research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­phen­yl)sulfan­yl]-2-meth­­oxy-1-phenyl­ethan-1-one: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cInstituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil, dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 April 2018; accepted 20 April 2018; online 27 April 2018)

The title compound, C15H13ClO2S, comprises (4-chloro­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues linked at a chiral methine-C atom (the crystal is racemic). A twist in the methine-C—C(carbon­yl) bond [O—C—C—O torsion angle = 19.3 (7)°] leads to a dihedral angle of 22.2 (5)° between the benzaldehyde and methine+meth­oxy residues. The chloro­benzene ring is folded to lie over the O atoms, with the dihedral angle between the benzene rings being 42.9 (2)°. In the crystal, the carbonyl-O atom accepts two C—H⋯O inter­actions with methyl- and methine-C—H atoms being the donors. The result is an helical supra­molecular chain aligned along the c axis; chains pack with no directional inter­actions between them. An analysis of the Hirshfeld surface points to the important contributions of weak H⋯H and C⋯C contacts to the mol­ecular packing.

1. Chemical context

As part of our ongoing studies on the conformational and electronic characteristics of some β-thio­carbonyl, β-bis-thio­carbonyl and β-thio-β-oxacarbonyl compounds, e.g. N,N-diethyl-2-[(4′-substituted)phenyl­thio]­acetamides (Vinhato et al., 2013[Vinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738-746.]), 1-methyl-3-phenyl­sulfonyl-2-piperidones (Zuker­man-Schpector et al., 2008[Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835-o836.]), 3,3-bis­[(4′-substituted) phenyl­sulfan­yl]-1-methyl-2-piperidones (Olivato et al., 2013[Olivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617-626.]), 2-alkyl­thio-2-alkyl­sulfinyl-aceto­phenones and 2-alkyl­thio-2-phenyl­sulfonyl-aceto­phenones, 2-alkyl­sulfinyl-2-alkyl­sulfonyl-aceto­phenones (Distefano et al., 1996[Distefano, G., Dal Colle, M., de Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661-1669.]), 2-meth­oxy-2-[(4′-substituted) phenyl­sulfan­yl]-aceto­phenones (Zukerman-Schpector et al., 2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]; Caracelli et al., 2015[Caracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657-o658.]) and 2-meth­oxy-2-(phenyl­selan­yl)-(4′-substituted)aceto­phenones (Traesel et al., 2018[Traesel, H. J., Olivato, P. R., Valença, J., Rodrigues, D. N. S., Zukerman-Schpector, J. & Colle, M. D. (2018). J. Mol. Struct. 1157, 29-39.]), utilizing infrared spectroscopy, computational chemistry and X-ray diffraction methods, the title compound (I)[link] was synthesized and characterized. The primary motivation behind this work is the search for selenium/sulfur-containing compounds with anti-inflammatory activity that could be selective COX-2 inhibitors (Cerqueira et al., 2015[Cerqueira, C. R., Olivato, P. R. & Dal Colle, M. (2015). Spectrochim. Acta A, 139, 495-504.], 2017[Cerqueira, C. R., Olivato, P. R., Rodrigues, D. N. S., Zukerman-Schpector, J., Tiekink, E. R. T. & Dal Colle, M. (2017). J. Mol. Struct. 1133, 49-65.]). Mol­ecular docking studies have also been conducted in order to understand the mechanism of inhibition (Baptistini, 2015[Baptistini, N. (2015). Ph. D. Thesis, Federal University of São Carlos, São Carlos, Brazil. available online at: https://repositorio. ufscar.br/handle/ufscar/7554.]). Herein, the crystal and mol­ecular structures of (I)[link] are described along with an analysis of the calculated Hirshfeld surfaces and non-covalent inter­action plots for selected inter­actions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] sees (4-chloro­phen­yl)sulfanyl, phenyl­ethanone and meth­oxy groups linked at the chiral methine-C8 atom, Fig. 1[link]. In the arbitrarily chosen asymmetric mol­ecule, C8 has an R configuration, but crystal symmetry generates a racemic mixture. The base of the mol­ecule is defined by the phenyl­ethanone [r.m.s. deviation of the eight non-hydrogen atoms = 0.0134 Å] and meth­oxy groups. These residues are not co-planar, with the dihedral angle between the two planes being 22.2 (5)° owing to the twist about the C8—C9 bond as seen in the value of the O1—C8—C9—O2 torsion angle of 19.3 (7)°. The 4-chloro­phenyl group is orientated so that the ring lies over the oxygen atoms with the dihedral angle between the benzene rings being 42.9 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features C—H⋯O inter­actions where the donors are methyl-C7 and methine-C8 H atoms, and the acceptor is the carbonyl-O2 atom, Table 1[link]. These inter­actions combine to sustain a supra­molecular chain along [001] with an helical topology as it is propagated by 21 symmetry, Fig. 2[link]a. Chains assemble into the three-dimensional architecture without directional inter­actions between them, Fig. 2[link]b.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.96 2.53 3.297 (9) 137
C8—H8⋯O2i 0.98 2.42 3.305 (8) 150
Symmetry code: (i) [-x+1, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) view of the supra­molecular chain parallel to the c axis and (b) view of the unit-cell contents shown in projection down the b axis; one chain is highlighted in space-filling mode. The C—H⋯O contacts are shown as orange dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were performed as per a recent study (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218-1222.]) and serve to provide additional information on the mol­ecular packing, in particular the weaker inter­actions between mol­ecules. In addition to bright-red spots near the methyl-H7A and methine-H8 atoms, a pair near the carbonyl-O2 atom arise as a result of the C—H⋯O inter­actions leading to the supra­molecular chain discussed above, Table 1[link]. The presence of diminutive and faint-red spots on the Hirshfeld surfaces illustrated in Fig. 3[link] indicate the influence of short inter­atomic contacts on the mol­ecular packing in the crystal, Table 2[link]. Thus, the C⋯C and C⋯H/H⋯C contacts involving chloro­benzene-C6, carbonyl-C9 and methyl-H7C atoms are viewed as the pair of diminutive and faint-red spots near these atoms in Fig. 3[link], whereas similar features near the methyl-H7B, phenyl-C14 and -H14 atoms represent H7B⋯H14 and C⋯H/H⋯C contacts. Views of the Hirshfeld surfaces mapped over electrostatic potential are shown in Fig. 4[link] and also indicate the donors and acceptors of the C—H⋯O inter­actions through the appearance of intense-blue and -red regions around the participating atoms. Fig. 5[link] illustrates the environment around a reference mol­ecule within the dnorm-mapped Hirshfeld surface and highlight the inter­molecular C—H⋯O inter­actions and short inter­atomic H⋯H, C⋯H/H⋯C and C⋯C contacts.

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H7B⋯H14 2.10 1 − x, − y, [{1\over 2}] + z
H7B⋯C14 2.76 1 − x, − y, [{1\over 2}] + z
H7C⋯C6 2.73 1 − x, 1 − y, [{1\over 2}] + z
C6⋯C9 3.33 1 − x, − y, [{1\over 2}] + z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.073 to +1.389 au.
[Figure 4]
Figure 4
Two views of the Hirshfeld surfaces mapped over the electrostatic potential in the range −0.073 to + 0.056 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm in the range −0.073 to +1.389 au highlighting inter­molecular C—H⋯O, C⋯C, H⋯H and C⋯H/H⋯C contacts by black, red, yellow and sky-blue dashed lines, respectively.

The non-symmetric mol­ecular geometry in (I)[link] results in an asymmetric distribution of points in its overall two-dimensional fingerprint plot shown in Fig. 6[link] and also in those delin­eated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), also illus­trated in Fig. 6[link]. The major percentage contributions to the Hirshfeld surface are from (in descending order) H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and S⋯H/H⋯S contacts along with a small, i.e. 0.6%, contribution from C⋯C contacts as summarized in Table 3[link]. These inter­actions result in distinctive features in their respective delineated fingerprint plots. The short inter­atomic H⋯H and C⋯H/H⋯C contacts are characterized as a pair of beak-shape tips at de + di ∼ 2.1 Å and the pair of parabolic distributions of points at around de + di < 2.8 Å in their respective delineated fingerprint plots. The short inter­atomic C⋯H/H⋯C contacts in the crystal, Table 2[link], appear as a pair of thin tips at de + di ∼ 2.7 Å attached to the aforementioned parabolic distribution. The inter­atomic Cl⋯H/H⋯Cl contacts, making the next most significant contribution to the Hirshfeld surface, i.e. 12.8%, are at van der Waals separations. The C—H⋯O contacts, involving the carbonyl-O2 with methyl-C7 H and methine-C8 H atoms, Table 1[link], are evident as a pair of spikes with tips at de + di ∼ 2.3 Å. The vase-shaped distribution of points beginning at de + di ∼ 3.3 Å in the fingerprint plot delineated into C⋯C contacts results from the contacts highlighted in Fig. 5[link] and Table 2[link]. The small contribution from other remaining inter­atomic contacts summarized in Table 3[link] have a negligible influence upon the mol­ecular packing.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact Percentage contribution
H⋯H 39.3
C⋯H/H⋯C 23.2
Cl⋯H/H⋯Cl 12.8
O⋯H/H⋯O 11.0
S⋯H/H⋯S 4.4
Cl⋯S/S⋯Cl 2.1
Cl⋯O/O⋯Cl 2.1
C⋯O/O⋯C 1.5
C⋯Cl/Cl⋯C 1.5
C⋯S/S⋯C 1.2
C⋯C 0.6
[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for (I)[link] and those delineated into H⋯H, C⋯H/H⋯C, Cl⋯H/H⋯Cl, O⋯H/H⋯O and C⋯C contacts.

5. Non-covalent inter­action plots

Non-covalent inter­action plots are a convenient means by which the nature of a specified inter­molecular inter­action may be assessed in terms of it being attractive or otherwise (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]; Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]). If a specified inter­action is attractive, the isosurface will be blue in appearance whereas a repulsive inter­action will result in a red isosurface. On the other hand, a weakly attractive inter­action will appear green. The isosurfaces for the inter­actions between the methyl-C7 and methine-C H atoms and the carbonyl-O2 atom are shown in Fig. 7[link]a, clearly indicating their weakly attractive nature. Similarly, the inter­actions between the chloro­benzene-C6 and methyl-H7C atoms, Fig. 7[link]b, and between the methyl-H7B and phenyl-H14 atoms, Fig. 7[link]c, are weakly attractive.

[Figure 7]
Figure 7
Non-covalent inter­action plots for inter­molecular inter­actions between (a) methyl-C7- and methine-C—H atoms, and the carbonyl-O2 atom, (b) chloro­benzene-C6 and methyl-H7C atoms and (c) methyl-H7B and phenyl-H14 atoms.

6. Database survey

There are two closely related literature precedents for (I)[link], namely the S-bound 4-meth­oxy­benzene [(II); Caracelli et al., 2015[Caracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657-o658.]] and 4-tolyl [(III); Zukerman-Schpector et al., 2015[Zukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3-o4.]] derivatives. The three compounds crystallize in the same Pca21 space group and present similar unit-cell dimensions. An overlay diagram for (I)–(III) is shown in Fig. 8[link] from which it can be noted there is a high degree of concordance for (I)[link] and (III). The mol­ecule in (II) is coincident with (I)[link] and (III) except for the relative disposition of the S-bound meth­oxy­benzene ring. This difference arises as a result of a twist about the C8—S1 bond as seen in the C4—S1—C8—C9 torsion angles of 57.3 (5), 46.6 (3) and 57.9 (3)° for (I)–(III), respectively. Despite this difference, the angles between the S-bound benzene rings and the phenyl rings in (I)–(III) are relatively constant at 42.9 (2), 40.11 (16) and 44.03 (16)°, respectively.

[Figure 8]
Figure 8
Overlay diagram of (a) (I)[link], red image, (b) (II), green and (c) (III), blue.

7. Synthesis and crystallization

The 4′-chloro­phenyl di­sulfide precursor was prepared as previously described (Ali & McDermott, 2002[Ali, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]) through the oxidation of 4′-chloro­thio­phenol by bromine. A solution of 2-meth­oxy aceto­phenone (0.70 ml, 5.08 mmol, Sigma–Aldrich) in THF (15 ml), was added dropwise to a cooled (195 K) solution of diiso­propyl­amine (0.78 ml, 5.59 mmol) and n-butyl­lithium (3.76 ml, 5.08 mmol) in THF (25 ml). After 30 min., a solution of 4′-chloro­phenyl di­sulfide (1.61 g, 5.08 mmol) with hexa­methyl­phospho­ramide (HMPA) (0.90 ml, ca 5.08 mmol) dissolved in THF (15 ml) was added dropwise to the enolate solution (Zoretic & Soja, 1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]). After stirring for 3 h, water (50 ml) was added at room temperature and extraction with diethyl ether was performed. The organic layer was then treated with a saturated solution of ammonium chloride until neutral pH and dried over anhydrous magnesium sulfate. A brown oil was obtained after evaporation of solvent. Purification through flash chromatography with n-hexane was used in order to remove the non-polar reactant (di­sulfide), then with dry acetone to give a mixture of both aceto­phenones (product and reactant). Crystallization was performed by vapour diffusion of n-hexane into a chloro­form solution held at 283 K to give pure product (0.4 g, yield = 60%). Irregular colourless crystals for X-ray diffraction of (I)[link] were obtained by the same pathway. M.p. 358.2–358.8 K. 1H NMR (CDCl3, 500 MHz, δ ppm): 3.67 (s, 3H), 5.86 (s, 1H), 7.24–7.29 (m, 4H), 7.44–7.47 (m, 2H), 7.57–7.60 (m, 1H), 7.93–7.95 (m, 2H). 13C NMR (CDCl3, 125 MHz, δ p.p.m.): 190.20, 135.60, 135.25, 134.23, 133.55, 129.22, 128.84, 128.59, 89.37, 56.13. Microanalysis calculated for C15H13ClO2S (%): C 61.53, H 4.48. Found (%): C 61.47, H 4.55. High-resolution MS [M+, M2+] calculated: 292.0325, 294.0295; found: 292.0324, 294.0296.

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C15H13ClO2S
Mr 292.76
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 293
a, b, c (Å) 17.964 (3), 8.0234 (15), 9.7761 (19)
V3) 1409.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.42 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.365, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 5010, 2081, 1505
Rint 0.049
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.04
No. of reflections 2081
No. of parameters 173
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.18
Absolute structure Flack x determined using 465 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (9)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

2-[(4-Chlorophenyl)sulfanyl]-2-methoxy-1-phenylethan-1-one top
Crystal data top
C15H13ClO2SDx = 1.380 Mg m3
Mr = 292.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 1839 reflections
a = 17.964 (3) Åθ = 2.5–23.7°
b = 8.0234 (15) ŵ = 0.41 mm1
c = 9.7761 (19) ÅT = 293 K
V = 1409.0 (5) Å3Irregular, colourless
Z = 40.42 × 0.21 × 0.12 mm
F(000) = 608
Data collection top
Bruker APEXII CCD
diffractometer
1505 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.0°, θmin = 2.3°
Tmin = 0.365, Tmax = 0.745h = 2021
5010 measured reflectionsk = 79
2081 independent reflectionsl = 118
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3264P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.28 e Å3
2081 reflectionsΔρmin = 0.18 e Å3
173 parametersAbsolute structure: Flack x determined using 465 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.06 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36121 (11)0.3177 (3)1.0687 (2)0.0916 (7)
S10.41934 (10)0.2492 (2)0.4390 (2)0.0646 (5)
O10.5511 (2)0.0919 (5)0.4909 (4)0.0616 (11)
O20.4654 (2)0.1253 (5)0.6070 (4)0.0685 (12)
C10.3786 (4)0.2943 (8)0.8946 (7)0.0571 (17)
C20.3254 (4)0.2193 (8)0.8147 (9)0.069 (2)
H20.28120.18060.85270.083*
C30.3396 (4)0.2028 (8)0.6744 (8)0.0644 (18)
H30.30480.15060.61860.077*
C40.4045 (3)0.2632 (7)0.6186 (7)0.0529 (15)
C50.4565 (4)0.3385 (7)0.7019 (7)0.0579 (16)
H50.50050.37930.66470.069*
C60.4432 (4)0.3534 (8)0.8404 (7)0.0593 (18)
H60.47840.40380.89670.071*
C70.6003 (4)0.1950 (9)0.4167 (9)0.081 (2)
H7A0.60780.14920.32710.121*
H7B0.64720.20110.46370.121*
H7C0.57940.30470.40900.121*
C80.4828 (3)0.0677 (6)0.4279 (7)0.0504 (14)
H80.49150.04210.33120.060*
C90.4447 (3)0.0804 (7)0.4942 (6)0.0493 (14)
C100.3836 (3)0.1693 (7)0.4225 (7)0.0465 (13)
C110.3538 (3)0.3095 (7)0.4869 (7)0.0577 (16)
H110.37190.34310.57160.069*
C120.2974 (3)0.3981 (7)0.4246 (9)0.0690 (18)
H120.27840.49240.46740.083*
C130.2691 (4)0.3500 (9)0.3017 (9)0.073 (2)
H130.23060.40970.26130.087*
C140.2984 (4)0.2114 (9)0.2377 (8)0.075 (2)
H140.27940.17740.15370.090*
C150.3559 (3)0.1224 (8)0.2978 (7)0.0621 (17)
H150.37580.03030.25310.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1147 (15)0.1100 (15)0.0501 (11)0.0357 (11)0.0107 (12)0.0064 (10)
S10.0977 (11)0.0519 (8)0.0441 (8)0.0100 (8)0.0060 (11)0.0053 (8)
O10.072 (3)0.068 (3)0.045 (3)0.012 (2)0.002 (2)0.001 (2)
O20.103 (3)0.066 (3)0.037 (3)0.010 (2)0.008 (3)0.009 (2)
C10.074 (4)0.054 (4)0.042 (4)0.022 (3)0.005 (4)0.003 (3)
C20.075 (5)0.061 (4)0.071 (5)0.002 (3)0.014 (4)0.002 (4)
C30.073 (4)0.054 (4)0.066 (5)0.000 (3)0.005 (4)0.006 (3)
C40.074 (4)0.036 (3)0.048 (4)0.009 (3)0.003 (4)0.001 (3)
C50.068 (4)0.051 (4)0.055 (4)0.005 (3)0.001 (4)0.004 (3)
C60.068 (4)0.058 (4)0.052 (4)0.014 (3)0.010 (3)0.015 (3)
C70.087 (5)0.092 (5)0.063 (6)0.026 (4)0.004 (5)0.004 (5)
C80.068 (3)0.049 (3)0.034 (3)0.001 (3)0.003 (3)0.003 (3)
C90.075 (4)0.046 (3)0.028 (3)0.009 (3)0.009 (3)0.002 (3)
C100.061 (3)0.044 (3)0.035 (3)0.006 (3)0.006 (3)0.002 (3)
C110.067 (4)0.056 (4)0.050 (4)0.005 (3)0.004 (3)0.008 (3)
C120.073 (4)0.053 (4)0.081 (6)0.007 (3)0.012 (5)0.005 (4)
C130.073 (5)0.076 (5)0.069 (5)0.011 (3)0.002 (4)0.011 (4)
C140.088 (5)0.092 (5)0.046 (5)0.003 (4)0.010 (4)0.006 (4)
C150.082 (4)0.059 (4)0.046 (4)0.013 (3)0.003 (4)0.001 (3)
Geometric parameters (Å, º) top
Cl1—C11.741 (7)C7—H7B0.9600
S1—C41.780 (7)C7—H7C0.9600
S1—C81.853 (5)C8—C91.517 (7)
O1—C81.386 (6)C8—H80.9800
O1—C71.412 (8)C9—C101.485 (8)
O2—C91.219 (7)C10—C151.370 (9)
C1—C61.362 (9)C10—C111.395 (8)
C1—C21.372 (10)C11—C121.379 (9)
C2—C31.401 (10)C11—H110.9300
C2—H20.9300C12—C131.360 (11)
C3—C41.376 (9)C12—H120.9300
C3—H30.9300C13—C141.380 (9)
C4—C51.378 (8)C13—H130.9300
C5—C61.381 (9)C14—C151.387 (8)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—H7A0.9600
C4—S1—C8101.5 (3)O1—C8—S1114.1 (4)
C8—O1—C7114.1 (5)C9—C8—S1108.2 (4)
C6—C1—C2121.6 (7)O1—C8—H8108.6
C6—C1—Cl1119.7 (6)C9—C8—H8108.6
C2—C1—Cl1118.6 (6)S1—C8—H8108.6
C1—C2—C3118.2 (7)O2—C9—C10120.7 (5)
C1—C2—H2120.9O2—C9—C8118.8 (5)
C3—C2—H2120.9C10—C9—C8120.6 (5)
C4—C3—C2120.6 (6)C15—C10—C11118.9 (6)
C4—C3—H3119.7C15—C10—C9123.8 (5)
C2—C3—H3119.7C11—C10—C9117.3 (5)
C3—C4—C5119.6 (7)C12—C11—C10119.9 (7)
C3—C4—S1119.7 (5)C12—C11—H11120.0
C5—C4—S1120.6 (5)C10—C11—H11120.0
C4—C5—C6120.0 (6)C13—C12—C11121.2 (6)
C4—C5—H5120.0C13—C12—H12119.4
C6—C5—H5120.0C11—C12—H12119.4
C1—C6—C5119.9 (6)C12—C13—C14119.1 (7)
C1—C6—H6120.1C12—C13—H13120.5
C5—C6—H6120.1C14—C13—H13120.5
O1—C7—H7A109.5C13—C14—C15120.5 (7)
O1—C7—H7B109.5C13—C14—H14119.8
H7A—C7—H7B109.5C15—C14—H14119.8
O1—C7—H7C109.5C10—C15—C14120.4 (6)
H7A—C7—H7C109.5C10—C15—H15119.8
H7B—C7—H7C109.5C14—C15—H15119.8
O1—C8—C9108.6 (5)
C6—C1—C2—C30.8 (9)O1—C8—C9—O219.3 (7)
Cl1—C1—C2—C3179.3 (5)S1—C8—C9—O2105.1 (5)
C1—C2—C3—C41.2 (9)O1—C8—C9—C10160.4 (5)
C2—C3—C4—C50.9 (9)S1—C8—C9—C1075.2 (6)
C2—C3—C4—S1177.2 (5)O2—C9—C10—C15177.7 (6)
C8—S1—C4—C3101.5 (5)C8—C9—C10—C152.5 (8)
C8—S1—C4—C580.5 (5)O2—C9—C10—C112.9 (8)
C3—C4—C5—C60.2 (8)C8—C9—C10—C11176.9 (5)
S1—C4—C5—C6177.9 (5)C15—C10—C11—C120.0 (9)
C2—C1—C6—C50.0 (9)C9—C10—C11—C12179.4 (5)
Cl1—C1—C6—C5178.5 (5)C10—C11—C12—C131.0 (9)
C4—C5—C6—C10.3 (9)C11—C12—C13—C141.0 (10)
C7—O1—C8—C9163.9 (5)C12—C13—C14—C150.1 (10)
C7—O1—C8—S175.3 (6)C11—C10—C15—C141.0 (10)
C4—S1—C8—O163.7 (4)C9—C10—C15—C14179.6 (5)
C4—S1—C8—C957.3 (5)C13—C14—C15—C101.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.962.533.297 (9)137
C8—H8···O2i0.982.423.305 (8)150
Symmetry code: (i) x+1, y, z1/2.
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H7B···H142.101 - x, - y, 1/2 + z
H7B···C142.761 - x, - y, 1/2 + z
H7C···C62.731 - x, 1 - y, 1/2 + z
C6···C93.331 - x, - y, 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
H···H39.3
C···H/H···C23.2
Cl···H/H···Cl12.8
O···H/H···O11.0
S···H/H···S4.4
Cl···S/S···Cl2.1
Cl···O/O···Cl2.1
C···O/O···C1.5
C···Cl/Cl···C1.5
C···S/S···C1.2
C···C0.6
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Funding information

The Brazilian agency the São Paulo Research Foundation (FAPESP) is thanked for financial support of this research, the Coordination for the Improvement of Higher Education Personnel for a scholarship (CAPES 3300201191P0 to HJT) and the National Council for Scientific and Technological Development for fellowships (CNPq: 308480/2016–3 to IC; 303207/2017–5 to JZ-S; 301180/2013–0 to PRO). Funding for this research was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (awards No. 457255/2014–5 and 301180/2013–0).

References

First citationAli, M. H. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Web of Science CrossRef CAS Google Scholar
First citationBaptistini, N. (2015). Ph. D. Thesis, Federal University of São Carlos, São Carlos, Brazil. available online at: https://repositorio. ufscar.br/handle/ufscar/7554.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCaracelli, I., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o657–o658.  CrossRef IUCr Journals Google Scholar
First citationCerqueira, C. R., Olivato, P. R. & Dal Colle, M. (2015). Spectrochim. Acta A, 139, 495–504.  CrossRef CAS Google Scholar
First citationCerqueira, C. R., Olivato, P. R., Rodrigues, D. N. S., Zukerman-Schpector, J., Tiekink, E. R. T. & Dal Colle, M. (2017). J. Mol. Struct. 1133, 49–65.  CrossRef CAS Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationDistefano, G., Dal Colle, M., de Palo, M., Jones, D., Bombieri, G., Del Pra, A., Olivato, P. R. & Mondino, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1661–1669.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOlivato, P. R., Cerqueira, C. Jr, Contieri, B., Santos, J. M. M. & Zukerman-Schpector, J. (2013). J. Sulfur Chem. 34, 617–626.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTraesel, H. J., Olivato, P. R., Valença, J., Rodrigues, D. N. S., Zukerman-Schpector, J. & Colle, M. D. (2018). J. Mol. Struct. 1157, 29–39.  CrossRef CAS Google Scholar
First citationVinhato, E., Olivato, P. R., Zukerman-Schpector, J. & Dal Colle, M. (2013). Spectrochim. Acta Part A, 115, 738–746.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Traesel, H. J., Valença, J., Rodrigues, D. N. S. & Tiekink, E. R. T. (2015). Acta Cryst. E71, o3–o4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds