research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of octane-1,8-diaminium 4,4′-(diazene-1,2-di­yl)dibenzoate monohydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, McGill University, Montreal, Quebec, H3A 0B8, Canada, and bDepartment of Chemistry, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
*Correspondence e-mail: chris.barrett@mcgill.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 April 2018; accepted 23 April 2018; online 27 April 2018)

The title salt, C8H22N22+·C14H8N2O42−·H2O, represents a pseudo-polymer ionic material, resulting from the self-organizing behavior of 4,4′-azinodibenzoate dianions and doubly protonated, 1,8-diaminium-octane cations in aqueous solution. The asymmetric unit consists of two halves of octane 1,8-diaminium cations (the complete cations are both generated by crystallographic inversion symmetry), a 4,4′-azinodibenzoate anion [dihedral angle between the aromatic rings = 10.22 (4)°] and a water mol­ecule of crystallization. One of the cations is in a fully extended linear conformation while the second one has a terminal C—C—C—N gauche conformation. In the crystal, the cations, anions and water mol­ecules are linked into a three-dimensional network via a complex pattern of charge-assisted N—H⋯O and O—H⋯O hydrogen bonds.

1. Chemical context

Ionic pseudo-polymers auto-assembled from oppositely charged organic mol­ecules are of emerging inter­est for many potential application fields (Webber et al., 2016[Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. (2016). Nat. Mater. 15, 13-26.]; Mann, 2009[Mann, S. (2009). Nat. Mater. 8, 781-792.]). It is reasonable to expect that the presence of azo­benzene moieties in such materials creates the necessary precondition for achieving their reversible photosensitivity (Bushuyev et al., 2016[Bushuyev, O. S., Friščić, T. & Barrett, C. J. (2016). CrystEngComm, 18, 7204-7211.], 2018[Bushuyev, O. S., Aizawa, M., Shishido, A. & Barrett, C. J. (2018). Macromol. Rapid Commun. 39, 1700253.]). In this context, we report the synthesis and structure of octane-1,8-diaminium 4,4′-(diazene-1,2-di­yl)dibenzoate monohydrate, (I)[link], formed by the crystallization of bianionic 4,4′-azinodi­benzoic acid and bicationic 1,8-di­amino­octane in aqueous solution.

[Scheme 1]

2. Structural commentary

The asymmetric unit (Fig. 1[link]) consists of two halves of octane 1,8-diaminium dications, one 4,4′-azinodi­benzoic dianion and one water mol­ecule. Bond lengths and angles of the dication and dianion are in the expected ranges. One of the octane 1,8-diaminium dications shows a fully extended all-trans conformation with torsion angles close to 180° (Table 1[link]). The second cation has its two terminal torsion angles N6—C7—C8—C9 synclinal with a value of −76.89 (12)°. The fully extended conformation corresponds to the most stable one, compared to the arrangement with synclinal torsion angles, as shown from DFT calculations and a database survey performed on α,ω-alkyl­diaminium cations (Brozdowska & Chojnacki, 2017[Brozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507-518.]). The less energetically favorable gauche conformation is presumably stabilized by the charge-assisted hydrogen-bonded network.

Table 1
Selected torsion angles (°)

C2—C3—C4—C5 −177.97 (9) C7—C8—C9—C10 −179.03 (9)
C3—C4—C5—C5i 178.25 (10) C8—C9—C10—C10ii 178.30 (11)
N1—C2—C3—C4 177.78 (9) N6—C7—C8—C9 −76.89 (12)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y+1, -z.
[Figure 1]
Figure 1
Mol­ecular structure and atom-labelling scheme of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and hydrogen bonds are shown as dotted lines. [Symmetry codes: (i) 1 − x, −y, 2 − z; (ii) −x, 1 − y, −z.]

The geometry of the 4,4′-azinodi­benzoic dianion is characterized by the presence of two benzoic acid residues linked via a trans-configurated azo group is consistent with known data (Fernández et al., 2015[Fernández, B., Seco, J. M., Cepeda, J., Calahorro, A. J. & Rodríguez-Diéguez, A. (2015). CrystEngComm, 17, 7636-7645.]; Sahoo et al., 2012[Sahoo, P., Chakraborty, I. & Dastidar, P. (2012). Soft Matter, 8, 2595-2598.]). The angle between the phenyl rings of 10.22 (4)° is consistent with a small deviation from planarity of the azo­benzene moiety. The carboxyl­ate groups are inclined to the mol­ecular mean plane at angles of 38.40 (3)° (O11/C12/O13) and 16.53 (5)° (O29/C28/O30).

3. Supra­molecular features

In addition to the electrostatic inter­actions, the anions and cations are connected by charge-assisted N—H⋯O hydrogen bonds (Table 2[link]). The complex pattern of hydrogen bonds also includes the water mol­ecules. Therefore, the 4,4′-azinodi­benzoic dianion is linked through hydrogen bonds with three cations on one side and with two cations and two water mol­ecules on the other side. Anions and cation stack in two-dimensional arrays in the ab plane separated by a zone with the hydrogen-bonded network involving the ionized amino and carb­oxy­lic groups and the water mol­ecules (Fig. 2[link]). This network contains two 12-membered rings comprising either two cations and two anions or two cations, two anions and two water mol­ecules (Fig. 3[link]), according to the graph set descriptor R44(12) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O30iii 0.895 (17) 1.897 (17) 2.7796 (13) 168.3 (14)
N1—H1B⋯O13 0.916 (16) 1.881 (17) 2.7942 (12) 175.0 (14)
N1—H1C⋯O29iv 0.918 (16) 1.970 (16) 2.8579 (12) 162.5 (13)
N6—H6A⋯O31v 0.921 (16) 1.912 (16) 2.8296 (13) 174.0 (13)
N6—H6B⋯O11 0.921 (16) 1.879 (16) 2.7735 (12) 163.2 (13)
N6—H6C⋯O29vi 0.947 (16) 1.849 (17) 2.7847 (12) 169.0 (14)
N6—H6C⋯O30vi 0.947 (16) 2.590 (16) 3.0880 (12) 113.2 (11)
O31—H31A⋯O13vii 0.89 (2) 1.88 (2) 2.7418 (11) 165.2 (17)
O31—H31B⋯O11 0.88 (2) 1.97 (2) 2.8184 (11) 162.2 (16)
Symmetry codes: (iii) -x+1, -y+1, -z; (iv) x+1, y-1, z+1; (v) -x, -y+1, -z+1; (vi) x, y-1, z+1; (vii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Projection along the b-axis direction showing the packing in layers consolidated by the hydrogen-bond network (dotted lines). Hydrogen atoms not involved in hydrogen bonds and hanging hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
Partial packing view along the b-axis direction showing the R44(12) graph-set motifs. Hydrogen atoms not involved in hydrogen bonds and hanging hydrogen bonds have been omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (Version 5.39 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 48 entries for octane-1,8-diaminium compounds. These include simple halide salts (Brisson & Brisse, 1984[Brisson, J. & Brisse, F. (1984). Acta Cryst. C40, 1405-1407.]; van Blerk & Kruger, 2007[Blerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o4289.]; van Megen & Reiss, 2013[Megen, M. van & Reiss, G. J. (2013). Inorganic 1, 3-13.]); metal halide salts (Kessentini et al., 2011[Kessentini, A., Belhouchet, M. & Mhiri, T. (2011). X-ray Struct. Anal. Online, 27, 31-32.]) comprising lead halide complexes (Lemmerer & Billing, 2012[Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954-1966.]; Smith et al., 2017[Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. (2017). Chem. Sci. 8, 4497-4504.]), and more complex systems where the diaminium cations are encapsulated in a macrocycle (Kim et al., 2009[Kim, Y., Kim, H., Ko, Y. H., Selvapalam, N., Rekharsky, M. V., Inoue, Y. & Kim, K. (2009). Chem. Eur. J. 15, 6143-6151.]; Yu et al., 2014[Yu, G., Hua, B. & Han, C. (2014). Org. Lett. 16, 2486-2489.]). A similar search for 4,4′-azinodi­benzoic acid and its salts returned 43 entries, including the structure of the simple acid (Yu & Liu, 2009[Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.]). The dianion has been also used as linker to prepare MOF or coordination frameworks (see, for example, Hou et al., 2013[Hou, Y.-F., Yu, Y., Yue, K.-F., Wei, Q., Liu, Y., Zhou, C.-S. & Wang, Y.-Y. (2013). CrystEngComm, 15, 7161-7165.], Zhang et al., 2016[Zhang, L., Feng, X. F., Meng, P. P., Gong, L. L. & Luo, F. (2016). CrystEngComm, 18, 1693-1698.], Guo et al., 2013[Guo, J. S., Xu, G., Guo, G.-C. & Huang, J.-S. (2013). Cryst. Growth Des. 13, 2642-2649.] and Deng et al., 2015[Deng, M., Tai, S., Zhang, W., Wang, Y., Zhu, J., Zhang, J., Ling, Y. & Zhou, Y. (2015). CrystEngComm, 17, 6023-6029.]), and co-crystallized to give gelator salts (Sahoo & Dastidar, 2012[Sahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917-5924.]; Sahoo et al., 2012[Sahoo, P., Chakraborty, I. & Dastidar, P. (2012). Soft Matter, 8, 2595-2598.]) or supra­molecular assemblies (Beatty et al., 2002[Beatty, A. M., Schneider, C. M., Simpson, A. E. & Zaher, J. L. (2002). CrystEngComm, 4, 282-287.]; Yu et al., 2011[Yu, Z. B., Sun, J., Huang, Z. T. & Zheng, Q. Y. (2011). CrystEngComm, 13, 1287-1290.]).

5. Synthesis and crystallization

Crystals of the title compound were obtained by the dropwise addition with intensive stirring of 5 ml of 0.10 M aqueous 1,8-octa­methyl­enedi­amine into 25 ml of 0.02 M aqueous 4,4′-di­carb­oxy­azo­benzene disodium salt at room temperature. The final solution (pH 12.5) was allowed to partly evaporate at room temperature and atmospheric pressure. The resulting orange oblong crystals in the form of thin narrow leaves up to 1 cm long were gently removed from the liquid phase and air-dried on filter paper.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bound to nitro­gen or oxygen atoms were located from difference syntheses and refined without any restraints. Hydrogen atoms linked to carbon atoms were included using an appropriate riding model (AFIX 43 and AFIX 23 for aromatic and methyl­ene hydrogen atoms respectively) with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C8H22N22+·C14H8N2O42−·H2O
Mr 432.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.3604 (1), 11.4100 (2), 12.4661 (2)
α, β, γ (°) 83.001 (1), 83.364 (1), 73.973 (1)
V3) 1130.24 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.4 × 0.4 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.525, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 28413, 4048, 3920
Rint 0.046
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.05
No. of reflections 4048
No. of parameters 313
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Octane-1,8-diaminium 4,4'-(diazene-1,2-diyl)dibenzoate monohydrate top
Crystal data top
C8H22N22+·C14H8N2O42·H2OZ = 2
Mr = 432.51F(000) = 464
Triclinic, P1Dx = 1.271 Mg m3
a = 8.3604 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.4100 (2) ÅCell parameters from 3920 reflections
c = 12.4661 (2) Åθ = 4.1–68.1°
α = 83.001 (1)°µ = 0.75 mm1
β = 83.364 (1)°T = 100 K
γ = 73.973 (1)°Block, orange
V = 1130.24 (3) Å30.4 × 0.4 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube3920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 68.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.525, Tmax = 0.753k = 1313
28413 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.20 e Å3
4048 reflectionsΔρmin = 0.30 e Å3
313 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0427 (17)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.44977 (13)0.39551 (9)0.39040 (8)0.0164 (2)
C140.39242 (13)0.48992 (10)0.29711 (9)0.0163 (2)
C150.50609 (13)0.50353 (10)0.20773 (9)0.0180 (2)
H150.6184500.4548800.2075970.022*
C160.45684 (14)0.58671 (10)0.11990 (9)0.0187 (2)
H160.5341140.5939560.0589330.022*
C170.29240 (14)0.66026 (10)0.12125 (9)0.0175 (2)
C180.17852 (14)0.64902 (10)0.21041 (9)0.0193 (2)
H180.0673420.6999460.2116630.023*
C190.22842 (14)0.56296 (10)0.29746 (9)0.0185 (2)
H190.1503010.5539050.3574800.022*
C220.27923 (14)0.83834 (10)0.13411 (9)0.0169 (2)
C230.12601 (14)0.92810 (10)0.13255 (9)0.0182 (2)
H230.0498010.9337900.0694620.022*
C240.08731 (13)1.00833 (10)0.22421 (9)0.0174 (2)
H240.0151631.0705960.2229990.021*
C250.19653 (13)0.99937 (9)0.31875 (9)0.0162 (2)
C260.35000 (14)0.91128 (10)0.31874 (9)0.0173 (2)
H260.4263830.9056670.3817380.021*
C270.39101 (13)0.83176 (10)0.22644 (9)0.0178 (2)
H270.4961600.7724220.2263350.021*
C280.14659 (13)1.08221 (10)0.42094 (9)0.0168 (2)
N200.23031 (12)0.75035 (8)0.03481 (8)0.0199 (2)
N210.33560 (12)0.75025 (8)0.04586 (7)0.0194 (2)
O110.34625 (9)0.34229 (7)0.44062 (6)0.0200 (2)
O130.59935 (9)0.37427 (7)0.41176 (6)0.0209 (2)
O290.01715 (9)1.17097 (7)0.41274 (6)0.0204 (2)
O300.23647 (10)1.05688 (7)0.50725 (6)0.0234 (2)
C20.54646 (13)0.18776 (10)0.66601 (9)0.0181 (2)
H2A0.4424300.1773490.6425760.022*
H2B0.5210510.2697560.6926200.022*
C30.60840 (13)0.08987 (10)0.75674 (9)0.0183 (2)
H3A0.7154780.0985630.7767430.022*
H3B0.6305050.0083580.7296720.022*
C40.48635 (13)0.09539 (10)0.85797 (8)0.0176 (2)
H4A0.3805620.0830430.8393460.021*
H4B0.4611170.1774510.8844280.021*
C50.55783 (13)0.00224 (10)0.94788 (8)0.0178 (2)
H5A0.5802050.0841140.9214930.021*
H5B0.6656840.0086920.9641310.021*
N10.67578 (12)0.17874 (9)0.57222 (8)0.0177 (2)
H1A0.6930 (19)0.1068 (16)0.5450 (12)0.033 (4)*
H1B0.6457 (19)0.2412 (15)0.5188 (12)0.031 (4)*
H1C0.777 (2)0.1830 (13)0.5905 (12)0.028 (4)*
C70.04089 (14)0.23686 (10)0.30051 (9)0.0206 (3)
H7A0.0762370.2356670.2965770.025*
H7B0.1072060.1513940.3171350.025*
C80.10729 (14)0.28667 (10)0.19086 (9)0.0222 (3)
H8A0.1346700.2212600.1410920.027*
H8B0.2124350.3069630.1998180.027*
C90.01161 (13)0.39982 (10)0.13799 (9)0.0194 (2)
H9A0.1175430.3805170.1293460.023*
H9B0.0373630.4664060.1864560.023*
C100.06004 (14)0.44447 (10)0.02760 (9)0.0210 (3)
H10A0.0890890.3769310.0200200.025*
H10B0.1642680.4659770.0367030.025*
N60.04744 (12)0.31029 (9)0.39017 (7)0.0178 (2)
H6A0.0289 (18)0.3860 (14)0.3860 (11)0.026 (3)*
H6B0.153 (2)0.3200 (13)0.3926 (12)0.029 (4)*
H6C0.0223 (19)0.2670 (14)0.4569 (13)0.033 (4)*
O310.20434 (10)0.46567 (8)0.62560 (7)0.0235 (2)
H31A0.281 (2)0.5069 (17)0.6193 (14)0.049 (5)*
H31B0.241 (2)0.4140 (17)0.5755 (15)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0197 (6)0.0127 (5)0.0160 (5)0.0030 (4)0.0010 (4)0.0038 (4)
C140.0187 (5)0.0134 (5)0.0176 (5)0.0050 (4)0.0011 (4)0.0029 (4)
C150.0165 (5)0.0163 (5)0.0192 (5)0.0014 (4)0.0007 (4)0.0022 (4)
C160.0201 (6)0.0182 (5)0.0170 (5)0.0046 (4)0.0020 (4)0.0024 (4)
C170.0209 (6)0.0135 (5)0.0184 (5)0.0048 (4)0.0030 (4)0.0012 (4)
C180.0160 (5)0.0161 (5)0.0234 (6)0.0009 (4)0.0009 (4)0.0015 (4)
C190.0188 (5)0.0161 (5)0.0197 (5)0.0048 (4)0.0029 (4)0.0017 (4)
C220.0203 (5)0.0137 (5)0.0174 (5)0.0041 (4)0.0041 (4)0.0023 (4)
C230.0193 (5)0.0183 (5)0.0168 (5)0.0053 (4)0.0003 (4)0.0027 (4)
C240.0156 (5)0.0147 (5)0.0210 (5)0.0017 (4)0.0020 (4)0.0026 (4)
C250.0177 (5)0.0136 (5)0.0183 (5)0.0051 (4)0.0028 (4)0.0021 (4)
C260.0186 (5)0.0171 (5)0.0164 (5)0.0044 (4)0.0005 (4)0.0034 (4)
C270.0170 (5)0.0155 (5)0.0198 (5)0.0006 (4)0.0036 (4)0.0036 (4)
C280.0180 (5)0.0147 (5)0.0186 (5)0.0057 (4)0.0017 (4)0.0014 (4)
N200.0213 (5)0.0176 (5)0.0197 (5)0.0042 (4)0.0027 (4)0.0006 (4)
N210.0234 (5)0.0167 (5)0.0170 (5)0.0031 (4)0.0027 (4)0.0015 (4)
O110.0222 (4)0.0189 (4)0.0190 (4)0.0074 (3)0.0003 (3)0.0013 (3)
O130.0196 (4)0.0197 (4)0.0220 (4)0.0042 (3)0.0038 (3)0.0033 (3)
O290.0190 (4)0.0174 (4)0.0211 (4)0.0002 (3)0.0014 (3)0.0014 (3)
O300.0284 (4)0.0192 (4)0.0169 (4)0.0010 (3)0.0015 (3)0.0007 (3)
C20.0176 (5)0.0178 (5)0.0170 (5)0.0032 (4)0.0020 (4)0.0009 (4)
C30.0162 (5)0.0195 (5)0.0176 (5)0.0035 (4)0.0001 (4)0.0003 (4)
C40.0174 (5)0.0183 (5)0.0168 (5)0.0049 (4)0.0007 (4)0.0018 (4)
C50.0178 (5)0.0186 (6)0.0165 (6)0.0044 (4)0.0001 (5)0.0020 (4)
N10.0176 (5)0.0169 (5)0.0163 (5)0.0023 (4)0.0001 (4)0.0008 (4)
C70.0246 (6)0.0164 (5)0.0200 (6)0.0033 (4)0.0032 (4)0.0017 (4)
C80.0199 (6)0.0231 (6)0.0200 (6)0.0002 (4)0.0004 (4)0.0035 (4)
C90.0178 (5)0.0213 (6)0.0170 (5)0.0026 (4)0.0007 (4)0.0023 (4)
C100.0193 (5)0.0241 (6)0.0177 (6)0.0037 (5)0.0023 (4)0.0025 (5)
N60.0184 (5)0.0160 (5)0.0179 (5)0.0040 (4)0.0016 (4)0.0008 (4)
O310.0213 (4)0.0217 (4)0.0262 (4)0.0041 (3)0.0024 (3)0.0056 (3)
Geometric parameters (Å, º) top
C12—C141.5103 (14)C2—N11.4907 (13)
C12—O111.2578 (13)C3—H3A0.9900
C12—O131.2599 (14)C3—H3B0.9900
C14—C151.4011 (15)C3—C41.5244 (14)
C14—C191.3939 (15)C4—H4A0.9900
C15—H150.9500C4—H4B0.9900
C15—C161.3800 (15)C4—C51.5289 (15)
C16—H160.9500C5—C5i1.525 (2)
C16—C171.3984 (16)C5—H5A0.9900
C17—C181.3951 (15)C5—H5B0.9900
C17—N201.4325 (14)N1—H1A0.895 (17)
C18—H180.9500N1—H1B0.916 (16)
C18—C191.3909 (16)N1—H1C0.918 (16)
C19—H190.9500C7—H7A0.9900
C22—C231.4018 (16)C7—H7B0.9900
C22—C271.3920 (15)C7—C81.5196 (16)
C22—N211.4253 (14)C7—N61.4905 (14)
C23—H230.9500C8—H8A0.9900
C23—C241.3839 (16)C8—H8B0.9900
C24—H240.9500C8—C91.5247 (15)
C24—C251.4008 (15)C9—H9A0.9900
C25—C261.3944 (16)C9—H9B0.9900
C25—C281.5172 (15)C9—C101.5228 (15)
C26—H260.9500C10—C10ii1.527 (2)
C26—C271.3891 (15)C10—H10A0.9900
C27—H270.9500C10—H10B0.9900
C28—O291.2656 (13)N6—H6A0.921 (16)
C28—O301.2549 (13)N6—H6B0.921 (16)
N20—N211.2575 (14)N6—H6C0.947 (16)
C2—H2A0.9900O31—H31A0.89 (2)
C2—H2B0.9900O31—H31B0.88 (2)
C2—C31.5176 (15)
O11—C12—C14118.09 (9)H3A—C3—H3B107.7
O11—C12—O13124.36 (10)C4—C3—H3A108.8
O13—C12—C14117.54 (9)C4—C3—H3B108.8
C15—C14—C12119.29 (9)C3—C4—H4A109.3
C19—C14—C12121.45 (9)C3—C4—H4B109.3
C19—C14—C15119.26 (10)C3—C4—C5111.41 (9)
C14—C15—H15119.6H4A—C4—H4B108.0
C16—C15—C14120.82 (10)C5—C4—H4A109.3
C16—C15—H15119.6C5—C4—H4B109.3
C15—C16—H16120.2C4—C5—H5A108.9
C15—C16—C17119.54 (10)C4—C5—H5B108.9
C17—C16—H16120.2C5i—C5—C4113.31 (11)
C16—C17—N20123.64 (10)C5i—C5—H5A108.9
C18—C17—C16120.26 (10)C5i—C5—H5B108.9
C18—C17—N20116.10 (9)H5A—C5—H5B107.7
C17—C18—H18120.1C2—N1—H1A109.6 (10)
C19—C18—C17119.74 (10)C2—N1—H1B112.0 (9)
C19—C18—H18120.1C2—N1—H1C113.2 (9)
C14—C19—H19119.8H1A—N1—H1B109.5 (13)
C18—C19—C14120.36 (10)H1A—N1—H1C107.0 (13)
C18—C19—H19119.8H1B—N1—H1C105.4 (13)
C23—C22—N21125.14 (10)H7A—C7—H7B107.8
C27—C22—C23120.04 (10)C8—C7—H7A109.0
C27—C22—N21114.81 (9)C8—C7—H7B109.0
C22—C23—H23120.5N6—C7—H7A109.0
C24—C23—C22119.07 (10)N6—C7—H7B109.0
C24—C23—H23120.5N6—C7—C8112.95 (9)
C23—C24—H24119.4C7—C8—H8A108.5
C23—C24—C25121.19 (10)C7—C8—H8B108.5
C25—C24—H24119.4C7—C8—C9114.99 (9)
C24—C25—C28120.42 (9)H8A—C8—H8B107.5
C26—C25—C24119.24 (10)C9—C8—H8A108.5
C26—C25—C28120.32 (10)C9—C8—H8B108.5
C25—C26—H26120.1C8—C9—H9A109.0
C27—C26—C25119.89 (10)C8—C9—H9B109.0
C27—C26—H26120.1H9A—C9—H9B107.8
C22—C27—H27119.7C10—C9—C8112.75 (9)
C26—C27—C22120.51 (10)C10—C9—H9A109.0
C26—C27—H27119.7C10—C9—H9B109.0
O29—C28—C25117.57 (9)C9—C10—C10ii113.21 (11)
O30—C28—C25117.37 (9)C9—C10—H10A108.9
O30—C28—O29125.06 (10)C9—C10—H10B108.9
N21—N20—C17112.88 (9)C10ii—C10—H10A108.9
N20—N21—C22114.90 (9)C10ii—C10—H10B108.9
H2A—C2—H2B108.1H10A—C10—H10B107.7
C3—C2—H2A109.6C7—N6—H6A112.5 (9)
C3—C2—H2B109.6C7—N6—H6B111.9 (9)
N1—C2—H2A109.6C7—N6—H6C108.3 (9)
N1—C2—H2B109.6H6A—N6—H6B109.4 (13)
N1—C2—C3110.15 (9)H6A—N6—H6C107.9 (12)
C2—C3—H3A108.8H6B—N6—H6C106.5 (13)
C2—C3—H3B108.8H31A—O31—H31B102.9 (16)
C2—C3—C4113.74 (9)
C12—C14—C15—C16178.35 (9)C25—C26—C27—C220.71 (16)
C12—C14—C19—C18179.80 (9)C26—C25—C28—O29170.63 (9)
C14—C15—C16—C171.46 (16)C26—C25—C28—O309.78 (15)
C15—C14—C19—C180.49 (16)C27—C22—C23—C240.85 (16)
C15—C16—C17—C180.48 (16)C27—C22—N21—N20175.22 (9)
C15—C16—C17—N20179.03 (9)C28—C25—C26—C27176.74 (9)
C16—C17—C18—C190.97 (16)N20—C17—C18—C19179.48 (9)
C16—C17—N20—N214.90 (15)N21—C22—C23—C24179.78 (9)
C17—C18—C19—C141.45 (16)N21—C22—C27—C26178.99 (9)
C17—N20—N21—C22179.88 (8)O11—C12—C14—C15146.46 (10)
C18—C17—N20—N21175.57 (9)O11—C12—C14—C1932.86 (14)
C19—C14—C15—C160.99 (16)O13—C12—C14—C1532.65 (14)
C22—C23—C24—C251.52 (16)O13—C12—C14—C19148.03 (10)
C23—C22—C27—C261.97 (16)C2—C3—C4—C5177.97 (9)
C23—C22—N21—N205.80 (15)C3—C4—C5—C5i178.25 (10)
C23—C24—C25—C262.76 (16)N1—C2—C3—C4177.78 (9)
C23—C24—C25—C28175.60 (9)C7—C8—C9—C10179.03 (9)
C24—C25—C26—C271.62 (15)C8—C9—C10—C10ii178.30 (11)
C24—C25—C28—O2911.03 (14)N6—C7—C8—C976.89 (12)
C24—C25—C28—O30168.56 (10)
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30iii0.895 (17)1.897 (17)2.7796 (13)168.3 (14)
N1—H1B···O130.916 (16)1.881 (17)2.7942 (12)175.0 (14)
N1—H1C···O29iv0.918 (16)1.970 (16)2.8579 (12)162.5 (13)
N6—H6A···O31v0.921 (16)1.912 (16)2.8296 (13)174.0 (13)
N6—H6B···O110.921 (16)1.879 (16)2.7735 (12)163.2 (13)
N6—H6C···O29vi0.947 (16)1.849 (17)2.7847 (12)169.0 (14)
N6—H6C···O30vi0.947 (16)2.590 (16)3.0880 (12)113.2 (11)
O31—H31A···O13vii0.89 (2)1.88 (2)2.7418 (11)165.2 (17)
O31—H31B···O110.88 (2)1.97 (2)2.8184 (11)162.2 (16)
Symmetry codes: (iii) x+1, y+1, z; (iv) x+1, y1, z+1; (v) x, y+1, z+1; (vi) x, y1, z+1; (vii) x+1, y+1, z+1.
 

Acknowledgements

Prof. Tomislav Friščić and Dr Hatem M. Titi are gratefully acknowledged for their help and valuable advice related to this project. The Fonds de Recherche du Québec – Nature et Technologies is gratefully acknowledged for a postdoctoral fellowship to IE.

References

First citationBeatty, A. M., Schneider, C. M., Simpson, A. E. & Zaher, J. L. (2002). CrystEngComm, 4, 282–287.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o4289.  CrossRef IUCr Journals Google Scholar
First citationBrisson, J. & Brisse, F. (1984). Acta Cryst. C40, 1405–1407.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507–518.  CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBushuyev, O. S., Aizawa, M., Shishido, A. & Barrett, C. J. (2018). Macromol. Rapid Commun. 39, 1700253.  CrossRef Google Scholar
First citationBushuyev, O. S., Friščić, T. & Barrett, C. J. (2016). CrystEngComm, 18, 7204–7211.  CrossRef CAS Google Scholar
First citationDeng, M., Tai, S., Zhang, W., Wang, Y., Zhu, J., Zhang, J., Ling, Y. & Zhou, Y. (2015). CrystEngComm, 17, 6023–6029.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFernández, B., Seco, J. M., Cepeda, J., Calahorro, A. J. & Rodríguez-Diéguez, A. (2015). CrystEngComm, 17, 7636–7645.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, J. S., Xu, G., Guo, G.-C. & Huang, J.-S. (2013). Cryst. Growth Des. 13, 2642–2649.  CrossRef CAS Google Scholar
First citationHou, Y.-F., Yu, Y., Yue, K.-F., Wei, Q., Liu, Y., Zhou, C.-S. & Wang, Y.-Y. (2013). CrystEngComm, 15, 7161–7165.  CrossRef CAS Google Scholar
First citationKessentini, A., Belhouchet, M. & Mhiri, T. (2011). X-ray Struct. Anal. Online, 27, 31–32.  CrossRef CAS Google Scholar
First citationKim, Y., Kim, H., Ko, Y. H., Selvapalam, N., Rekharsky, M. V., Inoue, Y. & Kim, K. (2009). Chem. Eur. J. 15, 6143–6151.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954–1966.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMann, S. (2009). Nat. Mater. 8, 781–792.  CrossRef CAS Google Scholar
First citationMegen, M. van & Reiss, G. J. (2013). Inorganic 1, 3–13.  Google Scholar
First citationSahoo, P., Chakraborty, I. & Dastidar, P. (2012). Soft Matter, 8, 2595–2598.  CrossRef CAS Google Scholar
First citationSahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917–5924.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. (2017). Chem. Sci. 8, 4497–4504.  CrossRef CAS Google Scholar
First citationWebber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. (2016). Nat. Mater. 15, 13–26.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, G., Hua, B. & Han, C. (2014). Org. Lett. 16, 2486–2489.  CrossRef CAS Google Scholar
First citationYu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Z. B., Sun, J., Huang, Z. T. & Zheng, Q. Y. (2011). CrystEngComm, 13, 1287–1290.  CrossRef CAS Google Scholar
First citationZhang, L., Feng, X. F., Meng, P. P., Gong, L. L. & Luo, F. (2016). CrystEngComm, 18, 1693–1698.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds