research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­fluorido­{2-[(4-hy­dr­oxy­phen­yl)diazen­yl]-3,5-di­methyl­pyrrolido}boron

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China, and bKey Laboratory of Inorganic–Organic Hybrid Functional Materials Chemistry, (Tianjin Normal University), Ministry of Education, Tianjin 300387, People's Republic of China
*Correspondence e-mail: tjyinzm@aliyun.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 6 April 2018; accepted 24 April 2018; online 27 April 2018)

The asymmetric unit of the title azo­pyrrole-BF2 complex, C12H12BF2N3O, contains two independent mol­ecules, which are linked by an O—H⋯O hydrogen bond. The dimers are further assembled into a one-dimensional ladder-like structure through O—H⋯F hydrogen bonds and stabilized by ππ inter­actions. The ladders are further linked by C—H⋯π contacts.

1. Chemical context

Recently, some unique pyrrole-BF2-based dyes have emerged as alternatives to 4,4-di­fluoro-4-bora-3a,4a-di­aza-s-indacene (BODIPY) dyes because of their easy synthesis, lower symmetry and longer wavelengt absorption. Li et al. (2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]) have synthesized a series of azo­pyrroles and their di­fluoro­boron complexes, which possess promising absorption properties. The potentials of a few BF2–azo­pyrrole complexes as sensitizers for dye-sensitized solar cells (DSSCs) have been evaluated (Mikroyannidis, Royd et al., 2010[Mikroyannidis, J. A., Roy, M. S. & Sharma, G. D. (2010). J. Power Sources, 195, 5391-5398.]). In the me­antime, some BF2–azo­pyrrole complexes have been used for the fabrication of bulk heterojunction solar cells (Mikroyannidis, Kabanakis et al., 2010[Mikroyannidis, J. A., Kabanakis, A. N. D. V., Tsagkournos, D. V. P., Balraju, P. & Sharma, G. D. (2010). J. Mater. Chem. 20, 6464-6471.]). A 2-(di­methyl­amino­phenyl­azo)-5-ethyl-pyrrole boron difluoride complex has been used as an OFF–ON–OFF-type three-stage binary pH switch (Lee et al., 2012[Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286-6289.]). Previously, we have reported the crystal structures of some azo­pyrrole compounds (Yin et al., 2008[Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957-959.]; Li et al., 2011[Li, B., Zhang, G., Sun, S. & Yin, Z. (2011). Acta Cryst. E67, o247.]). In an extension of this research, we report herein on the crystal structure of di­fluorido­{2-[(4-hy­droxy­phen­yl)diazen­yl]-3,5-di­methyl­pyrrolido}boron.

[Scheme 1]

2. Structural commentary

The asymmetric unit contains two independent mol­ecules, which show slight differences in some bond lengths [e.g. O1—C10 and O2—C22 = 1.358 (3) and 1.382 (3) Å, respectively; Table 1[link]] and torsion angles [N2—N3—C7—C12 and N5—N6—C19—C20 are −171.1 (2) and 177.9 (2)°, respectively]. The r.m.s. deviation for fitting two molecules = 0.055 Å. The two mol­ecules are linked by the O1—H1⋯O2 hydrogen bond (Fig. 1[link], Table 2[link]). The torsion angles between benzene rings and neighboring pyrrole rings in the N1- and N4-containing mol­ecules are 9.43 (12) and 1.34 (12)°, respectively. Each boron atom is four-coordinated by two fluorine atoms, a pyrrole N atom and an azo N atom. The B—N bond distances vary from 1.537 (3) to 1.618 (3) Å (Table 1[link]). The B—Npyrrole bonds are shorter than the B—Nazo bonds. The two N—N bonds each adopt a trans conformation and at 1.318 (3) and 1.312 (3) Å are much longer than that in the structure of the free azo­pyrrole ligand (Yin et al., 2008[Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957-959.]). In addition, the C1—C4, C2—C3, C13—C16 and C14—C15 bonds are lengthened, while the C3—C4 and C15—C16 bonds are shortened compared to the normal bond lengths in pyrrole. This indicates that the azo­pyrrole moiety of the title compound must be in the hydrazone form (Chen et al., 2014[Chen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94-99.]).

Table 1
Selected bond lengths (Å)

F1—B1 1.369 (3) F3—B2 1.368 (3)
F2—B1 1.401 (3) F4—B2 1.380 (3)
O1—C10 1.358 (3) O2—C22 1.382 (3)
N1—C1 1.377 (3) N4—C13 1.380 (3)
N1—C2 1.356 (3) N4—C14 1.353 (3)
N1—B1 1.537 (3) N4—B2 1.545 (3)
N2—N3 1.318 (3) N5—N6 1.312 (3)
N2—C1 1.343 (3) N5—C13 1.338 (3)
N3—C7 1.406 (3) N6—C19 1.416 (3)
N3—B1 1.613 (3) N6—B2 1.618 (3)
C1—C4 1.411 (3) C13—C16 1.415 (3)
C2—C3 1.405 (3) C14—C15 1.408 (3)
C3—C4 1.389 (3) C15—C16 1.389 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg6 are the centroids of the N4/C13–C16 and N1/C1–C4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.98 2.797 (2) 178
O2—H2⋯F2i 0.82 2.06 2.812 (2) 152
C3—H3⋯Cg1ii 0.93 2.62 3.501 (2) 158
C15—H15⋯Cg2iii 0.93 2.63 3.506 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. The O—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features and Hirshfeld analysis

The two conformers also show supra­molecular differences. One of the conformers only has a hydrogen bond between its hydroxyl group and that of the other conformer mol­ecule (Fig. 1[link]), whereas the hydroxyl group in the other conformer is also involved in inter­molecular O—H⋯F inter­actions (Fig. 2[link], Table 2[link]), forming a one-dimensional ladder-like structure along [100]. In the ladder structure, the mol­ecules are arranged in a parallel manner through ππ inter­actions [Cg1⋯Cg4(x − 1, y, z) = 3.544 (1) Å, Cg2⋯Cg3(1 + x, y, z) = 3.617 (1) Å and Cg3⋯Cg4(1 + x, y, z) = 3.664 (13) Å; Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C4, C7–C12 and C19–C24 rings, respectively]. The ladders assemble into a layer structure through C—H⋯π contacts (Table 2[link]).

[Figure 2]
Figure 2
Part of the crystal packing showing mol­ecules linked by O—H⋯O and O—H⋯F hydrogen bonds, ππ inter­actions and C—H⋯π contacts.

The Hirshfeld surfaces of the two conformers were generated using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). Fig. 3[link] clearly shows that the two conformers are involved in different supra­molecular inter­actions.

[Figure 3]
Figure 3
Hirshfeld surfaces of the two conformers mapped over dnorm in the range −0.614 to 1.350 a.u. The inter­molecular contacts can be seen in red regions.

4. Database survey

A search in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for azo­pyrrole boron difluoride compounds returned two entries, 2,5-bis­(4-di­methyl­amino­phenyl­azo)pyrrole boron difluoride (Li et al., 2009[Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237-5243.]) and 2-(di­methyl­amino­phenyl­azo)-5-ethyl-pyrrole boron difluoride (Lee et al., 2012[Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286-6289.]). In both, the boron atoms have same coordination as in the title compound. The N—N bonds also adopt trans conformations and their lengths [1.322 (2) and 1.310 (1) Å] are comparable to those in the title compound.

5. Synthesis and crystallization

To a solution of 2-(4-hy­droxy­lphenyl­azo)-3,5-dimethyl-1-H-pyrrole (2 mmol, 0.43g) and tri­ethyl­amine (6 mL) in dry di­chloro­methane (15 mL) was slowly added boron trifluoride ethyl ether (2 mL). The resulting solution was stirred for 40 min, and then saturated potassium carbonate solution was added and stirred for 30 minutes. The resulting solution was extracted with ethyl acetate (10 mL × 3) and evaporated under vacuum to dryness. The residue was purified by column chromatography, eluting with ethyl acetate and petroleum ether (v/v = 1:14), to give a dark-green product, m.p. = 405 K. Yield 65%. 1H NMR (400 MHz, DMSO-d6): δ 10.118 (s, 1H, –OH), 7.548–7.526 (d, 2H, J = 8.8Hz, Ar–CH), 6.920–6.897(d, 2H, J = 9.2Hz, Ar–CH), 6.342 (s, 1H, pyrrole–CH), 2.371(s, 3H, –CH3), 2.314 (s, 3H, –CH3). Suitable crystals for X-ray diffraction analysis were obtained by the slow evaporation of an CHCl3/CH3OH solution of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. OH H atoms were located from difference-Fourier maps and refined freely. Other H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C12H12BF2N3O
Mr 263.06
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 6.8080 (4), 24.8217 (18), 14.4744 (9)
β (°) 100.489 (6)
V3) 2405.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.25 × 0.22 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.680, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11903, 4228, 3277
Rint 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.06
No. of reflections 4228
No. of parameters 349
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Difluorido{2-[(4-hydroxyphenyl)diazenyl-κN2]-3,5-dimethylpyrrolido-\ κN}boron top
Crystal data top
C12H12BF2N3OF(000) = 1088
Mr = 263.06Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8080 (4) ÅCell parameters from 3432 reflections
b = 24.8217 (18) Åθ = 4.1–28.6°
c = 14.4744 (9) ŵ = 0.12 mm1
β = 100.489 (6)°T = 100 K
V = 2405.1 (3) Å3Block, dark green
Z = 80.25 × 0.22 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
diffractometer
4228 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3277 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 5.2740 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2929
Tmin = 0.680, Tmax = 1.000l = 1715
11903 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.6938P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4228 reflectionsΔρmax = 0.25 e Å3
349 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.31342 (18)0.53429 (5)0.89956 (9)0.0210 (3)
F21.46735 (18)0.45513 (5)0.87853 (8)0.0205 (3)
O10.5707 (2)0.40021 (7)0.61520 (11)0.0272 (4)
H10.52250.38930.65960.041*
N11.5952 (3)0.53806 (7)0.81633 (12)0.0156 (4)
N21.3878 (3)0.52607 (8)0.67448 (13)0.0178 (4)
N31.2967 (3)0.50217 (7)0.73622 (13)0.0162 (4)
C11.5603 (3)0.54666 (9)0.72074 (15)0.0162 (5)
C21.7710 (3)0.56211 (9)0.85288 (16)0.0166 (5)
C31.8484 (3)0.58566 (9)0.77884 (16)0.0182 (5)
H31.96860.60430.78520.022*
C41.7176 (3)0.57669 (9)0.69470 (16)0.0180 (5)
C51.8540 (3)0.56219 (10)0.95504 (15)0.0211 (5)
H5A1.82280.59580.98200.032*
H5B1.99640.55780.96450.032*
H5C1.79650.53310.98480.032*
C61.7354 (4)0.59469 (11)0.59812 (16)0.0257 (6)
H6A1.63810.57620.55280.038*
H6B1.86690.58660.58690.038*
H6C1.71250.63280.59260.038*
C71.1152 (3)0.47520 (9)0.70490 (15)0.0163 (5)
C81.0407 (3)0.46718 (9)0.60966 (16)0.0198 (5)
H81.11420.47860.56500.024*
C90.8590 (3)0.44247 (10)0.58158 (16)0.0223 (5)
H90.80860.43800.51790.027*
C100.7495 (3)0.42404 (9)0.64779 (16)0.0190 (5)
C110.8254 (3)0.43105 (9)0.74289 (16)0.0179 (5)
H110.75410.41850.78760.021*
C121.0063 (3)0.45662 (9)0.77097 (15)0.0170 (5)
H121.05600.46150.83460.020*
B11.4183 (4)0.50677 (11)0.84252 (18)0.0174 (6)
F30.50768 (19)0.27493 (6)0.54470 (9)0.0247 (3)
F40.33107 (18)0.19699 (6)0.55925 (9)0.0237 (3)
O20.3980 (2)0.36293 (7)0.76431 (11)0.0226 (4)
H20.40900.38200.81120.034*
N40.6118 (3)0.20404 (8)0.64279 (13)0.0172 (4)
N50.4053 (3)0.23598 (8)0.77401 (13)0.0176 (4)
N60.3216 (3)0.25089 (8)0.70328 (12)0.0167 (4)
C130.5729 (3)0.20907 (9)0.73934 (15)0.0168 (5)
C140.7850 (3)0.17649 (9)0.61832 (16)0.0188 (5)
C150.8566 (3)0.16381 (9)0.70106 (16)0.0198 (5)
H150.97370.14510.70360.024*
C160.7251 (3)0.18365 (9)0.77825 (16)0.0193 (5)
C170.8717 (3)0.16370 (11)0.51897 (17)0.0261 (6)
H17A0.92080.19610.48670.039*
H17B0.97970.13860.51710.039*
H17C0.77070.14810.48890.039*
C180.7344 (4)0.17973 (10)0.88049 (16)0.0254 (6)
H18A0.61420.19430.91690.038*
H18B0.74760.14260.89710.038*
H18C0.84740.19970.89310.038*
C190.1401 (3)0.28017 (9)0.72225 (15)0.0155 (5)
C200.0500 (3)0.29409 (9)0.64649 (16)0.0186 (5)
H200.11050.28480.58570.022*
C210.1291 (3)0.32173 (9)0.66166 (16)0.0182 (5)
H210.18980.33080.61120.022*
C220.2179 (3)0.33579 (9)0.75205 (16)0.0170 (5)
C230.1294 (3)0.32146 (9)0.82758 (16)0.0183 (5)
H230.19070.33060.88830.022*
C240.0496 (3)0.29372 (9)0.81286 (15)0.0180 (5)
H240.10900.28420.86350.022*
B20.4440 (4)0.23212 (11)0.60191 (18)0.0192 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0209 (7)0.0223 (8)0.0214 (7)0.0015 (6)0.0079 (5)0.0030 (6)
F20.0227 (7)0.0171 (7)0.0211 (7)0.0029 (6)0.0027 (5)0.0025 (6)
O10.0236 (9)0.0309 (11)0.0260 (9)0.0135 (8)0.0014 (7)0.0018 (8)
N10.0156 (9)0.0132 (10)0.0185 (10)0.0009 (8)0.0048 (7)0.0001 (8)
N20.0182 (10)0.0144 (10)0.0221 (10)0.0002 (8)0.0070 (8)0.0008 (8)
N30.0148 (9)0.0148 (10)0.0195 (10)0.0007 (8)0.0047 (8)0.0007 (8)
C10.0174 (11)0.0136 (12)0.0176 (12)0.0017 (10)0.0031 (9)0.0001 (10)
C20.0141 (11)0.0117 (12)0.0243 (12)0.0026 (9)0.0040 (9)0.0012 (10)
C30.0148 (11)0.0128 (12)0.0277 (13)0.0022 (9)0.0058 (9)0.0003 (10)
C40.0182 (12)0.0129 (12)0.0248 (12)0.0002 (10)0.0087 (9)0.0005 (10)
C50.0204 (12)0.0209 (13)0.0218 (12)0.0014 (10)0.0037 (9)0.0011 (10)
C60.0244 (13)0.0275 (15)0.0262 (13)0.0037 (11)0.0073 (10)0.0049 (11)
C70.0163 (11)0.0117 (12)0.0207 (12)0.0006 (9)0.0033 (9)0.0013 (10)
C80.0220 (12)0.0185 (13)0.0198 (12)0.0030 (10)0.0061 (9)0.0021 (10)
C90.0265 (13)0.0220 (14)0.0169 (12)0.0048 (11)0.0002 (9)0.0001 (10)
C100.0146 (11)0.0152 (13)0.0263 (13)0.0016 (10)0.0009 (9)0.0007 (10)
C110.0161 (11)0.0167 (12)0.0219 (12)0.0019 (10)0.0066 (9)0.0032 (10)
C120.0187 (12)0.0155 (12)0.0168 (11)0.0004 (10)0.0032 (9)0.0006 (10)
B10.0169 (13)0.0168 (14)0.0185 (13)0.0009 (11)0.0031 (10)0.0016 (11)
F30.0265 (7)0.0242 (8)0.0230 (7)0.0026 (6)0.0035 (6)0.0065 (6)
F40.0227 (7)0.0267 (8)0.0234 (7)0.0033 (6)0.0089 (6)0.0067 (6)
O20.0197 (8)0.0208 (10)0.0278 (9)0.0056 (7)0.0056 (7)0.0043 (8)
N40.0170 (10)0.0160 (11)0.0190 (10)0.0010 (8)0.0049 (8)0.0002 (8)
N50.0191 (10)0.0141 (10)0.0211 (10)0.0006 (8)0.0073 (8)0.0002 (8)
N60.0181 (10)0.0139 (10)0.0193 (10)0.0016 (8)0.0064 (8)0.0009 (8)
C130.0171 (12)0.0132 (12)0.0210 (12)0.0021 (10)0.0063 (9)0.0006 (10)
C140.0159 (11)0.0142 (12)0.0266 (13)0.0009 (10)0.0047 (9)0.0010 (10)
C150.0143 (11)0.0153 (12)0.0309 (13)0.0009 (10)0.0065 (10)0.0020 (11)
C160.0208 (12)0.0137 (12)0.0250 (12)0.0029 (10)0.0084 (10)0.0030 (10)
C170.0200 (12)0.0292 (15)0.0280 (14)0.0039 (11)0.0018 (10)0.0011 (12)
C180.0283 (13)0.0231 (14)0.0275 (13)0.0005 (11)0.0123 (10)0.0035 (11)
C190.0148 (11)0.0101 (12)0.0220 (12)0.0003 (9)0.0046 (9)0.0000 (10)
C200.0225 (12)0.0171 (13)0.0162 (11)0.0015 (10)0.0039 (9)0.0007 (10)
C210.0197 (12)0.0147 (12)0.0223 (12)0.0007 (10)0.0094 (9)0.0025 (10)
C220.0145 (11)0.0130 (12)0.0237 (12)0.0001 (9)0.0039 (9)0.0003 (10)
C230.0196 (12)0.0146 (12)0.0191 (12)0.0001 (10)0.0004 (9)0.0028 (10)
C240.0194 (12)0.0169 (13)0.0193 (12)0.0005 (10)0.0079 (9)0.0018 (10)
B20.0203 (13)0.0203 (15)0.0178 (13)0.0031 (12)0.0059 (10)0.0004 (12)
Geometric parameters (Å, º) top
F1—B11.369 (3)F3—B21.368 (3)
F2—B11.401 (3)F4—B21.380 (3)
O1—H10.8200O2—H20.8200
O1—C101.358 (3)O2—C221.382 (3)
N1—C11.377 (3)N4—C131.380 (3)
N1—C21.356 (3)N4—C141.353 (3)
N1—B11.537 (3)N4—B21.545 (3)
N2—N31.318 (3)N5—N61.312 (3)
N2—C11.343 (3)N5—C131.338 (3)
N3—C71.406 (3)N6—C191.416 (3)
N3—B11.613 (3)N6—B21.618 (3)
C1—C41.411 (3)C13—C161.415 (3)
C2—C31.405 (3)C14—C151.408 (3)
C2—C51.484 (3)C14—C171.486 (3)
C3—H30.9300C15—H150.9300
C3—C41.389 (3)C15—C161.389 (3)
C4—C61.493 (3)C16—C181.496 (3)
C5—H5A0.9600C17—H17A0.9600
C5—H5B0.9600C17—H17B0.9600
C5—H5C0.9600C17—H17C0.9600
C6—H6A0.9600C18—H18A0.9600
C6—H6B0.9600C18—H18B0.9600
C6—H6C0.9600C18—H18C0.9600
C7—C81.394 (3)C19—C201.394 (3)
C7—C121.391 (3)C19—C241.385 (3)
C8—H80.9300C20—H200.9300
C8—C91.375 (3)C20—C211.382 (3)
C9—H90.9300C21—H210.9300
C9—C101.394 (3)C21—C221.382 (3)
C10—C111.390 (3)C22—C231.387 (3)
C11—H110.9300C23—H230.9300
C11—C121.380 (3)C23—C241.382 (3)
C12—H120.9300C24—H240.9300
C10—O1—H1109.5C22—O2—H2109.5
C1—N1—B1109.05 (17)C13—N4—B2109.16 (18)
C2—N1—C1107.60 (18)C14—N4—C13107.95 (18)
C2—N1—B1143.30 (19)C14—N4—B2142.88 (19)
N3—N2—C1108.06 (18)N6—N5—C13108.05 (18)
N2—N3—C7119.34 (18)N5—N6—C19118.74 (18)
N2—N3—B1113.07 (17)N5—N6—B2113.64 (17)
C7—N3—B1127.56 (18)C19—N6—B2127.62 (18)
N1—C1—C4110.47 (18)N4—C13—C16110.09 (19)
N2—C1—N1114.66 (19)N5—C13—N4114.72 (19)
N2—C1—C4134.9 (2)N5—C13—C16135.2 (2)
N1—C2—C3108.23 (19)N4—C14—C15108.08 (19)
N1—C2—C5122.6 (2)N4—C14—C17122.4 (2)
C3—C2—C5129.2 (2)C15—C14—C17129.6 (2)
C2—C3—H3125.3C14—C15—H15125.3
C4—C3—C2109.40 (19)C16—C15—C14109.4 (2)
C4—C3—H3125.3C16—C15—H15125.3
C1—C4—C6127.1 (2)C13—C16—C18126.1 (2)
C3—C4—C1104.30 (19)C15—C16—C13104.4 (2)
C3—C4—C6128.6 (2)C15—C16—C18129.5 (2)
C2—C5—H5A109.5C14—C17—H17A109.5
C2—C5—H5B109.5C14—C17—H17B109.5
C2—C5—H5C109.5C14—C17—H17C109.5
H5A—C5—H5B109.5H17A—C17—H17B109.5
H5A—C5—H5C109.5H17A—C17—H17C109.5
H5B—C5—H5C109.5H17B—C17—H17C109.5
C4—C6—H6A109.5C16—C18—H18A109.5
C4—C6—H6B109.5C16—C18—H18B109.5
C4—C6—H6C109.5C16—C18—H18C109.5
H6A—C6—H6B109.5H18A—C18—H18B109.5
H6A—C6—H6C109.5H18A—C18—H18C109.5
H6B—C6—H6C109.5H18B—C18—H18C109.5
C8—C7—N3121.8 (2)C20—C19—N6117.90 (19)
C12—C7—N3118.89 (19)C24—C19—N6122.0 (2)
C12—C7—C8119.3 (2)C24—C19—C20120.1 (2)
C7—C8—H8119.9C19—C20—H20120.0
C9—C8—C7120.1 (2)C21—C20—C19120.0 (2)
C9—C8—H8119.9C21—C20—H20120.0
C8—C9—H9119.7C20—C21—H21120.1
C8—C9—C10120.6 (2)C20—C21—C22119.8 (2)
C10—C9—H9119.7C22—C21—H21120.1
O1—C10—C9117.5 (2)O2—C22—C21118.0 (2)
O1—C10—C11123.1 (2)O2—C22—C23121.8 (2)
C11—C10—C9119.4 (2)C21—C22—C23120.2 (2)
C10—C11—H11120.0C22—C23—H23119.9
C12—C11—C10120.0 (2)C24—C23—C22120.2 (2)
C12—C11—H11120.0C24—C23—H23119.9
C7—C12—H12119.7C19—C24—H24120.2
C11—C12—C7120.6 (2)C23—C24—C19119.7 (2)
C11—C12—H12119.7C23—C24—H24120.2
F1—B1—F2110.33 (19)F3—B2—F4111.15 (19)
F1—B1—N1114.5 (2)F3—B2—N4114.04 (19)
F1—B1—N3112.16 (18)F3—B2—N6112.3 (2)
F2—B1—N1114.19 (18)F4—B2—N4113.4 (2)
F2—B1—N3109.65 (19)F4—B2—N6110.52 (18)
N1—B1—N395.14 (17)N4—B2—N694.42 (16)
O1—C10—C11—C12178.6 (2)O2—C22—C23—C24179.2 (2)
N1—C1—C4—C30.1 (3)N4—C13—C16—C150.5 (3)
N1—C1—C4—C6179.5 (2)N4—C13—C16—C18179.0 (2)
N1—C2—C3—C40.7 (3)N4—C14—C15—C160.2 (3)
N2—N3—C7—C88.1 (3)N5—N6—C19—C20177.9 (2)
N2—N3—C7—C12171.1 (2)N5—N6—C19—C240.4 (3)
N2—N3—B1—F1117.8 (2)N5—N6—B2—F3118.5 (2)
N2—N3—B1—F2119.2 (2)N5—N6—B2—F4116.8 (2)
N2—N3—B1—N11.2 (2)N5—N6—B2—N40.2 (2)
N2—C1—C4—C3178.7 (3)N5—C13—C16—C15179.5 (2)
N2—C1—C4—C60.8 (4)N5—C13—C16—C181.0 (4)
N3—N2—C1—N10.3 (3)N6—N5—C13—N40.2 (3)
N3—N2—C1—C4178.9 (2)N6—N5—C13—C16179.8 (3)
N3—C7—C8—C9177.5 (2)N6—C19—C20—C21178.7 (2)
N3—C7—C12—C11178.5 (2)N6—C19—C24—C23178.8 (2)
C1—N1—C2—C30.6 (2)C13—N4—C14—C150.1 (3)
C1—N1—C2—C5178.5 (2)C13—N4—C14—C17179.9 (2)
C1—N1—B1—F1116.2 (2)C13—N4—B2—F3116.9 (2)
C1—N1—B1—F2115.2 (2)C13—N4—B2—F4114.5 (2)
C1—N1—B1—N31.0 (2)C13—N4—B2—N60.1 (2)
C1—N2—N3—C7177.34 (19)C13—N5—N6—C19179.84 (19)
C1—N2—N3—B11.0 (2)C13—N5—N6—B20.3 (2)
C2—N1—C1—N2178.58 (19)C14—N4—C13—N5179.60 (19)
C2—N1—C1—C40.4 (3)C14—N4—C13—C160.4 (3)
C2—N1—B1—F160.6 (4)C14—N4—B2—F362.3 (4)
C2—N1—B1—F268.0 (4)C14—N4—B2—F466.2 (4)
C2—N1—B1—N3177.8 (3)C14—N4—B2—N6179.2 (3)
C2—C3—C4—C10.4 (3)C14—C15—C16—C130.5 (3)
C2—C3—C4—C6179.1 (2)C14—C15—C16—C18179.0 (2)
C5—C2—C3—C4178.4 (2)C17—C14—C15—C16179.6 (2)
C7—N3—B1—F164.0 (3)C19—N6—B2—F362.0 (3)
C7—N3—B1—F259.0 (3)C19—N6—B2—F462.7 (3)
C7—N3—B1—N1176.9 (2)C19—N6—B2—N4179.7 (2)
C7—C8—C9—C101.6 (4)C19—C20—C21—C220.4 (3)
C8—C7—C12—C110.7 (3)C20—C19—C24—C230.5 (3)
C8—C9—C10—O1179.7 (2)C20—C21—C22—O2179.4 (2)
C8—C9—C10—C110.3 (4)C20—C21—C22—C231.1 (3)
C9—C10—C11—C120.8 (3)C21—C22—C23—C241.0 (3)
C10—C11—C12—C70.5 (3)C22—C23—C24—C190.1 (3)
C12—C7—C8—C91.8 (4)C24—C19—C20—C210.4 (3)
B1—N1—C1—N20.6 (3)B2—N4—C13—N50.1 (3)
B1—N1—C1—C4178.34 (19)B2—N4—C13—C16179.92 (19)
B1—N1—C2—C3177.4 (3)B2—N4—C14—C15179.3 (3)
B1—N1—C2—C51.7 (4)B2—N4—C14—C170.9 (5)
B1—N3—C7—C8170.0 (2)B2—N6—C19—C201.6 (3)
B1—N3—C7—C1210.8 (3)B2—N6—C19—C24179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg6 are the centroids of the N4/C13–C16 and N1/C1–C4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.982.797 (2)178
O2—H2···F2i0.822.062.812 (2)152
C3—H3···Cg1ii0.932.623.501 (2)158
C15—H15···Cg2iii0.932.633.506 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (No. 21172174).

References

First citationChen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94–99.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286–6289.  CrossRef CAS Google Scholar
First citationLi, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237–5243.  CrossRef CAS Google Scholar
First citationLi, B., Zhang, G., Sun, S. & Yin, Z. (2011). Acta Cryst. E67, o247.  CrossRef IUCr Journals Google Scholar
First citationMikroyannidis, J. A., Kabanakis, A. N. D. V., Tsagkournos, D. V. P., Balraju, P. & Sharma, G. D. (2010). J. Mater. Chem. 20, 6464–6471.  CrossRef CAS Google Scholar
First citationMikroyannidis, J. A., Roy, M. S. & Sharma, G. D. (2010). J. Power Sources, 195, 5391–5398.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationYin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957–959.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds