research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of (N-hexyl-N-methyl­di­thio­carbamato-κ2S,S′)tri­phenyl­tin(IV) and [N-methyl-N-(2-phenyl­ethyl)­di­thio­carbamato-κ2S,S′]tri­phenyl­tin(IV)

CROSSMARK_Color_square_no_text.svg

aBiomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 March 2018; accepted 30 March 2018; online 6 April 2018)

The crystal and mol­ecular structures of two tri­phenyl­tin di­thio­carbamate compounds, viz. [Sn(C6H5)3(C8H16NS2)], (I), and [Sn(C6H5)3(C10H12NS2)], (II), are described. The di­thio­carbamate ligand in each mol­ecule coordinates in an asymmetric fashion resulting in heavily distorted tetra­hedral C3S coordin­ation geometries for the Sn atoms, with the distortions traced to the close approach of the non-coordinating thione-S atom. The mol­ecular packing in both compounds features C—H⋯π(Sn-phen­yl) inter­actions. In (I), the donors are Sn-phenyl-C—H groups leading to centrosymmetric aggregates, while in (II), the donors are both Sn-phenyl-C—H and methyl-C—H groups leading to supra­molecular chains propagating along the b axis. The identified aggregates assemble into their respective crystals with no directional inter­actions between them. An analysis of the Hirshfeld surfaces show distinctive patterns, but an overwhelming predominance (>99% in each case) of H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts on the respective Hirshfeld surface.

1. Chemical context

A vast array of different di­thio­carbamate anions, S2CNRR′, has been prepared, which stems simply from the ability to alter the substituents in the starting amines used to prepare them. A key inter­est in di­thio­carbamate compounds of both transition metals and main-group elements relates to their biological activity (Hogarth, 2012[Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.]). Of particular relevance to the present study is the anti-microbial potential exhibited by organotin di­thio­carbamates (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). In an on-going study of biological potential, organotin(IV) species have been complexed with two non-symmetric di­thio­carbamate ligands, namely, with R = Me and R′ = n-Hex and CH2CH2Ph. Previously, similar species, i.e. R = benzyl and R′ = CH2CH2Ph (Mohamad, Awang, Kamaludin & Abu Bakar, 2016[Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269-1274.]; Segovia et al., 2002[Segovia, N., Crovetto, G., Lardelli, P. & Espigares, M. (2002). J. Appl. Toxicol. 22, 353-357.]) and R = Me and R′ = n-Bu (Segovia et al. 2002[Segovia, N., Crovetto, G., Lardelli, P. & Espigares, M. (2002). J. Appl. Toxicol. 22, 353-357.]) have been tested for their toxicity using a bioassay based on the inhibition of the growth of Escherichia coli with the latter compound being most toxic according to the EC50 value measured in vitro (Segovia et al., 2002[Segovia, N., Crovetto, G., Lardelli, P. & Espigares, M. (2002). J. Appl. Toxicol. 22, 353-357.]). These results gave rise to the suggestion that increasing the length of the alkyl chain leads to enhanced solubility/activity of the compound (Segovia et al., 2002[Segovia, N., Crovetto, G., Lardelli, P. & Espigares, M. (2002). J. Appl. Toxicol. 22, 353-357.]). Complementing these biological investigations (Mohamad, Awang, Kamaludin & Abu Bakar, 2016[Mohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269-1274.]; Mohamad, Awang & Kamaludin, 2016[Mohamad, R., Awang, N. & Kamaludin, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1920-1925.]) are structural studies of organotin di­thio­carbamates (Mohamad, Awang, Jotani & Tiekink, 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]; Mohamad, Awang, Kamaludin, Jotani et al., 2016[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480-1487.]; Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.], 2018[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 302-308.]) and in continuation of the latter, herein, the crystal and mol­ecular structures of (C6H5)3Sn[S2CN(Me)Hex] (I)[link] and (C6H5)3Sn[S2CN(CH3)CH2CH2Ph] (II)[link] are reported along with a Hirshfeld surface analysis to provide more details on the mol­ecular packing.

[Scheme 1]

2. Structural commentary

The tin atom in (I)[link], Fig. 1[link]a, is coordinated by three ipso-carbon atoms along with a di­thio­carbamate ligand. As seen from Table 1[link], the di­thio­carbamate ligand forms quite disparate Sn—S1, S2 bond lengths, with Δ(Sn—S) = (Sn—Slong – Sn—Sshort) being 0.64 Å. This asymmetry is confirmed in the differences in the C—S bond lengths with the C1—S1 bond associated with the short Sn—S1 contact, at 1.761 (4) Å, being significantly longer than the C1—S2 bond, i.e. 1.688 (4) Å, involving the weakly bound S2 atom. If the S2 atom is ignored, the coordination geometry about the tin atom is distorted C3S tetra­hedral with the range of angles being 90.00 (11)°, for S1—Sn—C31, to 121.53 (10)°, for S1—Sn—C11. The wide angle clearly reflects the influence of the close approach of the S2 atom, Fig. 1[link]a and Table 1[link]. If the S2 atom is considered a significant bonding inter­action, the resultant C3S2 donor set is almost perfectly inter­mediate between ideal square-pyramidal (SP) and trigonal–bipyramidal (TP). This is qu­anti­fied in the value of τ = 0.52, which compares with the ideal values for SP and TP geometries of τ = 0.0 and 1.0, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In the latter description, the range of angles is wide with the S1—Sn—S2 chelate angle being acute [63.26 (3)°] and with the widest angle [152.54 (11)°] being for S2—Sn—C31. The n-hexyl chain is linear up to the terminal methyl group. Thus, the N1—C3—C4—C5, C3—C4—C5—C6 and C4—C5—C6—C7 torsion angles of 175.9 (4), 178.5 (4) and 178.9 (5)°, respectively, indicate + anti-periplanar descriptors but, that of C5—C6—C7—C8, i.e. −66.4 (8)°, indicative of a − syn-clinal disposition.

Table 1
Selected inter­atomic parameters (Å, °) for (I)[link] and (II)

Parameter (I) (II)
Sn—S1 2.4672 (11) 2.4636 (9)
Sn⋯S2 3.1113 (11) 3.1066 (10)
C1—S1 1.761 (4) 1.761 (4)
C1—S2 1.688 (4) 1.678 (4)
C1—N1 1.330 (5) 1.342 (5)
S1—Sn⋯S2 63.26 (3) 63.42 (3)
S1—Sn⋯C11 121.53 (10) 111.30 (9)
S1—Sn⋯C31 90.00 (11) 92.68 (9)
C11—Sn—C21 114.88 (15) 119.27 (13)
S2—Sn⋯C31 152.54 (11) 155.43 (9)
[Figure 1]
Figure 1
The mol­ecular structures of (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes and displacement ellipsoids at the 50% probability level.

The mol­ecular structure of (II)[link], Fig. 1[link]b, resembles closely that described for (I)[link]. Indeed, a comparison of the key bond lengths included in Table 1[link] show there are no chemically significant differences between the common parts of the mol­ecules. In terms of bond angles, for a tetra­hedral description, the range of angles in (II)[link] is smaller, by 2°, than in (I)[link], again, not chemically significant. If the five-coordinate C3S2 description pertains, the value of τ = 0.60 indicates a distortion towards TP. The phenyl­ethyl chain is kinked as seen in the N1—C3—C4—C5 and C3—C4—C5—C6 torsion angles of −175.8 (3) and 91.9 (5)°, respectively.

3. Supra­molecular features

Tables 2[link] and 3[link] list the geometric parameters characterizing the inter­molecular inter­actions operating in the crystals of (I)[link] and (II)[link], respectively. The mol­ecular packing of (I)[link] features centrosymmetric dimeric aggregates sustained by four phenyl-C—H⋯π(phen­yl) inter­actions whereby all of the participating groups are derived from Sn-bound phenyl rings, Fig. 2[link]a. Such cooperative C—H⋯π(phen­yl) embraces have been described for many phenyl-rich systems and in instances where six phenyl rings of two residues associate by edge-to-face inter­actions, i.e. a six-fold embrace, the energies of stabilization can resemble or even exceed that provided by strong conventional hydrogen bonding (Dance & Scudder, 2009[Dance, I. & Scudder, M. (2009). CrystEngComm, 11, 2233-2247.]). The supra­molecular dimers stack parallel to the b axis with no directional inter­actions between successive aggregates. Globally, columns pack into layers in the ab plane. The layers inter-digitate along the c axis, again without specific inter­actions between proximate residues, Fig. 2[link]b.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the (C11–C16) and (C31–C36) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯Cg1i 0.95 2.88 3.630 (4) 137
C26—H26⋯Cg2i 0.95 2.99 3.641 (5) 127
Symmetry code: (i) -x+1, -y+1, -z.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the ring centroids of the (C11–C16) and (C31–C36) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg1i 0.98 2.99 3.779 (5) 138
C14—H14⋯Cg2ii 0.95 2.95 3.754 (5) 143
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x, y-1, z.
[Figure 2]
Figure 2
Mol­ecular packing in the crystal of (I)[link]: (a) supra­molecular dimer sustained by a four-fold embrace of phenyl-C—H⋯π(phen­yl) inter­actions shown as purple dashed lines (for clarity, the phenyl rings are shown as small spheres, the inter­acting phenyl rings are highlighted in purple and only the N-bound carbon atoms of the di­thio­carbamate substituents are shown) and (b) a view of the unit-cell contents shown in projection down the b axis.

The mol­ecular packing of (II)[link] again features C—H⋯π inter­actions, as for (I)[link], but with both methyl-H and Sn-bound-H hydrogen atoms as donors; the Sn-phenyl rings function as acceptors. As illustrated in Fig. 3[link]a, the C—H⋯π inter­actions sustain a supra­molecular chain aligned along the b axis. The chains pack into the three-dimensional architecture without directional inter­actions between then, Fig. 3[link]b. As may be seen from Fig. 3[link]b, centrosymmetrically related Ph3Sn residues approach each other so as to form phenyl-embrace inter­actions as found in the mol­ecular packing of (I)[link], but none of the putative contacts are within the standard distance criteria assumed in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Figure 3]
Figure 3
Mol­ecular packing in the crystal of (II)[link]: (a) supra­molecular chain sustained by C—H⋯π(phen­yl) inter­actions shown as purple dashed lines and (b) a view of the unit-cell contents in projection down the b axis. One chain is highlighted in space-filling mode.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for the tri­phenyl­tin di­thio­carbamate derivatives (I)[link] and (II)[link] were performed in accord with recent work on related organotin di­thio­carbamates (Mohamad et al., 2017[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260-265.]). Despite the similarity in composition, the structures of (I)[link] and (II)[link] exhibit different inter­molecular environments because of the presence of different substituents in the respective di­thio­carbamate ligands, i.e. n-hexyl in the former and phenyl­ethyl in the latter. These differences are readily discerned from the differently shaped Hirshfeld surfaces mapped over dnorm for (I)[link], Fig. 4[link], and (II)[link], Fig. 5[link], which reflect the influence of short inter­atomic H⋯H and C⋯H/H⋯C contacts, Table 4[link], and comparatively weak C—H⋯π inter­actions, Tables 2[link] and 3[link].

Table 4
Summary of short inter­atomic contacts (Å) in (I)[link] and (II)

Contact Distance Symmetry operation
(I)    
H2C⋯H7B 1.98 x, − 1 + y, z
H2C⋯C7 2.67 x, − 1 + y, z
H23⋯C32 2.57 x, − 1 + y, − 1 + z
H26⋯C33 2.70 1 − x, − 1 − y, − z
     
(II)    
H2A⋯H7 2.26 2 − x, [{1\over 2}] + y, [{3\over 2}] + z
H9⋯H23 2.29 1 + x, y, z
H2A⋯C7 2.68 2 − x, [{1\over 2}] + y, [{3\over 2}] + z
H2A⋯C8 2.74 2 − x, [{1\over 2}] + y, [{3\over 2}] + z
H2B⋯C11 2.70 2 − x, − y, 2 − z
H2B⋯C16 2.77 2 − x, − y, 2 − z
H22⋯C35 2.69 1 − x, − y, 2 − z
[Figure 4]
Figure 4
Views of Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.133 to +1.538 au.
[Figure 5]
Figure 5
Views of Hirshfeld surface for (II)[link] mapped over dnorm in the range −0.075 to +1.363 au.

The faint-red spots near the phenyl-C33 and H26 atoms in Fig. 4[link]a reflect the presence of a weak C—H⋯π inter­action, as summarized in Table 4[link]. In both images of Fig. 4[link], the bright-red spots appearing near Sn-bound phenyl atoms C32 and H23, methyl-H2C and n-hexyl atoms C7 and H7B are indicative of the short inter­atomic H⋯H and C⋯H/H⋯C contacts involving these atoms, as listed in Table 4[link]. The presence of similar inter­molecular inter­actions in the crystal of (II)[link] cf. (I)[link], but involving different atoms, is also characterized by bright and faint-red spots on the Hirshfeld surfaces mapped over dnorm in Fig. 5[link]. Thus, the C—H⋯π inter­action is seen from the presence of bright-red spots near methyl-H2B and phenyl-C11 together with the pair of faint-red spots near the methyl-H2B and phenyl-C16 atoms in Fig. 5[link]a. The influence of other short inter­atomic C⋯H/H⋯C contacts summarized in Table 4[link] are viewed as diminutive and faint-red spots near the respective atoms in Fig. 5[link]a,b. The involvement of different atoms in the inter­molecular inter­actions in the crystals of (I)[link] and (II)[link] is also confirmed from the views of their Hirshfeld surfaces mapped over electrostatic potential, Fig. 6[link], through the appearance of blue and red regions corresponding to positive and negative electrostatic potentials around them. The different mol­ecular environments about respective reference mol­ecules are highlighted in Fig. 7[link].

[Figure 6]
Figure 6
Views of Hirshfeld surface mapped over the electrostatic potential (the red and blue regions represent negative and positive electrostatic potentials, respectively) for a mol­ecule of: (a) (I)[link] in the range ±0.041 au and (b) (II)[link] in the range −0.033 to +0.049 au.
[Figure 7]
Figure 7
The immediate environment around reference mol­ecules within dnorm-mapped Hirshfeld surfaces for (a) (I)[link] and (b) (II)[link], highlighting short inter­atomic H⋯H and C⋯H/H⋯C contacts by yellow and blue dashed lines, respectively

The distinct distribution of points in the overall two-dimensional fingerprint plots for (I)[link] and (II)[link], Fig. 8[link]a, also highlight the different mol­ecular environments for the two mol­ecules. The significant contributions from H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts to the Hirshfeld surfaces of both (I)[link] and (II)[link] are evident from Table 5[link]. The short inter­atomic H⋯H contact between the methyl-H2C and n-hexyl-H7B atoms in (I)[link] is viewed as a pair of closely spaced overlapping peaks with their tips at de + di ∼2.0 Å in the delineated plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) Fig. 8[link]b. A pair of well separated short peaks at de + di ∼2.2 Å observed in the corresponding fingerprint plot for (II)[link] are due to the involvement of methyl-H2A and phenyl-H7, H9 and H23 atoms in comparatively weaker short inter­atomic H⋯H contacts, Table 4[link]. The pair of very thin and long forceps-like tips at de + di ∼2.6 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts for (I)[link], Fig. 8[link]c, is the result of a short inter­atomic contact between phenyl-C32 and -H23 atoms while the points corresponding to other short inter­atomic contacts are merged within the plot. The presence of a pair of twin forceps-like tips at de + di ∼ 2.7 Å in the C⋯H/H⋯C delineated plot for (II)[link], Fig. 8[link]c, also indicates the involvement of methyl-H2A and -H2B, and phenyl-C7, -C8, -C11, -C16 and -C35 atoms in short inter­atomic contacts, Table 4[link]. Further, it is clear from the fingerprint plots delineated into S⋯H/H⋯S contacts, Fig. 8[link]d, that the pair of spikes at de + di ∼ 3.0 Å for (I)[link] show van der Waals contacts whereas the pair of peaks at de + di > 3.1 Å for (II)[link] show contacts farther than van der Waals separation. The other inter­atomic contacts summarized in Table 5[link] make a negligible contribution to their Hirshfeld surfaces.

Table 5
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)[link] and (II)

Contact Percentage contribution
  (I) (II)
H⋯H 66.1 57.8
C⋯H/H⋯C 25.6 33.7
S⋯H/H⋯S 7.6 7.6
N⋯H/H⋯N 0.4 0.6
C⋯N/N⋯C 0.2 0.0
S⋯N/N⋯S 0.1 0.0
C⋯S/S⋯C 0.0 0.3
[Figure 8]
Figure 8
A comparison of the (a) full two-dimensional fingerprint plots for (I)[link] and (II)[link], and the plots delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) S⋯H/H⋯S contacts.

5. Database survey

The di­thio­carbamate ligands reported in the present study are quite rare, despite the rather large number of crystal structures of di­thio­carbamate ligands available in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Thus, the N-hexyl-N-methyl­dithio­carbamate ligand reported in (I)[link], i.e. dtcI, has been reported in the crystal structures of Ph2Sn(dtcI)2 (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]), In(dtcI)3 (Park et al., 2003[Park, J.-H., Afzaal, M., Kemmler, M., O'Brien, P., Otway, D. J., Raftery, J. & Waters, J. (2003). J. Mater. Chem. 13, 1942-1949.]), and in Bi(dtcI)3 and its 1:1 1,10-phenanthroline adduct (Monteiro et al., 2001[Monteiro, O. C., Nogueira, H. I. S., Trindade, T. & Motevalli, M. (2001). Chem. Mater. 13, 2103-2111.]). The uniform motivation for these studies was for their evaluation as useful precursors for the deposition of heavy element sulfide nanomaterials. In terms of the mol­ecular structures, no special features in the mode of coordination are noted in the tin (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]), indium (Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]) and bis­muth (Lai & Tiekink, 2007[Lai, C. S. & Tiekink, E. R. T. (2007). Z. Kristallogr. 222, 532-538.]) compounds. The N-methyl-N-phenyl­ethyl­dithio­carbamate ligand, i.e. dtcII, has been reported only in its binary mercury(II) compound, i.e. Hg(dtcII)3 (Green et al., 2004[Green, M., Prince, P., Gardener, M. & Steed, J. (2004). Adv. Mater. 16, 994-996.]), and again, its study was motivated by the desire to generate β–HgS thin films and its structure confirms to expectation (Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]).

Reflecting the inter­est in organotin di­thio­carbamates, including their biological activity, there are over 50 structures of general formula Ph3Sn(S2CNRR') in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Of these, seven are binuclear and are better represented as Ph3SnS2CN–R–NCS2SnPh3. In all, there are 56 independent coordination geometries and all conform to the same structural motif as described above for (I)[link] and (II)[link]. The average Sn—Sshort bond length is 2.47 Å and the average Sn—Slong bond length is 3.04 Å. This gives rise to an average Δ(Sn—S) of 0.57 Å. These values indicate the structures of (I)[link] and (II)[link] are outliers in that the values of Sn—Slong are generally longer than usually observed. An analysis of the available crystallographic data showed the shortest Sn—S1 bond length occurred in the structure of Ph3Sn(S2CNEt2) [(III); Hook et al. 1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.]] while the longest was found for one of the independent tin centres in binuclear Ph3Sn[S2CN(CH2CH2)2C(H)(CH2)3C(H)(CH2CH2)2NCS2]SnPh3 [(IV); Ali et al., 2014[Ali, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F. Shaha, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414-3430.]], i.e. spanning the range 2.43 to 2.52 Å, Table 6[link]. The shortest and longest of the Sn⋯S2 separations were found in Ph3Sn[S2CN(CH2Ph)CH2CH2Ph] [(V); Mohamad, Awang, Kamaludin, Jotani et al., 2016[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480-1487.]] and for one of the two independent mol­ecules of Ph3Sn{S2CN[CH2(3-pyrid­yl)]2} [(VI); Gupta et al., 2015[Gupta, A. N., Kumar, V., Singh, V., Rajput, A., Prasad, L. B., Drew, M. G. B. & Singh, N. (2015). J. Organomet. Chem. 787, 65-72.]], i.e. spanning the range 2.91 to 3.22 Å, Table 6[link]. The lack of systematic variations in these structural parameters is borne out by the disparity of the cited bonds with the second tin centre of non-symmetric (IV) and the second independent mol­ecule of (VI). Thus, the range of Δ(Sn—S) for all structures was 0.40 to 0.74, with the correlation coefficient from the plot of Sn—Sshort versus Sn—Slong being 0.52. Such a lack of correlation has often been noted in the structural chemistry of organotin di­thio­carbamates and has been ascribed to the dictates of the mol­ecular packing (Buntine et al., 1998[Buntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A 102, 2472-2482.]; Tiekink et al., 1999[Tiekink, E. R. T., Hall, V. J. & Buntine, M. A. (1999). Z. Kristallogr. 214, 124-134.]; Muthalib et al., 2014[Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39-46.]).

Table 6
Selected inter­atomic parameters (Å) for Ph3Sn(S2CNRR′)

Compound R R Sn—Sshort Sn—Slong Δ(Sn—S) Reference
(III) Et Et 2.429 (3) 3.096 (3) 0.67 Hook et al. (1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.])
(IV)a (CH2CH2)2C(H)CH2CH2 (CH2CH2)2C(H)CH2 2.521 (3) 2.919 (3) 0.40 Ali et al. (2014[Ali, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F. Shaha, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414-3430.])
      2.4735 (10) 2.9468 (10) 0.47  
(V) CH2Ph CH2CH2Ph 2.4885 (5) 2.9120 (5) 0.42 Mohamad, Awang, Kamaludin, Jotani et al. (2016[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480-1487.])
(VI)b CH2(3-pyrid­yl) CH2(3-pyrid­yl) 2.5165 (19) 3.2209 (19) 0.71 Gupta et al. (2015[Gupta, A. N., Kumar, V., Singh, V., Rajput, A., Prasad, L. B., Drew, M. G. B. & Singh, N. (2015). J. Organomet. Chem. 787, 65-72.])
      2.4685 (19) 3.0397 (19) 0.57  
Notes: (a) non-symmetric binuclear mol­ecule; (b) two independent mol­ecules in the asymmetric unit.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased. The melting points were determined using an automated melting-point apparatus (MPA 120 EZ-Melt). C, H, N and S analyses were performed on a Leco CHNS-932 Elemental Analyzer. The IR spectra were obtained on a Perkin Elmer Spectrum GX from 4000 to 400 cm−1. NMR spectra were recorded in CDCl3 at room temperature on a Bruker AVANCE 400 111 HD.

Synthesis of tri­phenyl­tin(IV) N-hexyl-N-methyl­dithio­carbamate (I)[link]: N-hexyl-N-methyl­amine (Aldrich; 1.52 ml, 10 mmol) dissolved in ethanol (30 ml) was stirred at 277 K before a cold ethano­lic solution of carbon di­sulfide (0.6 ml, 10 mmol) was added dropwise. The resulting mixture was stirred for 2 h. Then, tri­phenyl­tin(IV) chloride (Merck; 3.85 g, 10 mmol) dissolved in ethanol (25 ml) was added dropwise into the solution and stirring was continued for 2 h. The precipitate formed was filtered, washed with cold ethanol and dried. Recrystallization was achieved by dissolving the compound in a chloro­form and ethanol mixture (1:1 v/v). This solution was allowed to slowly evaporate at room temperature yielding colourless slabs of (I)[link]. Yield: 52%, m.p. 364.6–365.4 K. Elemental analysis: calculated (%): C 57.8, H 5.8, N 2.6, S 11.9. Found (%): C 56.5, H 6.2, N 2.5, S 11.7. IR (KBr cm−1): 1429 ν(C—N), 983 ν(C—S), 559 ν(Sn—C), 425 ν(Sn—S). 1H NMR (CDCl3): δ 7.41–7.77 (15H, C6H5); 3.38 (2H, N—CH2); 3.42 (3H, N—CH3); 2.21 (2H, N—CH2CH2); 1.75 (2H, N—(CH2)2CH2); 1.59 (2H, N—(CH2)3CH2); 1.34 (2H, N—(CH2)4CH2); 0.92 (3H, hex­yl—CH3). 13C NMR (CDCl3): δ 196.04 (NCS2); 128.52–142.53 (C-aromatic); 58.97 (NCH2); 43.79 (NCH3); 31.46 (N—CH2CH2); 26.98 [N—(CH2)2CH2]; 26.39 [N—(CH2)3CH2]; 22.6 [N—CH2)4CH2]; 14.06 (hex­yl—CH3). 119Sn NMR (CDCl3): −187.56.

Synthesis of tri­phenyl­tin(IV) N-methyl-N-phenylethyl­dithio­carbamate (II)[link]: compound (II)[link] was prepared in essentially the same manner as for (I)[link] but using N-methyl-N-phenylethyl­amine (Aldrich; 1.45 ml, 10 mmol) in place of N-hexyl-N-methyl­amine. Recrystallization was achieved by dissolving the compound in a chloro­form/ethanol mixture (1:2 v/v). Yield: 67%, m.p. 387.5–388.3 K. Elemental analysis: calculated (%): C 60.0, H 4.9, N 2.5, S 11.4. Found (%): C 57.9, H 5.3, N 2.8, S 11.2. IR (KBr cm−1): 1452 ν(C—N), 977 ν(C—S), 502 ν(Sn—C), 488 ν(Sn—S). 1H NMR (CDCl3): δ 7.43–7.77 (15H, Sn—C6H5); 7.24–7.35 [5H, N(CH2)2C6H5]; 4.06 (2H, NCH2); 3.36 (3H, NCH3); 3.09 (2H, NCH2CH2). 13C NMR (CDCl3): δ 196.61 (NCS2); 126.8–142.3 (C-aromatic); 60.25 (NCH2); 44.59 (NCH2CH2); 33.12 (N—CH3). 119Sn NMR (CDCl3) = −183.84.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). For (I)[link], the maximum and minimum residual electron density peaks of 1.75 and 1.51 e Å−3, respectively, are located 0.95 and 0.86 Å from the Sn atom. For (II)[link], the maximum and minimum residual electron density peaks of 1.47 and 1.58 e Å−3, respectively, are located 0.96 and 0.68 Å from the C11 and Sn atoms, respectively.

Table 7
Experimental details

  (I) (II)
Crystal data
Chemical formula [Sn(C6H5)3(C8H16NS2)] [Sn(C6H5)3(C10H12NS2)]
Mr 540.38 560.37
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 9.8590 (6), 10.4256 (5), 14.3960 (8) 14.3682 (4), 9.4758 (2), 19.2747 (6)
α, β, γ (°) 110.557 (5), 94.057 (5), 110.730 (5) 90, 106.450 (3), 90
V3) 1263.24 (13) 2516.84 (12)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 9.67 9.73
Crystal size (mm) 0.30 × 0.20 × 0.05 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with Atlas detector Agilent Technologies SuperNova Dual diffractometer with Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.204, 1.000 0.206, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8833, 5033, 4580 9741, 5054, 4431
Rint 0.057 0.040
(sin θ/λ)max−1) 0.628 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.06 0.039, 0.106, 1.02
No. of reflections 5033 5054
No. of parameters 273 290
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.75, −1.51 1.47, −1.58
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(N-Hexyl-N-methyldithiocarbamato-κ2S,S')triphenyltin(IV) (I) top
Crystal data top
[Sn(C6H5)3(C8H16NS2)]Z = 2
Mr = 540.38F(000) = 552
Triclinic, P1Dx = 1.421 Mg m3
a = 9.8590 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.4256 (5) ÅCell parameters from 4558 reflections
c = 14.3960 (8) Åθ = 4.7–75.4°
α = 110.557 (5)°µ = 9.67 mm1
β = 94.057 (5)°T = 173 K
γ = 110.730 (5)°Prism, colourless
V = 1263.24 (13) Å30.30 × 0.20 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
5033 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4580 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.057
ω scanθmax = 75.4°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
h = 1112
Tmin = 0.204, Tmax = 1.000k = 1213
8833 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5033 reflectionsΔρmax = 1.75 e Å3
273 parametersΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 1.75 and 1.50 eÅ-3, respectively, were located 0.95 Å and 0.86 Å from the Sn atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.42003 (3)0.66365 (2)0.17688 (2)0.02940 (11)
S10.28273 (12)0.69634 (11)0.31417 (8)0.0359 (2)
S20.46733 (12)0.99031 (11)0.31126 (8)0.0375 (2)
N10.2964 (4)0.9556 (4)0.4439 (3)0.0361 (7)
C10.3470 (4)0.8930 (4)0.3645 (3)0.0311 (8)
C20.1843 (6)0.8691 (6)0.4837 (4)0.0466 (11)
H2A0.09660.79820.42880.070*
H2B0.15610.93680.53740.070*
H2C0.22480.81370.51190.070*
C30.3467 (5)1.1182 (5)0.4945 (3)0.0413 (10)
H3A0.44591.16740.48250.050*
H3B0.35661.14770.56880.050*
C40.2394 (5)1.1719 (5)0.4560 (4)0.0410 (9)
H4A0.13861.11750.46340.049*
H4B0.23511.14920.38280.049*
C50.2864 (6)1.3392 (5)0.5142 (4)0.0506 (11)
H5A0.38831.39360.50830.061*
H5B0.28801.36170.58710.061*
C60.1802 (7)1.3931 (6)0.4730 (4)0.0537 (12)
H6A0.18011.37130.40030.064*
H6B0.07811.33620.47740.064*
C70.2206 (9)1.5598 (7)0.5301 (5)0.0694 (17)
H7A0.32471.61570.52880.083*
H7B0.15641.58910.49320.083*
C80.2058 (9)1.6078 (7)0.6395 (5)0.0719 (18)
H8A0.10581.54680.64260.108*
H8B0.22181.71370.66720.108*
H8C0.28001.59410.67950.108*
C110.6597 (4)0.7469 (4)0.2096 (3)0.0304 (7)
C120.7510 (5)0.8927 (5)0.2260 (3)0.0379 (9)
H120.70890.96280.22920.045*
C130.9038 (5)0.9364 (5)0.2376 (4)0.0447 (10)
H130.96571.03670.24950.054*
C140.9665 (5)0.8351 (6)0.2318 (4)0.0454 (10)
H141.07100.86540.23940.054*
C150.8759 (5)0.6892 (6)0.2148 (4)0.0427 (10)
H150.91880.61950.21130.051*
C160.7237 (5)0.6441 (5)0.2028 (3)0.0356 (8)
H160.66220.54330.19000.043*
C210.3260 (4)0.7039 (4)0.0583 (3)0.0286 (7)
C220.1745 (5)0.6661 (5)0.0340 (4)0.0404 (9)
H220.11160.62010.07040.048*
C230.1134 (6)0.6942 (6)0.0422 (4)0.0513 (12)
H230.00910.66660.05830.062*
C240.2042 (6)0.7626 (6)0.0950 (4)0.0486 (11)
H240.16230.78190.14740.058*
C250.3532 (6)0.8021 (6)0.0721 (4)0.0491 (11)
H250.41540.85020.10790.059*
C260.4154 (5)0.7723 (5)0.0041 (3)0.0396 (9)
H260.51960.79900.01900.047*
C310.3442 (4)0.4284 (4)0.1449 (3)0.0300 (7)
C320.2560 (5)0.3130 (5)0.0524 (3)0.0359 (8)
H320.22960.33660.00240.043*
C330.2063 (5)0.1638 (5)0.0394 (4)0.0468 (11)
H330.14330.08700.02330.056*
C340.2475 (6)0.1261 (5)0.1167 (4)0.0519 (12)
H340.21460.02400.10710.062*
C350.3367 (6)0.2384 (6)0.2077 (4)0.0503 (12)
H350.36730.21350.26070.060*
C360.3824 (5)0.3874 (5)0.2229 (4)0.0423 (10)
H360.44080.46340.28720.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02606 (15)0.03203 (15)0.03534 (16)0.01310 (11)0.00868 (10)0.01771 (11)
S10.0372 (5)0.0344 (4)0.0426 (5)0.0156 (4)0.0165 (4)0.0201 (4)
S20.0369 (5)0.0362 (5)0.0465 (5)0.0170 (4)0.0175 (4)0.0208 (4)
N10.0326 (18)0.0422 (18)0.0386 (17)0.0188 (15)0.0119 (14)0.0177 (15)
C10.0272 (18)0.0334 (18)0.0350 (18)0.0149 (15)0.0058 (15)0.0139 (15)
C20.056 (3)0.049 (2)0.049 (2)0.027 (2)0.030 (2)0.027 (2)
C30.041 (2)0.042 (2)0.039 (2)0.0205 (19)0.0047 (18)0.0101 (18)
C40.038 (2)0.040 (2)0.049 (2)0.0189 (18)0.0124 (19)0.0191 (19)
C50.053 (3)0.040 (2)0.060 (3)0.020 (2)0.017 (2)0.019 (2)
C60.070 (3)0.052 (3)0.053 (3)0.032 (3)0.022 (2)0.028 (2)
C70.095 (5)0.055 (3)0.084 (4)0.041 (3)0.044 (4)0.042 (3)
C80.109 (6)0.062 (3)0.066 (4)0.049 (4)0.028 (4)0.033 (3)
C110.0265 (18)0.0358 (18)0.0315 (17)0.0131 (15)0.0086 (14)0.0155 (15)
C120.033 (2)0.038 (2)0.044 (2)0.0159 (17)0.0089 (17)0.0158 (17)
C130.031 (2)0.045 (2)0.052 (2)0.0098 (18)0.0079 (19)0.018 (2)
C140.026 (2)0.056 (3)0.049 (2)0.0161 (19)0.0061 (18)0.017 (2)
C150.036 (2)0.056 (3)0.044 (2)0.028 (2)0.0103 (18)0.020 (2)
C160.036 (2)0.042 (2)0.0357 (19)0.0205 (17)0.0106 (16)0.0192 (17)
C210.0264 (18)0.0300 (16)0.0332 (17)0.0134 (14)0.0054 (14)0.0154 (14)
C220.0256 (19)0.052 (2)0.050 (2)0.0162 (17)0.0109 (17)0.026 (2)
C230.034 (2)0.070 (3)0.056 (3)0.026 (2)0.004 (2)0.027 (2)
C240.056 (3)0.058 (3)0.044 (2)0.033 (2)0.005 (2)0.024 (2)
C250.058 (3)0.060 (3)0.052 (3)0.031 (2)0.023 (2)0.039 (2)
C260.030 (2)0.052 (2)0.047 (2)0.0187 (18)0.0131 (17)0.027 (2)
C310.0247 (17)0.0306 (17)0.0366 (18)0.0113 (14)0.0093 (15)0.0151 (15)
C320.030 (2)0.041 (2)0.042 (2)0.0147 (17)0.0176 (16)0.0204 (17)
C330.042 (2)0.035 (2)0.049 (2)0.0056 (18)0.018 (2)0.0105 (19)
C340.056 (3)0.033 (2)0.073 (3)0.017 (2)0.033 (3)0.027 (2)
C350.059 (3)0.052 (3)0.063 (3)0.030 (2)0.026 (2)0.039 (2)
C360.049 (3)0.037 (2)0.048 (2)0.0188 (19)0.010 (2)0.0238 (18)
Geometric parameters (Å, º) top
Sn—C212.123 (4)C11—C161.404 (6)
Sn—C312.156 (4)C12—C131.389 (6)
Sn—C112.159 (4)C12—H120.9500
Sn—S12.4672 (11)C13—C141.383 (7)
Sn—S23.1113 (11)C13—H130.9500
S1—C11.761 (4)C14—C151.384 (7)
S2—C11.688 (4)C14—H140.9500
N1—C11.330 (5)C15—C161.382 (6)
N1—C21.453 (6)C15—H150.9500
N1—C31.462 (6)C16—H160.9500
C2—H2A0.9800C21—C221.386 (5)
C2—H2B0.9800C21—C261.392 (6)
C2—H2C0.9800C22—C231.382 (7)
C3—C41.514 (6)C22—H220.9500
C3—H3A0.9900C23—C241.383 (8)
C3—H3B0.9900C23—H230.9500
C4—C51.518 (6)C24—C251.358 (7)
C4—H4A0.9900C24—H240.9500
C4—H4B0.9900C25—C261.398 (6)
C5—C61.526 (7)C25—H250.9500
C5—H5A0.9900C26—H260.9500
C5—H5B0.9900C31—C321.396 (6)
C6—C71.521 (8)C31—C361.405 (6)
C6—H6A0.9900C32—C331.392 (6)
C6—H6B0.9900C32—H320.9500
C7—C81.510 (9)C33—C341.385 (8)
C7—H7A0.9900C33—H330.9500
C7—H7B0.9900C34—C351.375 (8)
C8—H8A0.9800C34—H340.9500
C8—H8B0.9800C35—C361.385 (6)
C8—H8C0.9800C35—H350.9500
C11—C121.388 (6)C36—H360.9500
C21—Sn—C31112.73 (14)C7—C8—H8C109.5
C21—Sn—C11114.88 (15)H8A—C8—H8C109.5
C31—Sn—C11104.73 (15)H8B—C8—H8C109.5
C21—Sn—S1109.94 (11)C12—C11—C16119.1 (4)
C31—Sn—S190.00 (11)C12—C11—Sn122.6 (3)
C11—Sn—S1121.53 (10)C16—C11—Sn117.9 (3)
C21—Sn—S284.08 (10)C11—C12—C13120.2 (4)
C31—Sn—S2152.54 (11)C11—C12—H12119.9
C11—Sn—S285.86 (11)C13—C12—H12119.9
S1—Sn—S263.26 (3)C14—C13—C12120.5 (4)
C1—S1—Sn98.62 (14)C14—C13—H13119.7
C1—S2—Sn78.80 (14)C12—C13—H13119.7
C1—N1—C2123.0 (4)C13—C14—C15119.5 (4)
C1—N1—C3121.5 (4)C13—C14—H14120.2
C2—N1—C3115.4 (4)C15—C14—H14120.2
N1—C1—S2124.0 (3)C16—C15—C14120.5 (4)
N1—C1—S1116.7 (3)C16—C15—H15119.7
S2—C1—S1119.3 (2)C14—C15—H15119.7
N1—C2—H2A109.5C15—C16—C11120.1 (4)
N1—C2—H2B109.5C15—C16—H16119.9
H2A—C2—H2B109.5C11—C16—H16119.9
N1—C2—H2C109.5C22—C21—C26118.0 (4)
H2A—C2—H2C109.5C22—C21—Sn121.1 (3)
H2B—C2—H2C109.5C26—C21—Sn120.9 (3)
N1—C3—C4111.7 (4)C23—C22—C21121.2 (4)
N1—C3—H3A109.3C23—C22—H22119.4
C4—C3—H3A109.3C21—C22—H22119.4
N1—C3—H3B109.3C24—C23—C22119.9 (4)
C4—C3—H3B109.3C24—C23—H23120.1
H3A—C3—H3B107.9C22—C23—H23120.1
C3—C4—C5111.4 (4)C25—C24—C23120.1 (4)
C3—C4—H4A109.3C25—C24—H24119.9
C5—C4—H4A109.4C23—C24—H24119.9
C3—C4—H4B109.3C24—C25—C26120.2 (5)
C5—C4—H4B109.4C24—C25—H25119.9
H4A—C4—H4B108.0C26—C25—H25119.9
C4—C5—C6111.1 (4)C21—C26—C25120.5 (4)
C4—C5—H5A109.4C21—C26—H26119.7
C6—C5—H5A109.4C25—C26—H26119.7
C4—C5—H5B109.4C32—C31—C36117.4 (4)
C6—C5—H5B109.4C32—C31—Sn124.4 (3)
H5A—C5—H5B108.0C36—C31—Sn118.2 (3)
C7—C6—C5113.2 (5)C33—C32—C31120.8 (4)
C7—C6—H6A108.9C33—C32—H32119.6
C5—C6—H6A108.9C31—C32—H32119.6
C7—C6—H6B108.9C34—C33—C32120.8 (4)
C5—C6—H6B108.9C34—C33—H33119.6
H6A—C6—H6B107.8C32—C33—H33119.6
C8—C7—C6115.3 (5)C35—C34—C33119.1 (4)
C8—C7—H7A108.4C35—C34—H34120.5
C6—C7—H7A108.4C33—C34—H34120.5
C8—C7—H7B108.4C34—C35—C36120.7 (5)
C6—C7—H7B108.4C34—C35—H35119.7
H7A—C7—H7B107.5C36—C35—H35119.7
C7—C8—H8A109.5C35—C36—C31121.2 (4)
C7—C8—H8B109.5C35—C36—H36119.4
H8A—C8—H8B109.5C31—C36—H36119.4
C2—N1—C1—S2175.2 (3)C14—C15—C16—C111.1 (7)
C3—N1—C1—S22.3 (6)C12—C11—C16—C151.5 (6)
C2—N1—C1—S15.0 (5)Sn—C11—C16—C15174.7 (3)
C3—N1—C1—S1177.6 (3)C26—C21—C22—C230.5 (7)
Sn—S2—C1—N1179.5 (4)Sn—C21—C22—C23179.0 (4)
Sn—S2—C1—S10.32 (19)C21—C22—C23—C240.7 (8)
Sn—S1—C1—N1179.4 (3)C22—C23—C24—C250.0 (8)
Sn—S1—C1—S20.4 (2)C23—C24—C25—C260.8 (8)
C1—N1—C3—C496.6 (5)C22—C21—C26—C250.2 (7)
C2—N1—C3—C481.0 (5)Sn—C21—C26—C25178.3 (4)
N1—C3—C4—C5175.9 (4)C24—C25—C26—C210.9 (8)
C3—C4—C5—C6178.5 (4)C36—C31—C32—C331.2 (6)
C4—C5—C6—C7178.9 (5)Sn—C31—C32—C33177.2 (3)
C5—C6—C7—C866.4 (8)C31—C32—C33—C342.3 (7)
C16—C11—C12—C131.3 (6)C32—C33—C34—C351.0 (8)
Sn—C11—C12—C13174.2 (3)C33—C34—C35—C361.3 (8)
C11—C12—C13—C140.7 (7)C34—C35—C36—C312.5 (8)
C12—C13—C14—C150.3 (7)C32—C31—C36—C351.2 (7)
C13—C14—C15—C160.5 (7)Sn—C31—C36—C35179.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (C11–C16) and (C31–C36) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C32—H32···Cg1i0.952.883.630 (4)137
C26—H26···Cg2i0.952.993.641 (5)127
Symmetry code: (i) x+1, y+1, z.
[N-Methyl-N-(2-phenylethyl)dithiocarbamato-κ2S,S']triphenyltin(IV) (II) top
Crystal data top
[Sn(C6H5)3(C10H12NS2)]F(000) = 1136
Mr = 560.37Dx = 1.479 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.3682 (4) ÅCell parameters from 4369 reflections
b = 9.4758 (2) Åθ = 4.8–75.1°
c = 19.2747 (6) ŵ = 9.73 mm1
β = 106.450 (3)°T = 173 K
V = 2516.84 (12) Å3Prism, colourless
Z = 40.10 × 0.10 × 0.05 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with Atlas detector
5054 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4431 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 75.6°, θmin = 4.8°
ω scanh = 1713
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 117
Tmin = 0.206, Tmax = 1.000l = 2224
9741 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
5054 reflectionsΔρmax = 1.47 e Å3
290 parametersΔρmin = 1.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 1.47 and 1.58 eÅ-3, respectively, were located 0.96 Å and 0.68 Å from the C11 and Sn atoms, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.68172 (2)0.06519 (2)0.97084 (2)0.02404 (9)
S10.84111 (6)0.17866 (9)0.98902 (5)0.0307 (2)
S20.78587 (7)0.01259 (10)0.85224 (5)0.0350 (2)
N10.9625 (2)0.1189 (3)0.91290 (17)0.0320 (7)
C10.8706 (3)0.1012 (4)0.91495 (19)0.0279 (7)
C21.0356 (3)0.1925 (4)0.9697 (2)0.0369 (8)
H2A1.02830.29460.96190.055*
H2B1.10050.16360.96830.055*
H2C1.02700.16871.01700.055*
C30.9948 (3)0.0678 (4)0.8520 (2)0.0344 (9)
H3A0.94830.00360.82480.041*
H3B1.05890.02160.87050.041*
C41.0026 (3)0.1877 (4)0.8013 (2)0.0427 (10)
H4A0.93980.23830.78560.051*
H4B1.05270.25550.82750.051*
C51.0287 (3)0.1338 (4)0.7357 (2)0.0353 (8)
C60.9574 (3)0.0996 (4)0.6730 (2)0.0386 (9)
H60.89110.11280.67090.046*
C70.9812 (3)0.0467 (4)0.6137 (2)0.0400 (9)
H70.93110.02390.57120.048*
C81.0764 (3)0.0264 (5)0.6150 (2)0.0401 (9)
H81.09240.01060.57400.048*
C91.1483 (3)0.0605 (6)0.6769 (3)0.0513 (13)
H91.21440.04720.67840.062*
C101.1254 (3)0.1139 (6)0.7368 (2)0.0469 (11)
H101.17590.13720.77900.056*
C110.6968 (2)0.1552 (3)0.9966 (2)0.0245 (7)
C120.6890 (3)0.1965 (4)1.0642 (2)0.0311 (8)
H120.67600.12781.09610.037*
C130.7002 (3)0.3379 (4)1.0855 (2)0.0392 (9)
H130.69630.36441.13210.047*
C140.7168 (3)0.4394 (4)1.0389 (3)0.0377 (9)
H140.72420.53561.05330.045*
C150.7227 (3)0.4001 (4)0.9714 (2)0.0344 (8)
H150.73310.46990.93900.041*
C160.7137 (3)0.2591 (4)0.9504 (2)0.0308 (8)
H160.71900.23340.90400.037*
C210.5674 (2)0.1332 (3)0.88077 (18)0.0238 (7)
C220.5054 (3)0.0368 (4)0.8369 (2)0.0351 (8)
H220.51640.06130.84570.042*
C230.4274 (3)0.0811 (5)0.7804 (2)0.0424 (10)
H230.38570.01360.75070.051*
C240.4107 (3)0.2222 (5)0.7676 (2)0.0414 (10)
H240.35680.25280.72940.050*
C250.4718 (4)0.3196 (4)0.8099 (2)0.0449 (10)
H250.46060.41740.80030.054*
C260.5496 (3)0.2767 (4)0.8665 (2)0.0366 (9)
H260.59120.34500.89570.044*
C310.6570 (2)0.1695 (4)1.06344 (19)0.0262 (7)
C320.7271 (3)0.1666 (4)1.1310 (2)0.0311 (8)
H320.78630.11741.13620.037*
C330.7110 (3)0.2349 (4)1.1904 (2)0.0331 (8)
H330.75880.23091.23600.040*
C340.6260 (3)0.3084 (4)1.1836 (2)0.0328 (8)
H340.61520.35451.22440.039*
C350.5566 (3)0.3150 (4)1.1174 (2)0.0348 (8)
H350.49860.36701.11250.042*
C360.5718 (3)0.2455 (4)1.0579 (2)0.0284 (7)
H360.52320.24971.01270.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02450 (14)0.02123 (14)0.02577 (14)0.00113 (8)0.00611 (10)0.00044 (8)
S10.0308 (4)0.0320 (4)0.0324 (4)0.0046 (3)0.0139 (4)0.0054 (3)
S20.0352 (5)0.0397 (5)0.0307 (5)0.0032 (4)0.0104 (4)0.0035 (4)
N10.0303 (16)0.0367 (17)0.0309 (16)0.0030 (13)0.0117 (14)0.0010 (13)
C10.0307 (19)0.0294 (17)0.0279 (17)0.0023 (15)0.0152 (15)0.0038 (14)
C20.0300 (19)0.044 (2)0.036 (2)0.0008 (17)0.0076 (17)0.0023 (17)
C30.031 (2)0.037 (2)0.042 (2)0.0049 (15)0.0213 (18)0.0011 (16)
C40.056 (3)0.038 (2)0.039 (2)0.0026 (19)0.022 (2)0.0010 (17)
C50.043 (2)0.0305 (19)0.035 (2)0.0003 (16)0.0158 (18)0.0041 (15)
C60.033 (2)0.039 (2)0.044 (2)0.0091 (17)0.0105 (19)0.0015 (18)
C70.037 (2)0.041 (2)0.038 (2)0.0040 (17)0.0031 (19)0.0035 (17)
C80.041 (2)0.049 (2)0.033 (2)0.0006 (19)0.0169 (18)0.0011 (18)
C90.029 (2)0.086 (4)0.041 (3)0.006 (2)0.015 (2)0.001 (2)
C100.036 (2)0.073 (3)0.031 (2)0.011 (2)0.0091 (18)0.003 (2)
C110.0182 (15)0.0191 (15)0.0334 (18)0.0001 (12)0.0029 (14)0.0021 (13)
C120.0356 (19)0.0228 (16)0.038 (2)0.0012 (14)0.0153 (17)0.0001 (14)
C130.045 (2)0.034 (2)0.042 (2)0.0025 (18)0.0184 (19)0.0113 (17)
C140.037 (2)0.0227 (18)0.057 (3)0.0018 (14)0.020 (2)0.0058 (16)
C150.031 (2)0.0254 (17)0.048 (2)0.0052 (15)0.0145 (18)0.0101 (16)
C160.0303 (18)0.0284 (17)0.0335 (19)0.0042 (15)0.0087 (16)0.0026 (15)
C210.0246 (16)0.0227 (16)0.0241 (16)0.0022 (13)0.0067 (14)0.0012 (12)
C220.040 (2)0.0238 (17)0.040 (2)0.0031 (16)0.0078 (18)0.0025 (15)
C230.033 (2)0.051 (3)0.035 (2)0.0049 (18)0.0032 (18)0.0001 (18)
C240.038 (2)0.055 (3)0.030 (2)0.0156 (19)0.0076 (18)0.0075 (18)
C250.060 (3)0.030 (2)0.042 (2)0.0186 (19)0.010 (2)0.0098 (17)
C260.048 (2)0.0220 (17)0.034 (2)0.0027 (16)0.0033 (18)0.0005 (14)
C310.0257 (17)0.0235 (16)0.0295 (17)0.0039 (14)0.0080 (15)0.0034 (13)
C320.0314 (18)0.0293 (18)0.0326 (19)0.0040 (15)0.0092 (16)0.0026 (15)
C330.0330 (19)0.0358 (19)0.0277 (18)0.0020 (16)0.0043 (16)0.0078 (15)
C340.037 (2)0.0248 (17)0.041 (2)0.0015 (15)0.0173 (17)0.0106 (15)
C350.0273 (18)0.0295 (18)0.050 (2)0.0024 (15)0.0149 (17)0.0056 (16)
C360.0216 (16)0.0292 (17)0.0318 (18)0.0008 (14)0.0032 (14)0.0025 (14)
Geometric parameters (Å, º) top
Sn—C212.125 (3)C12—C131.397 (5)
Sn—C112.143 (3)C12—H120.9500
Sn—C312.156 (3)C13—C141.382 (6)
Sn—S12.4636 (9)C13—H130.9500
Sn—S23.1066 (10)C14—C151.379 (6)
S1—C11.761 (4)C14—H140.9500
S2—C11.678 (4)C15—C161.392 (5)
N1—C11.342 (5)C15—H150.9500
N1—C21.462 (5)C16—H160.9500
N1—C31.462 (5)C21—C221.384 (5)
C2—H2A0.9800C21—C261.396 (5)
C2—H2B0.9800C22—C231.389 (6)
C2—H2C0.9800C22—H220.9500
C3—C41.524 (5)C23—C241.369 (6)
C3—H3A0.9900C23—H230.9500
C3—H3B0.9900C24—C251.373 (6)
C4—C51.505 (5)C24—H240.9500
C4—H4A0.9900C25—C261.383 (6)
C4—H4B0.9900C25—H250.9500
C5—C61.384 (6)C26—H260.9500
C5—C101.396 (6)C31—C321.403 (5)
C6—C71.378 (6)C31—C361.398 (5)
C6—H60.9500C32—C331.391 (5)
C7—C81.375 (6)C32—H320.9500
C7—H70.9500C33—C341.379 (5)
C8—C91.376 (7)C33—H330.9500
C8—H80.9500C34—C351.380 (6)
C9—C101.383 (6)C34—H340.9500
C9—H90.9500C35—C361.392 (5)
C10—H100.9500C35—H350.9500
C11—C121.397 (5)C36—H360.9500
C11—C161.393 (5)
C21—Sn—C11119.27 (13)C12—C11—C16118.2 (3)
C21—Sn—C31105.46 (13)C12—C11—Sn117.4 (3)
C11—Sn—C31106.56 (13)C16—C11—Sn124.4 (3)
C21—Sn—S1117.16 (9)C11—C12—C13120.7 (3)
C11—Sn—S1111.30 (9)C11—C12—H12119.7
C31—Sn—S192.68 (9)C13—C12—H12119.7
C21—Sn—S282.51 (9)C14—C13—C12120.2 (4)
C11—Sn—S288.60 (10)C14—C13—H13119.9
C31—Sn—S2155.43 (9)C12—C13—H13119.9
S1—Sn—S263.42 (3)C15—C14—C13119.6 (3)
C1—S1—Sn97.50 (13)C15—C14—H14120.2
C1—S2—Sn78.01 (12)C13—C14—H14120.2
C1—N1—C2122.8 (3)C14—C15—C16120.5 (4)
C1—N1—C3121.4 (3)C14—C15—H15119.7
C2—N1—C3115.8 (3)C16—C15—H15119.7
N1—C1—S2124.1 (3)C15—C16—C11120.7 (4)
N1—C1—S1115.9 (3)C15—C16—H16119.6
S2—C1—S1120.0 (2)C11—C16—H16119.6
N1—C2—H2A109.5C22—C21—C26118.2 (3)
N1—C2—H2B109.5C22—C21—Sn120.9 (3)
H2A—C2—H2B109.5C26—C21—Sn120.8 (3)
N1—C2—H2C109.5C23—C22—C21121.1 (4)
H2A—C2—H2C109.5C23—C22—H22119.4
H2B—C2—H2C109.5C21—C22—H22119.4
N1—C3—C4111.5 (3)C24—C23—C22119.9 (4)
N1—C3—H3A109.3C24—C23—H23120.1
C4—C3—H3A109.3C22—C23—H23120.1
N1—C3—H3B109.3C23—C24—C25120.0 (4)
C4—C3—H3B109.3C23—C24—H24120.0
H3A—C3—H3B108.0C25—C24—H24120.0
C5—C4—C3111.5 (3)C24—C25—C26120.6 (4)
C5—C4—H4A109.3C24—C25—H25119.7
C3—C4—H4A109.3C26—C25—H25119.7
C5—C4—H4B109.3C25—C26—C21120.3 (4)
C3—C4—H4B109.3C25—C26—H26119.9
H4A—C4—H4B108.0C21—C26—H26119.9
C6—C5—C10118.0 (4)C32—C31—C36117.6 (3)
C6—C5—C4120.8 (4)C32—C31—Sn121.1 (2)
C10—C5—C4121.2 (4)C36—C31—Sn121.3 (3)
C7—C6—C5120.9 (4)C31—C32—C33120.8 (3)
C7—C6—H6119.6C31—C32—H32119.6
C5—C6—H6119.6C33—C32—H32119.6
C6—C7—C8121.0 (4)C34—C33—C32120.3 (4)
C6—C7—H7119.5C34—C33—H33119.8
C8—C7—H7119.5C32—C33—H33119.8
C7—C8—C9118.8 (4)C35—C34—C33120.0 (3)
C7—C8—H8120.6C35—C34—H34120.0
C9—C8—H8120.6C33—C34—H34120.0
C8—C9—C10120.8 (4)C34—C35—C36120.0 (3)
C8—C9—H9119.6C34—C35—H35120.0
C10—C9—H9119.6C36—C35—H35120.0
C9—C10—C5120.5 (4)C35—C36—C31121.2 (3)
C9—C10—H10119.7C35—C36—H36119.4
C5—C10—H10119.7C31—C36—H36119.4
C2—N1—C1—S2177.8 (3)C11—C12—C13—C141.5 (6)
C3—N1—C1—S23.7 (5)C12—C13—C14—C150.2 (6)
C2—N1—C1—S12.4 (5)C13—C14—C15—C161.1 (6)
C3—N1—C1—S1176.0 (3)C14—C15—C16—C111.1 (6)
Sn—S2—C1—N1171.3 (3)C12—C11—C16—C150.2 (5)
Sn—S2—C1—S19.00 (18)Sn—C11—C16—C15179.9 (3)
Sn—S1—C1—N1169.0 (3)C26—C21—C22—C230.2 (6)
Sn—S1—C1—S211.2 (2)Sn—C21—C22—C23176.5 (3)
C1—N1—C3—C4102.6 (4)C21—C22—C23—C240.3 (7)
C2—N1—C3—C476.0 (4)C22—C23—C24—C250.9 (7)
N1—C3—C4—C5175.8 (3)C23—C24—C25—C261.1 (7)
C3—C4—C5—C691.9 (5)C24—C25—C26—C210.5 (7)
C3—C4—C5—C1086.7 (5)C22—C21—C26—C250.1 (6)
C10—C5—C6—C70.4 (6)Sn—C21—C26—C25176.6 (3)
C4—C5—C6—C7178.2 (4)C36—C31—C32—C331.2 (5)
C5—C6—C7—C80.0 (7)Sn—C31—C32—C33179.6 (3)
C6—C7—C8—C90.3 (7)C31—C32—C33—C340.9 (6)
C7—C8—C9—C100.2 (7)C32—C33—C34—C350.3 (6)
C8—C9—C10—C50.2 (8)C33—C34—C35—C361.1 (6)
C6—C5—C10—C90.5 (7)C34—C35—C36—C310.7 (6)
C4—C5—C10—C9178.1 (4)C32—C31—C36—C350.4 (5)
C16—C11—C12—C131.5 (5)Sn—C31—C36—C35178.8 (3)
Sn—C11—C12—C13178.6 (3)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °) for (I). Cg1 and Cg2 are the ring centroids of the (C11–C16) and (C31–C36) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1i0.982.993.779 (5)138
C14—H14···Cg2ii0.952.953.754 (5)143
Symmetry codes: (i) x+2, y, z+2; (ii) x, y1, z.
Selected interatomic parameters (Å, °) for (I) and (II) top
Parameter(I)(II)
Sn—S12.4672 (11)2.4636 (9)
Sn···S23.1113 (11)3.1066 (10)
C1—S11.761 (4)1.761 (4)
C1—S21.688 (4)1.678 (4)
C1—N11.330 (5)1.342 (5)
S1—Sn···S263.26 (3)63.42 (3)
S1—Sn···C11121.53 (10)111.30 (9)
S1—Sn···C3190.00 (11)92.68 (9)
C11—Sn—C21114.88 (15)119.27 (13)
S2—Sn···C31152.54 (11)155.43 (9)
Summary of short interatomic contacts (Å) in (I) and (II) top
ContactDistanceSymmetry operation
(I)
H2C···H7B1.98x, - 1 + y, z
H2C···C72.67x, - 1 + y, z
H23···C322.57- x, - 1 + y, - 1 + z
H26···C332.701 - x, - 1 - y, - z
(II)
H2A···H72.262 - x, 1/2 + y, 3/2 + z
H9···H232.291 + x, y, z
H2A···C72.682 - x, 1/2 + y, 3/2 + z
H2A···C82.742 - x, 1/2 + y, 3/2 + z
H2B···C112.702 - x, - y, 2 - z
H2B···C162.772 - x, - y, 2 - z
H22···C352.691 - x, - y, 2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) and (II) top
ContactPercentage contribution
(I)(II)
H···H66.157.8
C···H/H···C25.633.7
S···H/H···S7.67.6
N···H/H···N0.40.6
C···N/N···C0.20.0
S···N/N···S0.10.0
C···S/S···C0.00.3
Selected interatomic parameters (Å) for Ph3Sn(S2CNRR') top
CompoundRR'Sn—SshortSn—SlongΔ(Sn—S)Reference
(III)EtEt2.429 (3)3.096 (3)0.67Hook et al. (1994)
(IV)a(CH2CH2)2C(H)CH2CH2(CH2CH2)2C(H)CH22.521 (3)2.919 (3)0.40Ali et al. (2014)
2.4735 (10)2.9468 (10)0.47
(V)CH2PhCH2CH2Ph2.4885 (5)2.9120 (5)0.42Mohamad, Awang, Kamaludin, Jotani et al. (2016)
(VI)bCH2(3-pyridyl)CH2(3-pyridyl)2.5165 (19)3.2209 (19)0.71Gupta et al. (2015)
2.4685 (19)3.0397 (19)0.57
Notes: (a) non-symmetric binuclear molecule; (b) two independent molecules in the asymmetric unit.
 

Footnotes

Additional correspondence author, e-mail: awang_normah@yahoo.com.

Acknowledgements

We gratefully acknowledge the School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, for providing the essential laboratory facilities. We would also like to thank the laboratory assistants of the Faculty of Science and Technology, Universiti Kebangsaan Malaysia, for technical support received. Intensity data were collected in the University of Malaya's crystallographic laboratory.

Funding information

This work was supported by the Fundamental Research Grant Scheme (FRGS/2/2013/SKK10/UKM/02/1) awarded by the Ministry of Education (MOE).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAli, S., Zia-ur-Rehman, Muneeb-ur-Rehman, Khan, I., Shah, S. N. A., Ali, R. F. Shaha, A., Badshah, A., Akbar, K. & Bélanger-Gariepy, F. (2014). J. Coord. Chem. 67, 3414–3430.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A 102, 2472–2482.  Web of Science CSD CrossRef CAS Google Scholar
First citationDance, I. & Scudder, M. (2009). CrystEngComm, 11, 2233–2247.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreen, M., Prince, P., Gardener, M. & Steed, J. (2004). Adv. Mater. 16, 994–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, A. N., Kumar, V., Singh, V., Rajput, A., Prasad, L. B., Drew, M. G. B. & Singh, N. (2015). J. Organomet. Chem. 787, 65–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationHogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202–1215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311.  CrossRef CAS Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2007). Z. Kristallogr. 222, 532–538.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N. & Kamaludin, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1920–1925.  CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F. & Abu Bakar, N. F. (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1269–1274.  CAS Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480–1487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 260–265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 302–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonteiro, O. C., Nogueira, H. I. S., Trindade, T. & Motevalli, M. (2001). Chem. Mater. 13, 2103–2111.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.  Google Scholar
First citationPark, J.-H., Afzaal, M., Kemmler, M., O'Brien, P., Otway, D. J., Raftery, J. & Waters, J. (2003). J. Mater. Chem. 13, 1942–1949.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSegovia, N., Crovetto, G., Lardelli, P. & Espigares, M. (2002). J. Appl. Toxicol. 22, 353–357.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T., Hall, V. J. & Buntine, M. A. (1999). Z. Kristallogr. 214, 124–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds