NCH2PR2)2C10H6 sp3 2.141 (5) 1.904 (6) Hill & McQueen (2012[Hill, A. F. & McQueen, C. M. A. (2012). Organometallics, 31, 8051-8054.])
C(dppm)2 CDP 2.157 (5) 1.891 (6) this work
cyclo­hex­yl sp3 2.159 (4) 1.909 (5) Jonasson et al. (2015[Jonasson, K. J., Polukeev, A. V. & Wendt, O. F. (2015). RSC Adv. 5, 15534-15538.])
trypticene sp3 2.163 (2) 1.895 (2) Azerraf & Gelman (2009[Azerraf, C. & Gelman, D. (2009). Organometallics, 28, 6578-6584.])
cyclo­hex­yl sp3 2.165 (5) 1.906 (6) Mayer et al. (1993[Mayer, H. A., Fawzi, R. & Steimann, M. (1993). Chem. Ber. 126, 1341-1346.])
trypticene sp3 2.193(3 1.898 (3) Azerraf & Gelman (2009[Azerraf, C. & Gelman, D. (2009). Organometallics, 28, 6578-6584.])
CH(dppm)2 protonated CDP 2.207 (3) 1.874 (4) this work
cyclo­hepta­trien­yl sp3 2.25 (2) 1.78 (1) Nemeh et al. (1998[Nemeh, S., Flesher, R. J., Gierling, K., Maichle-Mössmer, C., Mayer, H. A. & Kaska, W. C. (1998). Organometallics, 17, 2003-2008.])

Our focus is on the creation of new iridium complexes containing a PCP ligand system with a neutral or a cationic central carbon atom, respectively. The central carbon is part of a carbodi­phospho­rane (CDP) functionality and can be described as a naked carbon atom or as a divalent carbon(0) atom in an excited singlet (1D) state stabilized by two tertiary phosphines via donor–acceptor inter­actions. Consequently, this central atom disposes of two lone-electron pairs and is able to inter­act with one or two Lewis acids (Petz & Frenking, 2010[Petz, W. & Frenking, G. (2010). Editors. Carbodiphosphoranes and Related Ligands, Vol. 30. Berlin Heidelberg: Springer-Verlag.]).

[Scheme 1]

The protonated CDP ligand system [CH(dppm)2]Cl enters an oxidative addition reaction with Vaska's compound [IrI(CO)Cl(PPh3)2], forming the iridium PCP pincer CDP complex [IrIII(CO)(C(dppm)2-κ3P,C,P′)ClH]Cl (1) (see reaction scheme). During this reaction sequence, the central carbon atom is deprotonated, becomes neutral and coordin­ates the iridium transition metal. Treatment of complex 1 with hydro­chloric acid leads to the protonation of the central carbon atom and consequently to the formation of the conjugate CH acid of 1, the [Ir(CO)(CH(dppm)2-κ3P,C,P′)ClH]Cl2 complex 2 (see reaction scheme[link]). Relative to the hydrido ligand at the iridium transition metal, the additionally attached proton adopts a syn- or anti-periplanar conformation. In solution, the existence of both isomers can be demonstrated by the use of NMR spectroscopy. However, the examination of several crystals revealed only the anti-periplanar configuration of complex 2. Whether this is incidental or the crystallization is accompanied by the isomerization of the syn-periplanar to the anti-periplanar conformation is unclear.

2. Structural commentary

Complex 1 (Fig. 1[link]) crystallizes in the monoclinic space group P21/n and the asymmetric unit consists of one formula unit of 1 and three mol­ecules of CH2Cl2. The structure can be divided into two parts, the [IrIII(CO)(C(dppm)2-κ3P,C,P′)ClH]+ monocation and the chloride counter-ion. The iridium transition metal centre exhibits an octa­hedral ligand system, formed by a meridional arranged C(dppm)2, relative to the C1 atom, a trans-coordinated carbonyl unit, and a chlorido and hydrido ligand located perpendicular to the meridional plane or more precisely trans to each other. The P1—Ir1—P4 angle of 170.69 (5)° indicates a small deviation from the octa­hedral geometry and this value is larger compared to many related Iridium PCP pincer complexes. The environment of the CDP carbon atom C1 is strictly planar (sum of angles at C1 = 360°; Table 2[link]) and the C1—P2 and C1—P3 bond lengths are 1.697 (5) and 1.711 (5) Å, respectively. Not only the geometry, but also the bond lengths are characteristic for a carbodi­phospho­rane atom, which inter­acts with one Lewis acid (Petz & Frenking, 2010[Petz, W. & Frenking, G. (2010). Editors. Carbodiphosphoranes and Related Ligands, Vol. 30. Berlin Heidelberg: Springer-Verlag.]). In general, bond lengths are directly connected with the valence-bond structure of a carbon atom and an increasing of the valence state causes a significant expansion of the bond gaps [Csp2 < C(carbene) < Csp3]. Consequently, the Ir1—C1 separation of 2.157 (5) Å indicates an sp3 hybridization of the carbodiphosphorane carbon atom, which is substantiated by the data collected in Table 1[link]. Additionally, inter­actions (Table 3[link]) between the chloride counter-ion and the methyl­ene groups of the PCP pincer ligand system can be detected and the bond lengths of about 2.60 Å [Cl2⋯H2B(1 + x, y, z)] and 2.62 Å [Cl2⋯H3B(1 + x, y, z)] illustrate the location within the van der Waals radii. These C—H⋯X inter­actions are a common feature of complexes containing dppm or related ligands (Jones & Ahrens, 1998[Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307-2308.]). Moreover, the chloride counter-ion inter­acts with the hydrogen atoms of the CH2Cl2 mol­ecules as well, forming distances of about 2.59 Å [Cl2⋯H5B([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z)] and 2.47 Å [Cl2⋯H6B(−[{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z)].

Table 2
Selected distances and angles (Å, °) of 1 and 2

  complex 1 complex 2a
Ir1—C1 2.157 (5) 2.207 (3)
Ir1—C4 1.891 (6) 1.874 (4)
Ir1—P1 2.344 (1) 2.347 (1)
Ir1—P4 2.315 (2) 2.332 (1)
Ir1—H1 1.54 (3) 1.52 (4)
C4—O1 1.117 (7) 1.135 (5)
P1—C2 1.827 (5) 1.837 (4)
P2—C2 1.800 (5) 1.803 (4)
P2—C1 1.697 (5) 1.802 (3)
P3—C1 1.711 (5) 1.801 (3)
P2—C1—P3 125.7 (3) 122.1 (2)
P2—C1—Ir1 113.9 (3) 107.8 (2)
P3—C1—Ir1 120.4 (3) 114.5 (2)
P4—Ir1—P1 170.7 (1) 171.9 (1)
Note: (a) the second independent formula unit displays similar values.

Table 3
Hydrogen-bond geometry (Å, °) for complex 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Cl2 0.98 2.60 3.534 (5) 160
C3—H3B⋯Cl2i 0.98 2.62 3.544 (5) 157
C5—H5B⋯Cl2ii 0.98 2.59 3.541 (10) 165
C6—H6B⋯Cl2iii 0.98 2.47 3.436 (10) 169
C7—H7A⋯Cl1iv 0.98 2.50 3.447 (15) 163
C105—H105⋯Cl1v 0.94 2.72 3.573 (8) 151
C312—H312⋯Cl2i 0.94 2.78 3.690 (6) 163
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y, -z+2.
[Figure 1]
Figure 1
Structure of complex 1 with displacement ellipsoids drawn at the 30% probability level. Solvent residues are omitted.

The asymmetric unit of 2 comprises two [IrIII(CO)(CH(dppm)2-κ3P,C,P′)ClH]Cl2 complex mol­ecules (Fig. 2[link]), four mol­ecules of HCl and eleven mol­ecules of water in total. Both complex mol­ecules are distinctly asymmetric in the solid state. As a result of the threefold coordination of the transition metal by the PCP pincer ligand system, two five-membered metallacycles are formed, each adopting an approximately envelope conformation. One methyl­ene group (C3) and one phospho­rus atom (P2) are positioned at the flap positions above the plane generated by the C1–C2–P1–Ir1 and C1–Ir1–P3–P4 atoms. Complex 2 crystallizes in the monoclinic space group P21/n and the complex mol­ecule can be described as one [IrIII(CO)(CH(dppm)2-κ3P,C,P′)ClH]2+ dication stabilized by two chloride counter-ions. Overall, complex 2 represents the conjugate CH acid of the [IrIII(CO)(C(dppm)2-κ3P,C,P′)ClH]Cl complex (1). The carbodi­phospho­rane carbon atom additionally coordinates a second Lewis acid, the proton H1, which adopts an anti-periplanar conformation relative to the hydrido ligand H11. As a consequence, atom C1 forms a distorted tetra­hedron with the directly coordinated atoms (sum of angles = 344.3°). In comparison with complex 1, the values of the angles P2—C1–Ir1 and P3—C1—Ir1 are significantly reduced, whereas the P2—C1—P3 angles differs to a lesser extent (Table 2[link]). The coordination of a second Lewis acid causes a lengthening of the C1—P distances by about 0.098 Å, resulting in bond lengths in the range of P—C single bonds. Moreover, the Ir1—C1 distance [2.207 (3) Å] is markedly longer compared to that of the conjugate base 1 [2.157 (5) Å], as has also been observed in other carbodi­phospho­rane complexes (Petz et al., 2009[Petz, W., Öxler, F. & Neumüller, B. (2009). J. Organomet. Chem. 694, 4094-4099.]; Reitsamer et al., 2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]; Tonner et al., 2006[Tonner, R., Öxler, F., Bernhard Neumüller, B., Petz, W. & Frenking, G. (2006). Angew. Chem. Int. Ed. 45, 8038-8042.]). Furthermore, the protonation of the C1 atom leads to a decrease of the trans influence of the carbodi­phospho­rane carbon donor atom, confirmed by an shortening of the Ir—CO distance and an increasing of the carbonyl bond gap. Besides, C—H⋯O and C—H⋯Cl interactions (Table 4[link]) between the methylene groups of the dppm moieties and the water or HCl molecules can be detected, causing for example separations in the range of 2.61 Å [H2A⋯O4(1 − x, 1 − y, 1 − z)], 2.89 Å [H2B⋯Cl7(x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}])], 2.51 Å [H3A⋯Cl8(x, 1 + y, z)] and 2.57 Å [H3B⋯Cl5(x, 1 + y, z)].

Table 4
Hydrogen-bond geometry (Å, °) for complex 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.96 (3) 2.82 (3) 3.252 (3) 109 (2)
C3—H3A⋯Cl8i 0.98 2.51 3.466 (4) 164
C3—H3B⋯Cl5i 0.98 2.57 3.493 (4) 158
C6—H6A⋯O8ii 0.98 2.59 3.431 (5) 144
C6—H6B⋯Cl9ii 0.98 2.82 3.746 (4) 158
C7—H7A⋯Cl1Aiii 0.98 2.73 3.614 (6) 150
C7—H7B⋯Cl4iii 0.98 2.60 3.518 (4) 157
C206—H206⋯Cl7iii 0.94 2.79 3.719 (4) 172
C310—H310⋯Cl4ii 0.94 2.83 3.714 (4) 158
C602—H602⋯Cl9ii 0.94 2.62 3.557 (4) 179
C704—H704⋯Cl1iv 0.94 2.82 3.534 (6) 134
C708—H708⋯Cl2 0.94 2.80 3.503 (4) 132
C710—H710⋯Cl5v 0.94 2.72 3.614 (4) 160
C712—H712⋯Cl10iii 0.94 2.81 3.734 (6) 167
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Structure of one of the two independent molecules of complex 2 with displacement ellipsoids drawn at the 30% probability level. Solvent residues are omitted.

In 1, there are inter­actions (Table 3[link]) between the chloride counter-ion and the methyl­ene groups of the PCP pincer ligand system [Cl2⋯H2B = 2.60 Å, H3B⋯Cl2(1 + x, y, z) = 2.62 Å] with distances shorter than the sum of the van der Waals radii. Such C—H⋯X inter­actions are a common feature of complexes containing dppm or related ligands (Jones & Ahrens, 1998[Jones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307-2308.]). Moreover, the chloride counter-ion also inter­acts with the hydrogen atoms of the CH2Cl2 mol­ecules [H5B⋯Cl2([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) = 2.59 Å and H5B⋯Cl2(−[{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) = 2.47 Å].

In 2, C—H⋯O and C—H⋯Cl inter­actions (Table 4[link]) occur between the methyl­ene groups of the dppm moieties and the water or HCl mol­ecules and there are short contacts of 2.61 Å [H2A⋯O4(1 − x, 1 − y, 1 − z)], 2.89 Å [H2B⋯Cl7(x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}])], 2.51 Å [H3A⋯Cl8(x, 1 + y, z)] and 2.57 Å [H3B⋯Cl5(x, 1 + y, z)]. A network of different inter­actions occurs between the two independent complex mol­ecules. The water and hydro­chloric acid solvent mol­ecules form hydrogen bonds with the chloride ligands or counter-ions and the hydrogen atoms of the complex mol­ecules, respectively.

3. Synthesis and crystallization

All preparations were carried out under an inert atmosphere (N2) using standard Schlenk techniques. The 1H, 13C and 31P NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer and were referenced against the 13C/1H solvent peaks of the solvents chloro­form, methanol or the external 85% H3PO4 standard, respectively. The phospho­rus atoms in the NMR data are labelled as in Figs. 1[link] and 2[link].

Synthesis of [Ir(CO)(C(dppm)2-κ3P,C,P′)ClH]Cl (1): A mixture of 19.5 mg of Vaska's complex (0.025 mmol), 20.4 mg of [CH(dppm)2]Cl (0.025 mmol) (Reitsamer et al., 2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]) and CHCl3 (0.6 ml) was stirred at ambient temperature for 15 min. The solvent was evaporated in vacuo and the residue was digested with a mixture of CH2Cl2 (0.1 ml) and ethyl acetate (0.7 ml). The solid was separated and washed twice with ethyl acetate (0.6 ml). Single crystals were grown by slow evaporation of a solution in CH2Cl2. 31P {1H} NMR (CHCl3): δ 31.9 (P2/P3, N = 71), δ 8.2 (P1/P4); 13C {1H} NMR (CDCl3): δ −4.4 (C1, 1JP2/P3C1 = 86, 1JP1/P4C1 = 6, 1JC1H(11) = 4); 1H NMR (CDCl3): δ −16.7 (H11, 1JP1/P4H11 = 10).

Synthesis of [Ir(CO)(CH(dppm)2-κ3P,C,P′)ClH]Cl2 (2): 19.5 mg of Vaska's complex (0.025 mmol) and 20.4 mg of [CH(dppm)2]Cl (0.025 mmol) (Reitsamer et al., 2012[Reitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503-3514.]) were solved in CHCl3 (0.6 ml). The mixture was stirred at ambient temperature for 15 min. After addition of 0.1 ml of hydro­chloric acid (10 mol L−1), the product crystallized upon standing for a day. 31P {1H} NMR (CHCl3/MeOH): δ 45.3 (P2/P3, N = 61), δ 1.7 (P1/P4); 13C {1H} NMR (CDCl3): δ 9.1 (C1, 1JP2/P3C1) = 38, 1JC1H1 = 122); 1H NMR (CDCl3/MeOH): δ −18.9 (H11, 1JP1/P4H11 = 11).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Refinement of complex 1 resulted in the location of the hydride hydrogen atom. The bond length was restrained to a distance of 1.6 Å and a fixed isotropic displacement parameter of 1.5Ueq of iridium was applied. The hydrido ligand of complex 2 was also detected and refined isotropically without the use of bond restraints. Furthermore, the proton of the CDP carbon atom was spotted and refined with bond restraints of 0.98 Å. The hydrogen atoms of the water and solvent mol­ecules could only be partially detected and were omitted. A determination of a 1:1 positional disorder of one water mol­ecule (O4 and O4A) and one HCl or chloride (Cl10 and Cl1A) was possible. Eight chloride positions can be detected, which are occupied by a total of four chlorides and four hydro­chloric acid units. The hydrogen-atom positions of the phenyl subunits and methyl­ene groups were refined with calculated positions (C—H = 0.94 and 0.98 Å) using a riding model with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  complex 1 complex 2
Crystal data
Chemical formula [IrClH(CO)(C51H44P4)]Cl·3CH2Cl2 [IrClH(C51H44P4)(CO)]Cl2·2HCl·5.5H2O
Mr 1327.64 1281.32
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 233 233
a, b, c (Å) 12.3477 (2), 24.7472 (5), 19.0123 (3) 19.7138 (2), 22.7327 (2), 25.3120 (3)
β (°) 91.700 (1) 98.781 (1)
V3) 5807.05 (18) 11210.6 (2)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.82 2.78
Crystal size (mm) 0.3 × 0.15 × 0.05 0.3 × 0.2 × 0.06
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 33007, 10203, 8088 68943, 22078, 17290
Rint 0.061 0.037
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.06 0.033, 0.088, 1.04
No. of reflections 10203 22078
No. of parameters 625 1268
No. of restraints 1 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
     
Δρmax, Δρmin (e Å−3) 1.68, −0.91 2.03, −0.99
Computer programs: COLLECT Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.], DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ChemDraw (Cambridge Soft, 2001[Cambridge Soft (2001). ChemDraw. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

The two complex mol­ecules of 2 are related to each other by the presence of a pseudo-symmetry centre. A halving of the c axis and consequently the changing of the monoclinic setting from P21/n to P21/c allows the consideration of one formula unit of 2. A closer observation of the sections of the reciprocal lattice along c* (l = 2n + 1) at different values of l results in the presence of frequent weak reflections. Consequently, an inter­pretation of this system as three-dimensional network between two complex mol­ecules, four hydro­chloric acid units and eleven water mol­ecules allows the involvement of these weak, but clearly existing reflections, and establishes the possibility of the distinction of the chloride and oxygen positions.

Supporting information


Computing details top

For both structures, data collection: COLLECT Nonius, 1999; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: CHEMDRAW (Cambridge Soft, 2001) for complex1.

(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane-\ κ3P,C,P')carbonylchloridohydridoiridium(III) chloride dichloromethane trisolvate (complex1) top
Crystal data top
[IrClH(CO)(C51H44P4)]Cl·3CH2Cl2F(000) = 2648
Mr = 1327.64Dx = 1.519 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3477 (2) ÅCell parameters from 76576 reflections
b = 24.7472 (5) Åθ = 1.0–25.0°
c = 19.0123 (3) ŵ = 2.82 mm1
β = 91.700 (1)°T = 233 K
V = 5807.05 (18) Å3Prism, colorless
Z = 40.3 × 0.15 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
8088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
phi– and ω–scansh = 1413
33007 measured reflectionsk = 2929
10203 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0396P)2 + 13.9388P]
where P = (Fo2 + 2Fc2)/3
10203 reflections(Δ/σ)max = 0.002
625 parametersΔρmax = 1.68 e Å3
1 restraintΔρmin = 0.91 e Å3
Special details top

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atom at Ir1 were found and must be refined with bond restraint of 1.6 angs. and a fixed isotropc displacement parameter of 1.5 times higher than Ueq of Ir1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.086262 (15)0.157429 (8)0.860593 (10)0.02760 (8)
H10.071 (4)0.2193 (11)0.863 (3)0.041*
Cl10.12882 (13)0.05923 (6)0.85269 (8)0.0467 (4)
Cl20.41779 (12)0.14124 (7)0.72730 (9)0.0543 (4)
P10.10105 (10)0.14212 (5)0.85315 (7)0.0291 (3)
P20.04100 (10)0.17204 (5)0.71034 (7)0.0264 (3)
P30.20212 (10)0.15691 (5)0.70266 (6)0.0258 (3)
P40.26873 (10)0.17562 (6)0.84860 (7)0.0285 (3)
O10.0951 (4)0.1610 (2)1.0188 (2)0.0661 (14)
C10.0843 (4)0.1623 (2)0.7473 (3)0.0295 (11)
C20.1350 (4)0.1327 (2)0.7597 (3)0.0287 (11)
H2A0.12940.09450.74720.034*
H2B0.20930.14480.74930.034*
C30.3047 (4)0.1398 (2)0.7698 (3)0.0305 (11)
H3A0.30560.10080.77830.037*
H3B0.37660.15100.75490.037*
C40.0912 (4)0.1583 (2)0.9601 (3)0.0410 (14)
C1010.1556 (4)0.0815 (2)0.8934 (3)0.0378 (13)
C1020.2431 (5)0.0545 (3)0.8631 (3)0.0489 (15)
H1020.27430.06710.82050.059*
C1030.2854 (6)0.0090 (3)0.8950 (4)0.0621 (19)
H1030.34550.00890.87430.074*
C1040.2387 (6)0.0097 (3)0.9572 (4)0.067 (2)
H1040.26550.04120.97830.080*
C1050.1535 (6)0.0173 (3)0.9883 (4)0.067 (2)
H1050.12360.00531.03150.080*
C1060.1112 (5)0.0624 (3)0.9563 (3)0.0519 (16)
H1060.05160.08030.97750.062*
C1070.1853 (4)0.1971 (2)0.8843 (3)0.0328 (12)
C1080.1433 (5)0.2475 (3)0.9003 (4)0.0513 (16)
H1080.06860.25360.89620.062*
C1090.2081 (6)0.2891 (3)0.9222 (4)0.0607 (19)
H1090.17800.32340.93080.073*
C1100.3162 (5)0.2806 (3)0.9313 (4)0.0602 (19)
H1100.36040.30880.94700.072*
C1110.3597 (5)0.2303 (3)0.9173 (4)0.064 (2)
H1110.43380.22400.92420.076*
C1120.2951 (5)0.1891 (3)0.8933 (4)0.0522 (16)
H1120.32600.15520.88290.063*
C2010.0556 (4)0.1498 (2)0.6200 (3)0.0307 (12)
C2020.0488 (5)0.0946 (2)0.6065 (3)0.0393 (13)
H2020.04120.07000.64400.047*
C2030.0531 (5)0.0761 (3)0.5384 (3)0.0526 (16)
H2030.04850.03880.52970.063*
C2040.0640 (5)0.1112 (3)0.4826 (3)0.0527 (17)
H2040.06580.09790.43620.063*
C2050.0723 (5)0.1654 (3)0.4949 (3)0.0509 (16)
H2050.08100.18950.45680.061*
C2060.0677 (5)0.1852 (2)0.5635 (3)0.0372 (13)
H2060.07290.22250.57160.045*
C2070.0969 (4)0.2400 (2)0.7139 (3)0.0320 (12)
C2080.0311 (5)0.2827 (2)0.7380 (3)0.0420 (14)
H2080.04270.27690.74910.050*
C2090.0760 (7)0.3337 (3)0.7453 (4)0.0604 (19)
H2090.03310.36250.76270.072*
C2100.1832 (7)0.3423 (3)0.7272 (4)0.069 (2)
H2100.21270.37710.73080.083*
C2110.2478 (6)0.3003 (3)0.7038 (4)0.0639 (19)
H2110.32110.30660.69180.077*
C2120.2055 (5)0.2493 (2)0.6978 (3)0.0429 (14)
H2120.25030.22060.68280.051*
C3010.2117 (4)0.1022 (2)0.6384 (3)0.0317 (12)
C3020.1958 (5)0.0497 (2)0.6616 (3)0.0480 (15)
H3020.17600.04310.70820.058*
C3030.2094 (6)0.0069 (3)0.6153 (4)0.064 (2)
H3030.19950.02880.63060.077*
C3040.2373 (6)0.0170 (3)0.5470 (4)0.070 (2)
H3040.24790.01200.51600.084*
C3050.2497 (6)0.0689 (3)0.5237 (4)0.066 (2)
H3050.26620.07560.47660.079*
C3060.2378 (6)0.1115 (3)0.5701 (3)0.0518 (16)
H3060.24780.14720.55450.062*
C3070.2528 (4)0.2156 (2)0.6562 (2)0.0294 (11)
C3080.1817 (5)0.2551 (2)0.6310 (3)0.0448 (15)
H3080.10720.25150.63850.054*
C3090.2191 (5)0.2996 (3)0.5952 (4)0.0550 (17)
H3090.17020.32580.57770.066*
C3100.3276 (6)0.3051 (3)0.5853 (3)0.0532 (17)
H3100.35370.33580.56200.064*
C3110.3980 (5)0.2664 (3)0.6090 (3)0.0498 (16)
H3110.47240.27050.60140.060*
C3120.3620 (5)0.2216 (2)0.6438 (3)0.0423 (14)
H3120.41160.19500.65920.051*
C4010.3590 (4)0.1508 (2)0.9181 (3)0.0320 (12)
C4020.3547 (5)0.1748 (2)0.9852 (3)0.0431 (14)
H4020.31000.20510.99170.052*
C4030.4148 (5)0.1547 (3)1.0413 (3)0.0528 (17)
H4030.41070.17091.08580.063*
C4040.4810 (5)0.1109 (3)1.0320 (3)0.0548 (18)
H4040.52170.09711.07050.066*
C4050.4882 (6)0.0872 (3)0.9672 (4)0.0612 (19)
H4050.53410.05740.96130.073*
C4060.4272 (5)0.1073 (3)0.9099 (3)0.0488 (15)
H4060.43280.09110.86540.059*
C4070.3075 (4)0.2449 (2)0.8343 (3)0.0332 (12)
C4080.2362 (5)0.2876 (2)0.8433 (3)0.0436 (14)
H4080.16700.28070.86070.052*
C4090.2651 (7)0.3400 (3)0.8272 (4)0.0613 (19)
H4090.21560.36840.83310.074*
C4100.3658 (7)0.3504 (3)0.8027 (4)0.067 (2)
H4100.38510.38590.79080.080*
C4110.4388 (6)0.3093 (3)0.7955 (4)0.066 (2)
H4110.50890.31700.78020.079*
C4120.4104 (5)0.2564 (2)0.8104 (3)0.0483 (15)
H4120.46050.22830.80430.058*
C50.1302 (10)0.3639 (5)1.0447 (5)0.115 (4)
H5A0.20500.37711.04410.138*
H5B0.10560.36731.09300.138*
Cl30.1294 (3)0.29711 (13)1.02240 (17)0.1278 (10)
Cl40.0511 (4)0.4043 (2)0.9911 (3)0.211 (2)
C60.0035 (10)0.5119 (4)0.8155 (7)0.125 (4)
H6A0.04400.50900.85760.150*
H6B0.01630.55030.80620.150*
Cl50.0611 (3)0.48306 (14)0.7439 (2)0.1557 (14)
Cl60.1255 (4)0.48058 (19)0.8312 (3)0.204 (2)
C70.5564 (14)0.4630 (5)0.7031 (10)0.171 (6)
H7A0.49510.48780.69610.205*
H7B0.61960.47990.68220.205*
Cl70.5296 (4)0.40838 (13)0.66066 (17)0.1600 (16)
Cl80.5822 (3)0.45621 (16)0.7924 (3)0.1825 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02108 (11)0.03984 (13)0.02192 (11)0.00021 (9)0.00161 (7)0.00209 (9)
Cl10.0525 (9)0.0430 (8)0.0451 (8)0.0033 (7)0.0104 (7)0.0113 (6)
Cl20.0278 (7)0.0736 (11)0.0614 (10)0.0034 (7)0.0001 (7)0.0024 (8)
P10.0210 (6)0.0401 (8)0.0262 (7)0.0005 (6)0.0029 (5)0.0042 (6)
P20.0223 (6)0.0338 (7)0.0230 (7)0.0004 (5)0.0009 (5)0.0016 (5)
P30.0228 (6)0.0337 (7)0.0209 (6)0.0002 (5)0.0016 (5)0.0012 (5)
P40.0210 (6)0.0400 (7)0.0247 (7)0.0015 (6)0.0021 (5)0.0004 (6)
O10.068 (3)0.104 (4)0.027 (3)0.009 (3)0.004 (2)0.004 (2)
C10.024 (3)0.044 (3)0.021 (2)0.002 (2)0.004 (2)0.003 (2)
C20.024 (3)0.037 (3)0.025 (3)0.005 (2)0.001 (2)0.000 (2)
C30.026 (3)0.038 (3)0.028 (3)0.002 (2)0.002 (2)0.002 (2)
C40.022 (3)0.064 (4)0.037 (4)0.003 (3)0.002 (2)0.001 (3)
C1010.033 (3)0.042 (3)0.039 (3)0.003 (3)0.012 (3)0.010 (3)
C1020.044 (4)0.056 (4)0.047 (4)0.012 (3)0.005 (3)0.009 (3)
C1030.047 (4)0.056 (4)0.084 (5)0.016 (3)0.006 (4)0.009 (4)
C1040.056 (5)0.058 (4)0.087 (6)0.011 (4)0.019 (4)0.028 (4)
C1050.062 (5)0.071 (5)0.068 (5)0.002 (4)0.008 (4)0.037 (4)
C1060.045 (4)0.055 (4)0.055 (4)0.000 (3)0.004 (3)0.019 (3)
C1070.025 (3)0.049 (3)0.024 (3)0.001 (2)0.001 (2)0.001 (2)
C1080.040 (4)0.056 (4)0.058 (4)0.003 (3)0.018 (3)0.011 (3)
C1090.053 (4)0.055 (4)0.076 (5)0.001 (3)0.022 (4)0.020 (4)
C1100.046 (4)0.072 (5)0.063 (4)0.019 (4)0.012 (3)0.021 (4)
C1110.030 (3)0.086 (5)0.076 (5)0.007 (3)0.011 (3)0.026 (4)
C1120.033 (3)0.061 (4)0.063 (4)0.000 (3)0.004 (3)0.012 (3)
C2010.022 (3)0.046 (3)0.024 (3)0.004 (2)0.001 (2)0.003 (2)
C2020.036 (3)0.044 (3)0.037 (3)0.002 (3)0.006 (3)0.002 (3)
C2030.054 (4)0.057 (4)0.046 (4)0.001 (3)0.008 (3)0.019 (3)
C2040.054 (4)0.075 (5)0.028 (3)0.000 (3)0.001 (3)0.015 (3)
C2050.049 (4)0.071 (5)0.032 (3)0.005 (3)0.005 (3)0.008 (3)
C2060.037 (3)0.046 (3)0.029 (3)0.001 (3)0.001 (2)0.005 (2)
C2070.036 (3)0.035 (3)0.025 (3)0.004 (2)0.005 (2)0.005 (2)
C2080.044 (3)0.037 (3)0.045 (3)0.000 (3)0.010 (3)0.002 (3)
C2090.081 (5)0.043 (4)0.057 (4)0.001 (3)0.006 (4)0.008 (3)
C2100.089 (6)0.044 (4)0.075 (5)0.031 (4)0.017 (5)0.000 (4)
C2110.053 (4)0.063 (5)0.076 (5)0.020 (4)0.010 (4)0.009 (4)
C2120.033 (3)0.048 (4)0.048 (4)0.007 (3)0.003 (3)0.003 (3)
C3010.026 (3)0.043 (3)0.027 (3)0.002 (2)0.003 (2)0.005 (2)
C3020.048 (4)0.039 (3)0.056 (4)0.004 (3)0.000 (3)0.008 (3)
C3030.069 (5)0.045 (4)0.078 (5)0.000 (3)0.001 (4)0.012 (4)
C3040.062 (5)0.067 (5)0.082 (6)0.002 (4)0.006 (4)0.042 (4)
C3050.082 (5)0.074 (5)0.043 (4)0.020 (4)0.022 (4)0.025 (4)
C3060.068 (4)0.051 (4)0.036 (3)0.012 (3)0.012 (3)0.010 (3)
C3070.026 (3)0.041 (3)0.021 (3)0.004 (2)0.004 (2)0.002 (2)
C3080.030 (3)0.049 (4)0.055 (4)0.001 (3)0.001 (3)0.016 (3)
C3090.052 (4)0.048 (4)0.066 (4)0.006 (3)0.007 (3)0.024 (3)
C3100.057 (4)0.057 (4)0.045 (4)0.016 (3)0.005 (3)0.013 (3)
C3110.034 (3)0.067 (4)0.048 (4)0.012 (3)0.006 (3)0.016 (3)
C3120.037 (3)0.048 (3)0.043 (3)0.000 (3)0.006 (3)0.010 (3)
C4010.020 (2)0.046 (3)0.030 (3)0.003 (2)0.000 (2)0.005 (2)
C4020.038 (3)0.057 (4)0.034 (3)0.000 (3)0.008 (3)0.003 (3)
C4030.048 (4)0.076 (5)0.033 (3)0.010 (4)0.006 (3)0.005 (3)
C4040.042 (4)0.077 (5)0.044 (4)0.012 (3)0.019 (3)0.021 (3)
C4050.051 (4)0.070 (5)0.062 (5)0.020 (3)0.019 (4)0.010 (4)
C4060.043 (4)0.066 (4)0.037 (3)0.010 (3)0.001 (3)0.000 (3)
C4070.035 (3)0.042 (3)0.023 (3)0.005 (2)0.006 (2)0.001 (2)
C4080.045 (3)0.042 (3)0.043 (3)0.002 (3)0.008 (3)0.002 (3)
C4090.073 (5)0.041 (4)0.070 (5)0.001 (3)0.014 (4)0.001 (3)
C4100.089 (6)0.050 (4)0.063 (5)0.018 (4)0.016 (4)0.002 (3)
C4110.066 (5)0.072 (5)0.062 (5)0.033 (4)0.025 (4)0.013 (4)
C4120.053 (4)0.049 (4)0.043 (4)0.011 (3)0.014 (3)0.010 (3)
C50.149 (11)0.116 (8)0.080 (7)0.014 (7)0.015 (7)0.006 (6)
Cl30.126 (2)0.136 (2)0.124 (2)0.0242 (19)0.0329 (19)0.0336 (19)
Cl40.129 (3)0.220 (5)0.283 (6)0.001 (3)0.020 (4)0.108 (4)
C60.127 (10)0.090 (7)0.156 (11)0.015 (7)0.019 (8)0.005 (7)
Cl50.161 (3)0.121 (3)0.184 (4)0.014 (2)0.012 (3)0.022 (2)
Cl60.201 (5)0.178 (4)0.233 (5)0.085 (3)0.028 (4)0.007 (3)
C70.224 (17)0.070 (7)0.219 (17)0.005 (9)0.035 (14)0.040 (9)
Cl70.274 (5)0.103 (2)0.104 (2)0.013 (3)0.029 (3)0.0201 (17)
Cl80.132 (3)0.147 (3)0.268 (6)0.027 (2)0.003 (3)0.093 (3)
Geometric parameters (Å, º) top
Ir1—H11.54 (3)C205—C2061.393 (8)
Ir1—C41.891 (6)C207—C2121.387 (8)
Ir1—C12.157 (5)C207—C2081.401 (8)
Ir1—P42.3154 (13)C208—C2091.388 (9)
Ir1—P12.3438 (13)C209—C2101.375 (11)
Ir1—Cl12.4919 (14)C210—C2111.375 (11)
P1—C1071.822 (5)C211—C2121.371 (9)
P1—C1011.823 (5)C301—C3061.365 (8)
P1—C21.827 (5)C301—C3021.390 (8)
P2—C11.697 (5)C302—C3031.389 (9)
P2—C21.800 (5)C303—C3041.377 (11)
P2—C2011.808 (5)C304—C3051.368 (11)
P2—C2071.821 (5)C305—C3061.386 (9)
P3—C11.711 (5)C307—C3121.383 (7)
P3—C3071.821 (5)C307—C3081.390 (8)
P3—C31.821 (5)C308—C3091.380 (8)
P3—C3011.829 (5)C309—C3101.365 (9)
P4—C4071.804 (5)C310—C3111.361 (9)
P4—C31.807 (5)C311—C3121.372 (8)
P4—C4011.811 (5)C401—C4061.378 (8)
O1—C41.117 (7)C401—C4021.409 (8)
C101—C1021.381 (8)C402—C4031.375 (8)
C101—C1061.383 (8)C403—C4041.371 (10)
C102—C1031.386 (9)C404—C4051.370 (10)
C103—C1041.382 (10)C405—C4061.398 (8)
C104—C1051.366 (10)C407—C4081.388 (8)
C105—C1061.380 (9)C407—C4121.391 (8)
C107—C1081.382 (8)C408—C4091.383 (9)
C107—C1121.385 (8)C409—C4101.364 (11)
C108—C1091.376 (9)C410—C4111.369 (11)
C109—C1101.367 (9)C411—C4121.388 (9)
C110—C1111.379 (10)C5—Cl31.705 (11)
C111—C1121.381 (9)C5—Cl41.714 (12)
C201—C2061.391 (7)C6—Cl61.728 (12)
C201—C2021.392 (7)C6—Cl51.750 (13)
C202—C2031.373 (8)C7—Cl71.602 (15)
C203—C2041.373 (9)C7—Cl81.727 (17)
C204—C2051.367 (9)
H1—Ir1—C487.7 (18)C109—C108—C107121.6 (6)
H1—Ir1—C188.6 (18)C110—C109—C108120.2 (6)
C4—Ir1—C1176.0 (2)C109—C110—C111119.4 (6)
H1—Ir1—P485.9 (19)C110—C111—C112120.3 (6)
C4—Ir1—P495.39 (16)C111—C112—C107120.9 (6)
C1—Ir1—P482.71 (14)C206—C201—C202118.8 (5)
H1—Ir1—P192.4 (19)C206—C201—P2123.2 (4)
C4—Ir1—P193.70 (16)C202—C201—P2118.0 (4)
C1—Ir1—P188.09 (14)C203—C202—C201119.9 (5)
P4—Ir1—P1170.69 (5)C204—C203—C202121.3 (6)
H1—Ir1—Cl1174 (2)C205—C204—C203119.6 (5)
C4—Ir1—Cl194.05 (19)C204—C205—C206120.2 (5)
C1—Ir1—Cl189.43 (14)C201—C206—C205120.2 (5)
P4—Ir1—Cl188.63 (5)C212—C207—C208119.7 (5)
P1—Ir1—Cl192.77 (5)C212—C207—P2120.6 (4)
C107—P1—C101104.9 (2)C208—C207—P2119.5 (4)
C107—P1—C2107.1 (2)C209—C208—C207119.3 (6)
C101—P1—C2103.1 (2)C210—C209—C208119.9 (6)
C107—P1—Ir1115.57 (18)C209—C210—C211120.6 (6)
C101—P1—Ir1118.94 (18)C212—C211—C210120.3 (7)
C2—P1—Ir1106.05 (16)C211—C212—C207120.1 (6)
C1—P2—C2107.5 (2)C306—C301—C302120.0 (5)
C1—P2—C201114.4 (2)C306—C301—P3122.1 (4)
C2—P2—C201106.5 (2)C302—C301—P3117.8 (4)
C1—P2—C207117.3 (3)C303—C302—C301119.3 (6)
C2—P2—C207103.2 (2)C304—C303—C302119.9 (6)
C201—P2—C207106.8 (2)C305—C304—C303120.6 (6)
C1—P3—C307119.3 (2)C304—C305—C306119.6 (7)
C1—P3—C3104.7 (2)C301—C306—C305120.6 (6)
C307—P3—C3106.5 (2)C312—C307—C308118.3 (5)
C1—P3—C301117.5 (2)C312—C307—P3121.3 (4)
C307—P3—C301103.6 (2)C308—C307—P3120.4 (4)
C3—P3—C301103.8 (2)C309—C308—C307120.9 (5)
C407—P4—C3105.6 (2)C310—C309—C308119.5 (6)
C407—P4—C401105.8 (2)C311—C310—C309120.2 (6)
C3—P4—C401106.1 (2)C310—C311—C312121.0 (6)
C407—P4—Ir1117.58 (18)C311—C312—C307120.0 (5)
C3—P4—Ir1104.47 (17)C406—C401—C402118.2 (5)
C401—P4—Ir1116.23 (17)C406—C401—P4123.1 (4)
P2—C1—P3125.7 (3)C402—C401—P4118.6 (4)
P2—C1—Ir1113.9 (3)C403—C402—C401121.0 (6)
P3—C1—Ir1120.4 (3)C404—C403—C402119.8 (6)
P2—C2—P1107.8 (3)C405—C404—C403120.6 (6)
P4—C3—P3106.5 (3)C404—C405—C406120.1 (6)
O1—C4—Ir1177.1 (6)C401—C406—C405120.4 (6)
C102—C101—C106118.7 (5)C408—C407—C412118.3 (5)
C102—C101—P1121.1 (4)C408—C407—P4122.2 (4)
C106—C101—P1120.1 (5)C412—C407—P4119.4 (4)
C101—C102—C103120.7 (6)C409—C408—C407121.1 (6)
C104—C103—C102119.5 (6)C410—C409—C408119.8 (7)
C105—C104—C103120.2 (6)C409—C410—C411120.2 (6)
C104—C105—C106120.1 (6)C410—C411—C412120.6 (7)
C105—C106—C101120.8 (6)C411—C412—C407119.8 (6)
C108—C107—C112117.6 (5)Cl3—C5—Cl4114.8 (7)
C108—C107—P1122.1 (4)Cl6—C6—Cl5111.8 (6)
C112—C107—P1120.3 (4)Cl7—C7—Cl8116.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl20.982.603.534 (5)160
C3—H3B···Cl2i0.982.623.544 (5)157
C5—H5B···Cl2ii0.982.593.541 (10)165
C6—H6B···Cl2iii0.982.473.436 (10)169
C7—H7A···Cl1iv0.982.503.447 (15)163
C105—H105···Cl1v0.942.723.573 (8)151
C312—H312···Cl2i0.942.783.690 (6)163
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+3/2; (v) x, y, z+2.
(Bis{[(diphenylphosphanyl)methyl]diphenylphosphanylidene}methane(1+)-κ3P,C,P')carbonylchloridohydridoiridium(III) dichloride–hydrochloric acid–water (1/2/5.5) (complex2) top
Crystal data top
[IrClH(C51H44P4)(CO)]Cl2·2HCl·5.5H2OF(000) = 5160
Mr = 1281.32Dx = 1.518 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.7138 (2) ÅCell parameters from 114911 reflections
b = 22.7327 (2) Åθ = 1.0–26.0°
c = 25.3120 (3) ŵ = 2.78 mm1
β = 98.781 (1)°T = 233 K
V = 11210.6 (2) Å3Prism, colorless
Z = 80.3 × 0.2 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
17290 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 1.2°
phi– and ω–scansh = 2422
68943 measured reflectionsk = 2828
22078 independent reflectionsl = 2631
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0372P)2 + 17.5174P]
where P = (Fo2 + 2Fc2)/3
22078 reflections(Δ/σ)max = 0.004
1268 parametersΔρmax = 2.03 e Å3
2 restraintsΔρmin = 0.99 e Å3
Special details top

Experimental. All data sets were measured with several scans to increase the number of redundant reflections. In our experience this method of averaging redundant reflections replaces in a good approximation semi-empirical absorptions methods (absorption correction programs like SORTAV lead to no better data sets).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Two molecules in the asymmetric unit. Hydrogen atoms at Ir1 and Ir2 were found and refined isotropically. Hydrogens at C1 and C5 were also found but refined with bond restraints (d=0.98 angs.). Between the molecules is a network of hydrogen bonded water and hydrochloric acid molecules and chloride anions. The hydrogen atoms of these molecules could only partially found and were omitted. One water molecule (O4 and O4A) and one Hydrochloric acid or chloride (Cl10 and Cl1A) have a 1:1 position disorder. There are 8 Cl-positions in the network represented 4 chloride and 4 acid units.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.181754 (6)0.912702 (6)0.415090 (5)0.02126 (5)
H110.2558 (18)0.9271 (16)0.4099 (14)0.029 (10)*
Ir20.321407 (6)0.410832 (6)0.593150 (5)0.01959 (4)
H220.2500 (17)0.4236 (15)0.6005 (14)0.024 (9)*
P10.21221 (5)0.91856 (4)0.50825 (4)0.0253 (2)
P20.29369 (4)0.82093 (4)0.47570 (4)0.02331 (19)
P30.21933 (4)0.78277 (4)0.36170 (3)0.02198 (18)
P40.16639 (5)0.90008 (4)0.32262 (4)0.02340 (19)
P50.28901 (5)0.41950 (4)0.50063 (3)0.02245 (19)
P60.20630 (4)0.32196 (4)0.53195 (3)0.02165 (18)
P70.27874 (4)0.28207 (4)0.64560 (3)0.02201 (18)
P80.33514 (4)0.39775 (4)0.68539 (3)0.02260 (19)
Cl10.06789 (4)0.87577 (4)0.42596 (4)0.0324 (2)
Cl20.43463 (4)0.37404 (4)0.58048 (4)0.0325 (2)
O10.13685 (16)1.03896 (13)0.40152 (13)0.0493 (8)
O20.37103 (15)0.53572 (12)0.60789 (12)0.0477 (8)
C10.22006 (17)0.82147 (15)0.42386 (13)0.0227 (7)
H10.1851 (14)0.8033 (15)0.4408 (13)0.029 (10)*
C20.25277 (19)0.84808 (16)0.52990 (14)0.0297 (8)
H2A0.28680.85370.56200.036*
H2B0.21820.82000.53820.036*
C30.21881 (17)0.83659 (15)0.30985 (13)0.0240 (7)
H3A0.20030.81900.27530.029*
H3B0.26590.84950.30820.029*
C40.15263 (19)0.99113 (18)0.40750 (15)0.0329 (9)
C50.27997 (16)0.32091 (14)0.58383 (13)0.0199 (7)
H50.3150 (13)0.3018 (12)0.5667 (11)0.010 (8)*
C60.24699 (18)0.34970 (16)0.47778 (14)0.0268 (8)
H6A0.21270.35630.44600.032*
H6B0.28100.32140.46880.032*
C70.27997 (17)0.33607 (16)0.69767 (13)0.0261 (8)
H7A0.29720.31820.73230.031*
H7B0.23330.35030.69870.031*
C80.35343 (19)0.48842 (17)0.60151 (14)0.0296 (8)
C1010.27332 (19)0.97435 (17)0.53609 (16)0.0337 (9)
C1020.2939 (2)1.01953 (19)0.50583 (18)0.0449 (11)
H1020.27901.02070.46880.054*
C1030.3370 (3)1.0636 (2)0.5305 (2)0.0622 (14)
H1030.35111.09450.51000.075*
C1040.3587 (3)1.0616 (3)0.5845 (2)0.0651 (15)
H1040.38671.09190.60090.078*
C1050.3402 (3)1.0163 (3)0.6149 (2)0.0635 (15)
H1050.35671.01500.65180.076*
C1060.2969 (2)0.9722 (2)0.59107 (17)0.0491 (11)
H1060.28360.94120.61180.059*
C1070.14144 (19)0.92914 (19)0.54575 (15)0.0351 (9)
C1080.1101 (2)0.9837 (2)0.54191 (19)0.0544 (13)
H1080.12571.01320.52070.065*
C1090.0554 (3)0.9949 (3)0.5694 (2)0.0755 (19)
H1090.03351.03170.56670.091*
C1100.0343 (3)0.9514 (4)0.6005 (2)0.080 (2)
H1100.00200.95900.61980.096*
C1110.0642 (3)0.8977 (3)0.6042 (2)0.0721 (17)
H1110.04840.86840.62550.087*
C1120.1181 (2)0.8857 (2)0.57654 (18)0.0501 (12)
H1120.13860.84830.57870.060*
C2010.33327 (18)0.75168 (15)0.49610 (14)0.0281 (8)
C2020.40045 (19)0.74022 (17)0.48793 (15)0.0321 (8)
H2020.42430.76780.47010.039*
C2030.4317 (2)0.68814 (18)0.50623 (18)0.0415 (10)
H2030.47690.68020.50080.050*
C2040.3967 (2)0.6481 (2)0.5323 (2)0.0554 (13)
H2040.41840.61290.54510.066*
C2050.3306 (3)0.6586 (2)0.5399 (2)0.0663 (16)
H2050.30720.63070.55770.080*
C2060.2977 (2)0.71047 (19)0.5213 (2)0.0485 (12)
H2060.25190.71740.52580.058*
C2070.36260 (17)0.86855 (15)0.46483 (14)0.0265 (8)
C2080.37411 (18)0.88632 (17)0.41486 (15)0.0302 (8)
H2080.34390.87470.38420.036*
C2090.4301 (2)0.9212 (2)0.40997 (19)0.0450 (11)
H2090.43760.93390.37600.054*
C2100.4749 (2)0.9374 (2)0.4548 (2)0.0542 (12)
H2100.51270.96150.45120.065*
C2110.4651 (2)0.9188 (2)0.5043 (2)0.0537 (13)
H2110.49690.92910.53440.064*
C2120.4087 (2)0.88487 (19)0.51046 (16)0.0401 (10)
H2120.40130.87290.54460.048*
C3010.28957 (18)0.73269 (16)0.36121 (14)0.0275 (8)
C3020.28391 (19)0.67840 (16)0.38643 (16)0.0340 (9)
H3020.24480.66980.40210.041*
C3030.3362 (2)0.63748 (18)0.38809 (18)0.0435 (11)
H3030.33300.60100.40510.052*
C3040.3928 (2)0.6506 (2)0.3647 (2)0.0519 (13)
H3040.42840.62280.36600.062*
C3050.3982 (2)0.7031 (2)0.3398 (2)0.0522 (12)
H3050.43720.71090.32380.063*
C3060.3467 (2)0.74543 (18)0.33777 (17)0.0399 (10)
H3060.35070.78180.32080.048*
C3070.14376 (18)0.73816 (15)0.34728 (14)0.0278 (8)
C3080.09406 (19)0.73260 (17)0.38036 (17)0.0355 (9)
H3080.09710.75450.41210.043*
C3090.0400 (2)0.6943 (2)0.3658 (2)0.0501 (12)
H3090.00640.69000.38830.060*
C3100.0342 (2)0.6626 (2)0.3197 (2)0.0577 (14)
H3100.00340.63720.31030.069*
C3110.0834 (3)0.6676 (2)0.28666 (19)0.0550 (13)
H3110.07930.64580.25480.066*
C3120.1387 (2)0.70459 (19)0.30041 (17)0.0424 (10)
H3120.17290.70730.27840.051*
C4010.19720 (18)0.95858 (15)0.28336 (14)0.0271 (8)
C4020.2406 (2)1.00271 (19)0.30682 (16)0.0407 (10)
H4020.25501.00290.34400.049*
C4030.2623 (2)1.0465 (2)0.27505 (19)0.0490 (11)
H4030.29091.07680.29100.059*
C4040.2426 (2)1.0462 (2)0.22070 (18)0.0481 (11)
H4040.25751.07610.19950.058*
C4050.2011 (2)1.0020 (2)0.19749 (17)0.0486 (11)
H4050.18771.00150.16020.058*
C4060.1787 (2)0.95811 (19)0.22858 (16)0.0385 (9)
H4060.15060.92780.21220.046*
C4070.07960 (18)0.88841 (16)0.28820 (14)0.0279 (8)
C4080.0603 (2)0.84135 (19)0.25456 (16)0.0393 (10)
H4080.09190.81120.25090.047*
C4090.0058 (2)0.8386 (2)0.22621 (18)0.0516 (12)
H4090.01890.80650.20340.062*
C4100.0521 (2)0.8828 (3)0.23145 (19)0.0555 (13)
H4100.09670.88100.21200.067*
C4110.0335 (2)0.9290 (2)0.2647 (2)0.0555 (13)
H4110.06530.95900.26820.067*
C4120.0319 (2)0.9322 (2)0.29335 (17)0.0422 (10)
H4120.04420.96420.31640.051*
C5010.35689 (18)0.43210 (16)0.46057 (14)0.0269 (8)
C5020.3884 (2)0.48677 (19)0.46588 (17)0.0428 (10)
H5020.37480.51460.48970.051*
C5030.4395 (2)0.5004 (2)0.4363 (2)0.0528 (13)
H5030.46140.53720.44030.063*
C5040.4581 (2)0.4597 (3)0.4011 (2)0.0563 (14)
H5040.49200.46930.38010.068*
C5050.4279 (3)0.4055 (2)0.3963 (2)0.0537 (13)
H5050.44170.37770.37250.064*
C5060.3774 (2)0.39124 (19)0.42598 (17)0.0397 (10)
H5060.35690.35380.42270.048*
C5080.2069 (2)0.51871 (19)0.51128 (18)0.0450 (11)
H5080.22000.51520.54840.054*
C5070.22857 (18)0.47771 (16)0.47726 (15)0.0292 (8)
C5090.1657 (3)0.5653 (2)0.4902 (2)0.0627 (14)
H5090.15150.59350.51330.075*
C5100.1457 (2)0.5704 (2)0.4363 (3)0.0641 (15)
H5100.11900.60270.42250.077*
C5110.1645 (3)0.5285 (3)0.4022 (2)0.0615 (14)
H5110.14890.53110.36530.074*
C5120.2067 (2)0.4826 (2)0.42257 (17)0.0469 (11)
H5120.22060.45440.39920.056*
C6010.16664 (17)0.25250 (15)0.51261 (13)0.0254 (8)
C6020.20494 (19)0.20844 (17)0.49293 (17)0.0369 (9)
H6020.25170.21440.49100.044*
C6030.1733 (2)0.15567 (18)0.4762 (2)0.0479 (11)
H6030.19880.12560.46290.057*
C6040.1046 (2)0.14712 (18)0.47905 (18)0.0447 (11)
H6040.08330.11160.46690.054*
C6050.06694 (19)0.19022 (17)0.49950 (16)0.0364 (9)
H6050.02050.18370.50230.044*
C6060.09772 (18)0.24333 (16)0.51602 (15)0.0306 (8)
H6060.07200.27310.52950.037*
C6070.13787 (17)0.37044 (15)0.54243 (14)0.0259 (8)
C6080.12795 (18)0.38994 (17)0.59230 (15)0.0319 (8)
H6080.15840.37840.62280.038*
C6090.0731 (2)0.42652 (19)0.59750 (18)0.0423 (10)
H6090.06690.44060.63140.051*
C6100.0277 (2)0.4421 (2)0.5530 (2)0.0494 (12)
H6100.00900.46750.55640.059*
C6110.0354 (2)0.4211 (2)0.5038 (2)0.0498 (12)
H6110.00290.43060.47380.060*
C6120.09104 (19)0.38598 (17)0.49785 (16)0.0352 (9)
H6120.09720.37260.46380.042*
C7010.20732 (18)0.23359 (16)0.64540 (15)0.0295 (8)
C7020.1496 (2)0.24920 (19)0.66759 (17)0.0411 (10)
H7020.14690.28590.68430.049*
C7030.0956 (2)0.2087 (3)0.6643 (2)0.0605 (15)
H7030.05620.21790.67940.073*
C7040.0997 (3)0.1558 (2)0.6392 (2)0.0637 (16)
H7040.06270.12950.63700.076*
C7050.1562 (3)0.1405 (2)0.61746 (19)0.0538 (13)
H7050.15820.10390.60040.065*
C7060.2108 (2)0.17939 (17)0.62077 (17)0.0388 (10)
H7060.25030.16900.60630.047*
C7070.35348 (18)0.23694 (15)0.66079 (14)0.0277 (8)
C7080.40532 (19)0.23352 (17)0.62909 (16)0.0346 (9)
H7080.40320.25600.59770.042*
C7090.4600 (2)0.1961 (2)0.6451 (2)0.0511 (12)
H7090.49500.19270.62390.061*
C7100.4641 (2)0.1638 (2)0.6913 (2)0.0597 (14)
H7100.50220.13920.70160.072*
C7110.4130 (3)0.1673 (2)0.7224 (2)0.0560 (13)
H7110.41610.14530.75420.067*
C7120.3572 (2)0.20293 (18)0.70703 (17)0.0413 (10)
H7120.32150.20440.72770.050*
C8010.30467 (17)0.45851 (15)0.72259 (14)0.0263 (8)
C8020.32467 (19)0.46072 (18)0.77730 (15)0.0338 (9)
H8020.35360.43140.79450.041*
C8030.3023 (2)0.5058 (2)0.80689 (17)0.0467 (11)
H8030.31630.50730.84410.056*
C8040.2597 (2)0.5484 (2)0.78201 (19)0.0481 (11)
H8040.24500.57940.80210.058*
C8050.2384 (2)0.5459 (2)0.72784 (18)0.0490 (11)
H8050.20860.57480.71100.059*
C8060.2606 (2)0.50079 (18)0.69793 (16)0.0389 (10)
H8060.24570.49900.66090.047*
C8070.42090 (18)0.38327 (17)0.72028 (14)0.0295 (8)
C8080.4713 (2)0.4244 (2)0.71341 (17)0.0417 (10)
H8080.46050.45610.68990.050*
C8090.5374 (2)0.4186 (2)0.7412 (2)0.0557 (13)
H8090.57090.44710.73750.067*
C8100.5535 (2)0.3709 (3)0.7742 (2)0.0593 (14)
H8100.59840.36650.79260.071*
C8110.5045 (3)0.3298 (2)0.78038 (19)0.0580 (13)
H8110.51600.29730.80290.070*
C8120.4382 (2)0.33597 (19)0.75370 (17)0.0436 (10)
H8120.40480.30770.75840.052*
Cl30.43500 (8)0.07777 (6)0.35337 (6)0.0683 (4)
Cl40.63453 (6)0.10085 (5)0.24013 (5)0.0502 (3)
Cl50.36569 (5)0.10478 (5)0.26820 (5)0.0481 (3)
Cl60.56146 (9)0.09005 (6)0.14042 (6)0.0753 (4)
Cl70.61135 (7)0.23188 (6)0.02459 (6)0.0647 (3)
Cl80.18768 (7)0.22306 (7)0.18243 (5)0.0737 (4)
Cl90.11836 (6)0.26763 (6)0.01405 (5)0.0558 (3)
Cl100.7388 (2)0.2809 (2)0.30806 (17)0.1024 (16)0.50
Cl1A0.7741 (3)0.2425 (3)0.32103 (18)0.130 (2)0.50
O30.5264 (2)0.18247 (18)0.3666 (2)0.0951 (14)
O40.6467 (4)0.1744 (4)0.3440 (3)0.075 (2)0.50
O4A0.6003 (4)0.2120 (4)0.2999 (4)0.090 (3)0.50
O50.82515 (19)0.34084 (18)0.39015 (14)0.0707 (10)
O60.43632 (19)0.00727 (16)0.25519 (15)0.0694 (10)
O70.5547 (2)0.01186 (16)0.23911 (15)0.0727 (11)
O80.3074 (2)0.1457 (2)0.15756 (16)0.0925 (13)
O90.3671 (2)0.2327 (2)0.12315 (18)0.0993 (14)
O100.4977 (2)0.2185 (2)0.11123 (19)0.1075 (16)
O110.2902 (2)0.31156 (18)0.15257 (17)0.0886 (13)
O120.18821 (18)0.36714 (17)0.09137 (15)0.0699 (10)
O130.05236 (17)0.24396 (15)0.10971 (13)0.0611 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02149 (8)0.01844 (8)0.02403 (8)0.00296 (5)0.00408 (5)0.00136 (5)
Ir20.01927 (8)0.01723 (8)0.02234 (7)0.00200 (5)0.00338 (5)0.00099 (5)
P10.0255 (5)0.0254 (5)0.0253 (5)0.0020 (4)0.0047 (4)0.0042 (4)
P20.0222 (5)0.0207 (5)0.0265 (5)0.0016 (4)0.0021 (3)0.0008 (4)
P30.0200 (4)0.0187 (4)0.0274 (5)0.0008 (3)0.0042 (3)0.0017 (3)
P40.0226 (5)0.0231 (5)0.0246 (5)0.0017 (4)0.0041 (3)0.0009 (4)
P50.0244 (5)0.0204 (5)0.0231 (4)0.0021 (4)0.0052 (3)0.0025 (3)
P60.0210 (4)0.0180 (4)0.0257 (4)0.0011 (3)0.0025 (3)0.0000 (3)
P70.0211 (4)0.0183 (4)0.0267 (5)0.0006 (3)0.0039 (3)0.0038 (3)
P80.0221 (5)0.0221 (5)0.0233 (4)0.0003 (4)0.0026 (3)0.0001 (4)
Cl10.0236 (4)0.0342 (5)0.0405 (5)0.0006 (4)0.0082 (4)0.0009 (4)
Cl20.0225 (4)0.0331 (5)0.0431 (5)0.0019 (4)0.0088 (4)0.0024 (4)
O10.0575 (19)0.0251 (16)0.063 (2)0.0115 (14)0.0014 (15)0.0042 (14)
O20.0563 (19)0.0231 (16)0.062 (2)0.0135 (14)0.0038 (15)0.0009 (14)
C10.0216 (18)0.0210 (18)0.0255 (18)0.0034 (14)0.0040 (13)0.0010 (14)
C20.033 (2)0.026 (2)0.0299 (19)0.0035 (16)0.0035 (15)0.0023 (15)
C30.0248 (18)0.0233 (18)0.0241 (18)0.0004 (15)0.0044 (13)0.0008 (14)
C40.030 (2)0.034 (2)0.034 (2)0.0032 (17)0.0036 (16)0.0034 (17)
C50.0177 (17)0.0152 (17)0.0269 (18)0.0011 (13)0.0044 (13)0.0009 (13)
C60.031 (2)0.0250 (19)0.0246 (18)0.0032 (15)0.0044 (14)0.0008 (14)
C70.0265 (19)0.0275 (19)0.0243 (18)0.0016 (15)0.0041 (14)0.0022 (15)
C80.031 (2)0.030 (2)0.0268 (19)0.0002 (16)0.0007 (15)0.0055 (15)
C1010.028 (2)0.032 (2)0.040 (2)0.0001 (17)0.0051 (16)0.0117 (17)
C1020.041 (2)0.040 (3)0.050 (3)0.009 (2)0.0041 (19)0.001 (2)
C1030.053 (3)0.048 (3)0.083 (4)0.017 (2)0.000 (3)0.003 (3)
C1040.046 (3)0.065 (4)0.082 (4)0.020 (3)0.001 (3)0.031 (3)
C1050.053 (3)0.084 (4)0.051 (3)0.020 (3)0.001 (2)0.029 (3)
C1060.048 (3)0.061 (3)0.038 (2)0.014 (2)0.0077 (19)0.012 (2)
C1070.031 (2)0.048 (3)0.0262 (19)0.0023 (18)0.0045 (15)0.0124 (18)
C1080.053 (3)0.061 (3)0.051 (3)0.022 (2)0.009 (2)0.014 (2)
C1090.050 (3)0.104 (5)0.072 (4)0.030 (3)0.005 (3)0.042 (4)
C1100.035 (3)0.144 (7)0.063 (4)0.001 (4)0.012 (2)0.055 (4)
C1110.052 (3)0.115 (5)0.056 (3)0.025 (3)0.029 (3)0.025 (3)
C1120.046 (3)0.062 (3)0.046 (3)0.008 (2)0.020 (2)0.010 (2)
C2010.030 (2)0.0218 (19)0.0320 (19)0.0026 (15)0.0018 (15)0.0021 (15)
C2020.031 (2)0.028 (2)0.037 (2)0.0013 (16)0.0032 (16)0.0023 (16)
C2030.032 (2)0.032 (2)0.058 (3)0.0126 (18)0.0019 (18)0.000 (2)
C2040.050 (3)0.035 (3)0.079 (4)0.016 (2)0.006 (2)0.020 (2)
C2050.053 (3)0.043 (3)0.107 (5)0.008 (2)0.022 (3)0.039 (3)
C2060.035 (2)0.033 (2)0.080 (3)0.0074 (19)0.015 (2)0.019 (2)
C2070.0241 (18)0.0218 (19)0.033 (2)0.0012 (15)0.0032 (14)0.0011 (15)
C2080.0237 (19)0.030 (2)0.037 (2)0.0011 (16)0.0051 (15)0.0042 (16)
C2090.037 (2)0.046 (3)0.057 (3)0.009 (2)0.020 (2)0.000 (2)
C2100.039 (3)0.049 (3)0.075 (4)0.020 (2)0.013 (2)0.010 (3)
C2110.034 (2)0.054 (3)0.067 (3)0.014 (2)0.009 (2)0.014 (2)
C2120.036 (2)0.040 (2)0.041 (2)0.0037 (19)0.0050 (17)0.0007 (19)
C3010.0256 (19)0.0235 (19)0.0323 (19)0.0042 (15)0.0008 (14)0.0092 (15)
C3020.034 (2)0.025 (2)0.042 (2)0.0051 (16)0.0012 (17)0.0049 (17)
C3030.045 (3)0.028 (2)0.053 (3)0.0117 (19)0.006 (2)0.0074 (19)
C3040.039 (3)0.042 (3)0.069 (3)0.021 (2)0.008 (2)0.022 (2)
C3050.031 (2)0.057 (3)0.073 (3)0.005 (2)0.020 (2)0.019 (3)
C3060.030 (2)0.036 (2)0.056 (3)0.0007 (18)0.0117 (18)0.0124 (19)
C3070.0251 (18)0.0210 (18)0.036 (2)0.0013 (15)0.0007 (15)0.0029 (15)
C3080.028 (2)0.027 (2)0.052 (2)0.0013 (16)0.0080 (17)0.0008 (18)
C3090.032 (2)0.042 (3)0.077 (3)0.012 (2)0.011 (2)0.001 (2)
C3100.034 (3)0.041 (3)0.092 (4)0.016 (2)0.010 (2)0.006 (3)
C3110.062 (3)0.044 (3)0.053 (3)0.013 (2)0.011 (2)0.007 (2)
C3120.048 (3)0.037 (2)0.040 (2)0.011 (2)0.0022 (19)0.0063 (19)
C4010.0264 (19)0.0223 (19)0.034 (2)0.0056 (15)0.0077 (15)0.0038 (15)
C4020.044 (2)0.039 (2)0.039 (2)0.0071 (19)0.0053 (18)0.0050 (19)
C4030.050 (3)0.041 (3)0.057 (3)0.015 (2)0.009 (2)0.007 (2)
C4040.050 (3)0.046 (3)0.051 (3)0.003 (2)0.014 (2)0.021 (2)
C4050.052 (3)0.059 (3)0.036 (2)0.003 (2)0.008 (2)0.019 (2)
C4060.041 (2)0.042 (2)0.033 (2)0.0042 (19)0.0064 (17)0.0045 (18)
C4070.0245 (19)0.032 (2)0.0279 (19)0.0016 (16)0.0047 (14)0.0075 (16)
C4080.030 (2)0.046 (3)0.042 (2)0.0022 (18)0.0018 (17)0.0048 (19)
C4090.040 (3)0.062 (3)0.049 (3)0.011 (2)0.004 (2)0.006 (2)
C4100.026 (2)0.086 (4)0.051 (3)0.002 (2)0.0063 (19)0.016 (3)
C4110.032 (2)0.068 (3)0.067 (3)0.018 (2)0.010 (2)0.013 (3)
C4120.030 (2)0.046 (3)0.050 (3)0.0087 (19)0.0025 (18)0.001 (2)
C5010.0252 (19)0.030 (2)0.0261 (18)0.0020 (16)0.0067 (14)0.0079 (15)
C5020.048 (3)0.039 (2)0.043 (2)0.014 (2)0.0130 (19)0.0024 (19)
C5030.043 (3)0.057 (3)0.058 (3)0.017 (2)0.008 (2)0.022 (2)
C5040.037 (3)0.079 (4)0.057 (3)0.007 (3)0.019 (2)0.031 (3)
C5050.053 (3)0.059 (3)0.056 (3)0.013 (2)0.030 (2)0.009 (2)
C5060.038 (2)0.041 (2)0.044 (2)0.0016 (19)0.0203 (18)0.0047 (19)
C5080.043 (2)0.035 (2)0.054 (3)0.0078 (19)0.004 (2)0.008 (2)
C5070.0265 (19)0.0222 (19)0.038 (2)0.0019 (15)0.0021 (15)0.0069 (16)
C5090.054 (3)0.041 (3)0.089 (4)0.022 (2)0.001 (3)0.010 (3)
C5100.040 (3)0.046 (3)0.102 (5)0.013 (2)0.000 (3)0.027 (3)
C5110.049 (3)0.071 (4)0.062 (3)0.010 (3)0.001 (2)0.033 (3)
C5120.045 (3)0.056 (3)0.038 (2)0.011 (2)0.0052 (19)0.015 (2)
C6010.0259 (19)0.0231 (19)0.0269 (18)0.0046 (15)0.0030 (14)0.0013 (14)
C6020.028 (2)0.029 (2)0.054 (3)0.0029 (17)0.0083 (17)0.0089 (18)
C6030.050 (3)0.024 (2)0.073 (3)0.0040 (19)0.019 (2)0.015 (2)
C6040.043 (3)0.027 (2)0.062 (3)0.0133 (19)0.004 (2)0.008 (2)
C6050.028 (2)0.033 (2)0.047 (2)0.0098 (17)0.0019 (17)0.0022 (18)
C6060.029 (2)0.027 (2)0.036 (2)0.0036 (16)0.0051 (15)0.0001 (16)
C6070.0203 (18)0.0218 (18)0.035 (2)0.0017 (14)0.0027 (14)0.0020 (15)
C6080.0246 (19)0.031 (2)0.040 (2)0.0013 (16)0.0051 (16)0.0049 (17)
C6090.039 (2)0.034 (2)0.058 (3)0.0068 (19)0.020 (2)0.000 (2)
C6100.033 (2)0.039 (3)0.077 (3)0.013 (2)0.009 (2)0.005 (2)
C6110.033 (2)0.041 (3)0.070 (3)0.009 (2)0.009 (2)0.012 (2)
C6120.030 (2)0.032 (2)0.040 (2)0.0032 (17)0.0048 (16)0.0008 (17)
C7010.0243 (19)0.027 (2)0.036 (2)0.0053 (15)0.0001 (15)0.0120 (16)
C7020.031 (2)0.045 (3)0.048 (2)0.0027 (19)0.0084 (18)0.018 (2)
C7030.030 (2)0.079 (4)0.073 (4)0.004 (2)0.011 (2)0.038 (3)
C7040.047 (3)0.057 (3)0.079 (4)0.029 (3)0.014 (3)0.037 (3)
C7050.060 (3)0.036 (3)0.057 (3)0.019 (2)0.018 (2)0.019 (2)
C7060.039 (2)0.026 (2)0.047 (2)0.0073 (17)0.0048 (18)0.0105 (18)
C7070.0265 (19)0.0186 (18)0.036 (2)0.0024 (15)0.0016 (15)0.0016 (15)
C7080.028 (2)0.027 (2)0.050 (2)0.0024 (16)0.0099 (17)0.0015 (17)
C7090.031 (2)0.042 (3)0.081 (4)0.011 (2)0.011 (2)0.001 (2)
C7100.043 (3)0.042 (3)0.087 (4)0.019 (2)0.014 (3)0.003 (3)
C7110.064 (3)0.041 (3)0.057 (3)0.019 (2)0.006 (2)0.015 (2)
C7120.047 (2)0.035 (2)0.041 (2)0.0095 (19)0.0052 (19)0.0108 (19)
C8010.0258 (19)0.0237 (19)0.0302 (19)0.0053 (15)0.0070 (14)0.0037 (15)
C8020.035 (2)0.036 (2)0.029 (2)0.0003 (17)0.0029 (16)0.0040 (17)
C8030.048 (3)0.057 (3)0.034 (2)0.001 (2)0.0061 (19)0.015 (2)
C8040.054 (3)0.040 (3)0.053 (3)0.002 (2)0.015 (2)0.020 (2)
C8050.059 (3)0.039 (3)0.050 (3)0.019 (2)0.009 (2)0.000 (2)
C8060.046 (2)0.035 (2)0.034 (2)0.0104 (19)0.0016 (18)0.0025 (18)
C8070.0250 (19)0.034 (2)0.0289 (19)0.0032 (16)0.0017 (14)0.0080 (16)
C8080.029 (2)0.054 (3)0.041 (2)0.0022 (19)0.0009 (17)0.001 (2)
C8090.030 (2)0.077 (4)0.060 (3)0.009 (2)0.004 (2)0.011 (3)
C8100.030 (2)0.089 (4)0.055 (3)0.018 (3)0.006 (2)0.018 (3)
C8110.052 (3)0.064 (3)0.052 (3)0.024 (3)0.011 (2)0.003 (2)
C8120.042 (2)0.040 (3)0.045 (2)0.008 (2)0.0066 (19)0.003 (2)
Cl30.0781 (9)0.0606 (8)0.0659 (8)0.0066 (7)0.0099 (7)0.0135 (7)
Cl40.0385 (6)0.0501 (7)0.0642 (7)0.0033 (5)0.0146 (5)0.0015 (5)
Cl50.0346 (6)0.0519 (7)0.0587 (7)0.0043 (5)0.0099 (5)0.0016 (5)
Cl60.1048 (12)0.0631 (9)0.0547 (8)0.0212 (8)0.0020 (7)0.0079 (6)
Cl70.0642 (8)0.0604 (8)0.0692 (8)0.0040 (6)0.0092 (6)0.0160 (7)
Cl80.0698 (9)0.1014 (12)0.0506 (7)0.0067 (8)0.0117 (6)0.0281 (7)
Cl90.0499 (7)0.0702 (8)0.0488 (7)0.0051 (6)0.0124 (5)0.0078 (6)
Cl100.107 (3)0.121 (4)0.075 (2)0.061 (3)0.000 (2)0.017 (2)
Cl1A0.151 (5)0.174 (5)0.071 (3)0.081 (4)0.038 (3)0.053 (3)
O30.086 (3)0.064 (3)0.142 (4)0.002 (2)0.041 (3)0.014 (3)
O40.078 (5)0.082 (6)0.068 (5)0.012 (4)0.017 (4)0.005 (4)
O4A0.098 (6)0.076 (6)0.108 (7)0.011 (5)0.052 (5)0.019 (5)
O50.072 (2)0.082 (3)0.059 (2)0.003 (2)0.0104 (18)0.0081 (19)
O60.083 (3)0.052 (2)0.077 (3)0.0134 (19)0.025 (2)0.0074 (18)
O70.088 (3)0.057 (2)0.080 (3)0.015 (2)0.034 (2)0.0096 (19)
O80.106 (3)0.100 (3)0.070 (3)0.010 (3)0.010 (2)0.003 (2)
O90.087 (3)0.122 (4)0.089 (3)0.009 (3)0.014 (2)0.020 (3)
O100.092 (3)0.124 (4)0.110 (4)0.035 (3)0.027 (3)0.009 (3)
O110.102 (3)0.076 (3)0.084 (3)0.004 (2)0.003 (2)0.012 (2)
O120.065 (2)0.078 (3)0.068 (2)0.001 (2)0.0131 (18)0.002 (2)
O130.064 (2)0.060 (2)0.061 (2)0.0007 (18)0.0155 (17)0.0009 (17)
Geometric parameters (Å, º) top
Ir1—H111.52 (4)C303—C3041.372 (7)
Ir1—C41.874 (4)C304—C3051.362 (7)
Ir1—C12.207 (3)C305—C3061.394 (6)
Ir1—P42.3316 (9)C307—C3081.388 (5)
Ir1—P12.3466 (9)C307—C3121.401 (5)
Ir1—Cl12.4511 (9)C308—C3091.383 (6)
Ir2—H221.48 (3)C309—C3101.363 (7)
Ir2—C81.874 (4)C310—C3111.379 (7)
Ir2—C52.201 (3)C311—C3121.378 (6)
Ir2—P82.3281 (9)C401—C4061.379 (5)
Ir2—P52.3398 (9)C401—C4021.391 (5)
Ir2—Cl22.4500 (9)C402—C4031.388 (6)
P1—C1011.816 (4)C403—C4041.371 (6)
P1—C1071.819 (4)C404—C4051.371 (6)
P1—C21.837 (4)C405—C4061.385 (6)
P2—C2071.791 (4)C407—C4081.384 (5)
P2—C2011.797 (4)C407—C4121.389 (5)
P2—C11.802 (3)C408—C4091.389 (6)
P2—C21.803 (4)C409—C4101.377 (7)
P3—C31.793 (3)C410—C4111.362 (7)
P3—C3071.793 (4)C411—C4121.381 (6)
P3—C3011.794 (3)C501—C5061.379 (5)
P3—C11.801 (3)C501—C5021.386 (5)
P4—C4071.817 (4)C502—C5031.379 (6)
P4—C4011.819 (4)C503—C5041.374 (7)
P4—C31.832 (3)C504—C5051.367 (7)
P5—C5071.818 (4)C505—C5061.375 (6)
P5—C5011.821 (4)C508—C5071.380 (6)
P5—C61.842 (4)C508—C5091.390 (6)
P6—C6071.793 (4)C507—C5121.390 (5)
P6—C6011.797 (3)C509—C5101.366 (8)
P6—C51.803 (3)C510—C5111.373 (8)
P6—C61.805 (4)C511—C5121.385 (6)
P7—C7011.787 (4)C601—C6061.390 (5)
P7—C7071.789 (3)C601—C6021.391 (5)
P7—C71.799 (4)C602—C6031.388 (5)
P7—C51.799 (3)C603—C6041.382 (6)
P8—C8071.814 (4)C604—C6051.377 (6)
P8—C8011.824 (4)C605—C6061.387 (5)
P8—C71.830 (4)C607—C6081.380 (5)
O1—C41.135 (5)C607—C6121.390 (5)
O2—C81.134 (4)C608—C6091.386 (5)
C1—H10.960 (18)C609—C6101.375 (6)
C5—H50.972 (17)C610—C6111.364 (7)
C101—C1021.379 (6)C611—C6121.383 (6)
C101—C1061.399 (6)C701—C7061.387 (6)
C102—C1031.397 (6)C701—C7021.390 (6)
C103—C1041.369 (8)C702—C7031.401 (6)
C104—C1051.368 (8)C703—C7041.367 (8)
C105—C1061.394 (6)C704—C7051.362 (8)
C107—C1121.379 (6)C705—C7061.386 (6)
C107—C1081.382 (6)C707—C7081.395 (5)
C108—C1091.394 (7)C707—C7121.395 (5)
C109—C1101.368 (9)C708—C7091.385 (6)
C110—C1111.354 (9)C709—C7101.371 (7)
C111—C1121.385 (7)C710—C7111.375 (7)
C201—C2061.383 (5)C711—C7121.373 (6)
C201—C2021.396 (5)C801—C8061.379 (5)
C202—C2031.382 (5)C801—C8021.382 (5)
C203—C2041.371 (6)C802—C8031.380 (6)
C204—C2051.367 (7)C803—C8041.371 (6)
C205—C2061.392 (6)C804—C8051.373 (6)
C207—C2081.379 (5)C805—C8061.384 (6)
C207—C2121.406 (5)C807—C8121.378 (6)
C208—C2091.379 (5)C807—C8081.394 (6)
C209—C2101.378 (7)C808—C8091.390 (6)
C210—C2111.364 (7)C809—C8101.375 (7)
C211—C2121.381 (6)C810—C8111.370 (7)
C301—C3061.381 (5)C811—C8121.384 (6)
C301—C3021.402 (5)Cl10—Cl1A1.132 (7)
C302—C3031.384 (5)O4—O4A1.582 (12)
H11—Ir1—C494.0 (14)C206—C201—C202120.1 (3)
H11—Ir1—C183.8 (14)C206—C201—P2119.8 (3)
C4—Ir1—C1177.82 (15)C202—C201—P2120.1 (3)
H11—Ir1—P485.4 (13)C203—C202—C201119.6 (4)
C4—Ir1—P491.34 (12)C204—C203—C202120.0 (4)
C1—Ir1—P488.58 (9)C205—C204—C203120.7 (4)
H11—Ir1—P188.4 (13)C204—C205—C206120.4 (4)
C4—Ir1—P194.38 (12)C201—C206—C205119.1 (4)
C1—Ir1—P185.48 (9)C208—C207—C212120.0 (3)
P4—Ir1—P1171.84 (3)C208—C207—P2123.6 (3)
H11—Ir1—Cl1172.2 (14)C212—C207—P2116.3 (3)
C4—Ir1—Cl193.78 (12)C207—C208—C209119.8 (4)
C1—Ir1—Cl188.40 (9)C210—C209—C208120.1 (4)
P4—Ir1—Cl195.15 (3)C211—C210—C209120.7 (4)
P1—Ir1—Cl190.28 (3)C210—C211—C212120.4 (4)
H22—Ir2—C896.4 (13)C211—C212—C207119.0 (4)
H22—Ir2—C581.4 (13)C306—C301—C302120.5 (3)
C8—Ir2—C5177.84 (14)C306—C301—P3123.4 (3)
H22—Ir2—P882.3 (13)C302—C301—P3116.1 (3)
C8—Ir2—P891.23 (11)C303—C302—C301119.7 (4)
C5—Ir2—P888.47 (9)C304—C303—C302119.5 (4)
H22—Ir2—P589.4 (13)C305—C304—C303121.0 (4)
C8—Ir2—P593.98 (11)C304—C305—C306121.0 (4)
C5—Ir2—P586.03 (9)C301—C306—C305118.4 (4)
P8—Ir2—P5170.65 (3)C308—C307—C312119.7 (3)
H22—Ir2—Cl2171.3 (13)C308—C307—P3124.7 (3)
C8—Ir2—Cl292.19 (12)C312—C307—P3115.5 (3)
C5—Ir2—Cl289.97 (9)C309—C308—C307118.9 (4)
P8—Ir2—Cl296.83 (3)C310—C309—C308121.5 (4)
P5—Ir2—Cl290.73 (3)C309—C310—C311120.1 (4)
C101—P1—C107102.79 (18)C312—C311—C310120.0 (4)
C101—P1—C2105.11 (18)C311—C312—C307119.8 (4)
C107—P1—C2107.05 (19)C406—C401—C402119.1 (3)
C101—P1—Ir1118.84 (14)C406—C401—P4119.0 (3)
C107—P1—Ir1115.65 (12)C402—C401—P4121.9 (3)
C2—P1—Ir1106.46 (12)C403—C402—C401119.6 (4)
C207—P2—C201105.50 (16)C404—C403—C402120.8 (4)
C207—P2—C1115.43 (16)C405—C404—C403119.5 (4)
C201—P2—C1118.77 (16)C404—C405—C406120.4 (4)
C207—P2—C2110.36 (17)C401—C406—C405120.5 (4)
C201—P2—C2107.84 (17)C408—C407—C412119.0 (4)
C1—P2—C298.49 (16)C408—C407—P4124.0 (3)
C3—P3—C307108.97 (16)C412—C407—P4116.8 (3)
C3—P3—C301110.25 (17)C407—C408—C409120.1 (4)
C307—P3—C301104.94 (17)C410—C409—C408120.0 (4)
C3—P3—C1107.74 (16)C411—C410—C409120.2 (4)
C307—P3—C1110.47 (17)C410—C411—C412120.5 (4)
C301—P3—C1114.38 (16)C411—C412—C407120.2 (4)
C407—P4—C401102.31 (16)C506—C501—C502119.7 (3)
C407—P4—C3108.39 (16)C506—C501—P5124.0 (3)
C401—P4—C3103.60 (16)C502—C501—P5116.3 (3)
C407—P4—Ir1117.89 (12)C503—C502—C501120.1 (4)
C401—P4—Ir1117.09 (12)C504—C503—C502119.4 (4)
C3—P4—Ir1106.48 (11)C505—C504—C503120.5 (4)
C507—P5—C501101.84 (16)C504—C505—C506120.4 (4)
C507—P5—C6106.49 (17)C505—C506—C501119.7 (4)
C501—P5—C6107.11 (17)C507—C508—C509119.5 (4)
C507—P5—Ir2116.88 (13)C508—C507—C512119.3 (4)
C501—P5—Ir2117.33 (12)C508—C507—P5122.6 (3)
C6—P5—Ir2106.42 (11)C512—C507—P5118.1 (3)
C607—P6—C601105.94 (16)C510—C509—C508120.7 (5)
C607—P6—C5116.17 (16)C509—C510—C511120.3 (4)
C601—P6—C5117.09 (16)C510—C511—C512119.6 (5)
C607—P6—C6109.24 (17)C511—C512—C507120.5 (5)
C601—P6—C6109.00 (16)C606—C601—C602120.2 (3)
C5—P6—C698.97 (16)C606—C601—P6120.2 (3)
C701—P7—C707105.64 (17)C602—C601—P6119.5 (3)
C701—P7—C7110.21 (17)C603—C602—C601119.2 (3)
C707—P7—C7108.39 (16)C604—C603—C602120.3 (4)
C701—P7—C5114.54 (16)C605—C604—C603120.5 (4)
C707—P7—C5110.39 (16)C604—C605—C606119.8 (4)
C7—P7—C5107.55 (16)C605—C606—C601119.9 (3)
C807—P8—C801104.00 (16)C608—C607—C612119.5 (3)
C807—P8—C7108.19 (17)C608—C607—P6123.2 (3)
C801—P8—C7103.97 (16)C612—C607—P6117.2 (3)
C807—P8—Ir2117.94 (12)C607—C608—C609120.1 (4)
C801—P8—Ir2115.07 (12)C610—C609—C608119.7 (4)
C7—P8—Ir2106.68 (11)C611—C610—C609120.6 (4)
H1—C1—P3106 (2)C610—C611—C612120.1 (4)
H1—C1—P2103 (2)C611—C612—C607119.9 (4)
P3—C1—P2122.08 (19)C706—C701—C702120.5 (4)
H1—C1—Ir1101 (2)C706—C701—P7117.1 (3)
P3—C1—Ir1114.48 (16)C702—C701—P7122.3 (3)
P2—C1—Ir1107.75 (16)C701—C702—C703118.0 (4)
P2—C2—P1107.25 (19)C704—C703—C702120.5 (5)
P3—C3—P4110.41 (18)C705—C704—C703121.6 (4)
O1—C4—Ir1177.2 (4)C704—C705—C706119.2 (5)
H5—C5—P7105.8 (18)C705—C706—C701120.2 (4)
H5—C5—P6103.3 (18)C708—C707—C712120.1 (3)
P7—C5—P6121.55 (18)C708—C707—P7124.1 (3)
H5—C5—Ir2100.6 (18)C712—C707—P7115.8 (3)
P7—C5—Ir2114.63 (16)C709—C708—C707118.2 (4)
P6—C5—Ir2108.07 (15)C710—C709—C708121.4 (4)
P6—C6—P5107.06 (18)C709—C710—C711120.4 (4)
P7—C7—P8109.90 (18)C712—C711—C710119.8 (4)
O2—C8—Ir2177.3 (4)C711—C712—C707120.2 (4)
C102—C101—C106119.8 (4)C806—C801—C802119.5 (3)
C102—C101—P1122.6 (3)C806—C801—P8121.9 (3)
C106—C101—P1117.5 (3)C802—C801—P8118.6 (3)
C101—C102—C103119.8 (4)C803—C802—C801120.3 (4)
C104—C103—C102119.8 (5)C804—C803—C802119.9 (4)
C105—C104—C103121.2 (4)C803—C804—C805120.1 (4)
C104—C105—C106119.6 (5)C804—C805—C806120.2 (4)
C105—C106—C101119.7 (4)C801—C806—C805119.9 (4)
C112—C107—C108119.8 (4)C812—C807—C808119.0 (4)
C112—C107—P1123.3 (3)C812—C807—P8124.4 (3)
C108—C107—P1116.9 (3)C808—C807—P8116.5 (3)
C107—C108—C109120.0 (5)C809—C808—C807120.3 (4)
C110—C109—C108118.8 (5)C810—C809—C808119.6 (4)
C111—C110—C109121.6 (5)C811—C810—C809120.3 (4)
C110—C111—C112120.1 (6)C810—C811—C812120.4 (5)
C107—C112—C111119.6 (5)C807—C812—C811120.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.96 (3)2.82 (3)3.252 (3)109 (2)
C3—H3A···Cl8i0.982.513.466 (4)164
C3—H3B···Cl5i0.982.573.493 (4)158
C6—H6A···O8ii0.982.593.431 (5)144
C6—H6B···Cl9ii0.982.823.746 (4)158
C7—H7A···Cl1Aiii0.982.733.614 (6)150
C7—H7B···Cl4iii0.982.603.518 (4)157
C206—H206···Cl7iii0.942.793.719 (4)172
C310—H310···Cl4ii0.942.833.714 (4)158
C602—H602···Cl9ii0.942.623.557 (4)179
C704—H704···Cl1iv0.942.823.534 (6)134
C708—H708···Cl20.942.803.503 (4)132
C710—H710···Cl5v0.942.723.614 (4)160
C712—H712···Cl10iii0.942.813.734 (6)167
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1, y, z+1.
Comparative Ir—CPCP and Ir—CCO bond lengths (Å) of different [Ir(CO)ClH(PCP)] complexes top
PCP ligand or backbone (charges are omitted)PCP central carbon atomIr—CCOIr—CPCPReference
C6H3-1,3-[OPR2]2sp22.045 (3)1.949 (4)Goldberg et al. (2015)
C6H3-1,3-[OPR2]2sp22.057 (3)1.913 (4)Goldberg et al. (2015)
C6H3-1,3-[OPR2]2sp22.071 (2)1.921 (3)Goldberg et al. (2015)
C(NCH2PR2)2C10H6NHC2.078 (4)1.904 (5)Hill & McQueen (2012)
benzotropyliumalkylidene2.0821.929Leis et al. (2014)
tropyliumalkylidene2.093 (5)1.916 (5)Winter et al. (2005)
C6H3-1,3-[P(CF3)2]2sp22.103 (2)1.952 (3)Adams et al. (2011)
C3H3-1,2-[OPR2]2sp32.126 (8)1.880 (7)Ruhland & Herdtweck (2005)
CH(NCH2PR2)2C10H6sp32.141 (5)1.904 (6)Hill & McQueen (2012)
C(dppm)2CDP2.157 (5)1.891 (6)this work
cyclohexylsp32.159 (4)1.909 (5)Jonasson et al. (2015)
trypticenesp32.163 (2)1.895 (2)Azerraf & Gelman (2009)
cyclohexylsp32.165 (5)1.906 (6)Mayer et al. (1993)
trypticenesp32.193(31.898 (3)Azerraf & Gelman (2009)
CH(dppm)2protonated CDP2.207 (3)1.874 (4)this work
cycloheptatrienylsp32.25 (2)1.78 (1)Nemeh et al. (1998)
Selected distances and angles (Å, °) of 1 and 2 top
Complex 1Complex 2a
Ir1—C12.157 (5)2.207 (3)
Ir1—C41.891 (6)1.874 (4)
Ir1—P12.344 (1)2.347 (1)
Ir1—P42.315 (2)2.332 (1)
Ir1—H11.54 (3)1.52 (4)
C4—O11.117 (7)1.135 (5)
P1—C21.827 (5)1.837 (4)
P2—C21.800 (5)1.803 (4)
P2—C11.697 (5)1.802 (3)
P3—C11.711 (5)1.801 (3)
P2—C1—P3125.7 (3)122.1 (2)
P2—C1—Ir1113.9 (3)107.8 (2)
P3—C1—Ir1120.4 (3)114.5 (2)
P4—Ir1—P1170.7 (1)171.9 (1)
Note: (a) the second independent formula unit displays similar values.
 

References

First citationAdams, J. J., Lau, A., Arulsamy, N. & Roddick, D. M. (2011). Organometallics, 30, 689–696.  Web of Science CSD CrossRef CAS Google Scholar
First citationAzerraf, C. & Gelman, D. (2009). Organometallics, 28, 6578–6584.  Web of Science CSD CrossRef CAS Google Scholar
First citationCambridge Soft (2001). ChemDraw. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChoi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761–1779.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrocker, C., Empsall, H. D., Errington, R. J., Hyde, E. M., McDonald, W. S., Markham, R., Norton, M. C., Shaw, B. L. & Weeks, B. (1982). J. Chem. Soc. Dalton Trans. pp. 1217–1224.  CSD CrossRef Web of Science Google Scholar
First citationGoldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Michael Heinekey, D. M. (2015). Organometallics, 34, 753–762.  Web of Science CSD CrossRef CAS Google Scholar
First citationHill, A. F. & McQueen, C. M. A. (2012). Organometallics, 31, 8051–8054.  Web of Science CSD CrossRef CAS Google Scholar
First citationJonasson, K. J., Polukeev, A. V. & Wendt, O. F. (2015). RSC Adv. 5, 15534–15538.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, P. G. & Ahrens, B. (1998). Chem. Commun. pp. 2307–2308.  Web of Science CSD CrossRef Google Scholar
First citationLeis, W., Wernitz, S., Reichart, B., Ruckerbauer, D., Wielandt, J. W. & Mayer, H. A. (2014). Dalton Trans. 43, 12187–12199.  Web of Science CrossRef CAS Google Scholar
First citationMayer, H. A., Fawzi, R. & Steimann, M. (1993). Chem. Ber. 126, 1341–1346.  CSD CrossRef CAS Web of Science Google Scholar
First citationMorales-Morales, D. & Jensen, C. (2007). The Chemistry of Pincer Compounds, 1st ed. Amsterdam: Elsevier Science.  Google Scholar
First citationNemeh, S., Flesher, R. J., Gierling, K., Maichle-Mössmer, C., Mayer, H. A. & Kaska, W. C. (1998). Organometallics, 17, 2003–2008.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOro, L. A. & Claver, C. (2009). Editors. Iridium Complexes in Organic Synthesis. Weinheim: Wiley-VCH.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPetz, W. & Frenking, G. (2010). Editors. Carbodiphosphoranes and Related Ligands, Vol. 30. Berlin Heidelberg: Springer-Verlag.  Google Scholar
First citationPetz, W., Öxler, F. & Neumüller, B. (2009). J. Organomet. Chem. 694, 4094–4099.  Web of Science CSD CrossRef CAS Google Scholar
First citationReitsamer, C., Stallinger, S., Schuh, W., Kopacka, H., Wurst, K., Obendorf, D. & Peringer, P. (2012). Dalton Trans. 41, 3503–3514.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuhland, K. & Herdtweck, E. (2005). Adv. Synth. Catal. 347, 398–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStallinger, S., Reitsamer, C., Schuh, W., Kopacka, H., Wurst, K. & Peringer, P. (2007). Chem. Commun. 510–512.  Google Scholar
First citationTonner, R., Öxler, F., Bernhard Neumüller, B., Petz, W. & Frenking, G. (2006). Angew. Chem. Int. Ed. 45, 8038–8042.  Web of Science CSD CrossRef CAS Google Scholar
First citationWinter, A. M., Eichele, K., Mack, H. G., Kaska, W. C. & Mayer, H. A. (2005). Organometallics, 24, 1837–1844.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds