research communications
of octane-1,8-diaminium 4,4′-(diazene-1,2-diyl)dibenzoate monohydrate
aChemistry Department, McGill University, Montreal, Quebec, H3A 0B8, Canada, and bDepartment of Chemistry, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
*Correspondence e-mail: chris.barrett@mcgill.ca
The title salt, C8H22N22+·C14H8N2O42−·H2O, represents a pseudo-polymer ionic material, resulting from the self-organizing behavior of 4,4′-azinodibenzoate dianions and doubly protonated, 1,8-diaminium-octane cations in aqueous solution. The consists of two halves of octane 1,8-diaminium cations (the complete cations are both generated by crystallographic inversion symmetry), a 4,4′-azinodibenzoate anion [dihedral angle between the aromatic rings = 10.22 (4)°] and a water molecule of crystallization. One of the cations is in a fully extended linear conformation while the second one has a terminal C—C—C—N gauche conformation. In the crystal, the cations, anions and water molecules are linked into a three-dimensional network via a complex pattern of charge-assisted N—H⋯O and O—H⋯O hydrogen bonds.
Keywords: octane-1,8-diaminium 4,4′-azinodibenzoate; crystal structure; ionic pseudo-polymer; 4,4′-azinodibenzoic acid.
CCDC reference: 1839024
1. Chemical context
Ionic pseudo-polymers auto-assembled from oppositely charged organic molecules are of emerging interest for many potential application fields (Webber et al., 2016; Mann, 2009). It is reasonable to expect that the presence of azobenzene moieties in such materials creates the necessary precondition for achieving their reversible photosensitivity (Bushuyev et al., 2016, 2018). In this context, we report the synthesis and structure of octane-1,8-diaminium 4,4′-(diazene-1,2-diyl)dibenzoate monohydrate, (I), formed by the crystallization of bianionic 4,4′-azinodibenzoic acid and bicationic 1,8-diaminooctane in aqueous solution.
2. Structural commentary
The ) consists of two halves of octane 1,8-diaminium dications, one 4,4′-azinodibenzoic dianion and one water molecule. Bond lengths and angles of the dication and dianion are in the expected ranges. One of the octane 1,8-diaminium dications shows a fully extended all-trans conformation with torsion angles close to 180° (Table 1). The second cation has its two terminal torsion angles N6—C7—C8—C9 synclinal with a value of −76.89 (12)°. The fully extended conformation corresponds to the most stable one, compared to the arrangement with synclinal torsion angles, as shown from DFT calculations and a database survey performed on α,ω-alkyldiaminium cations (Brozdowska & Chojnacki, 2017). The less energetically favorable gauche conformation is presumably stabilized by the charge-assisted hydrogen-bonded network.
(Fig. 1The geometry of the 4,4′-azinodibenzoic dianion is characterized by the presence of two benzoic acid residues linked via a trans-configurated azo group is consistent with known data (Fernández et al., 2015; Sahoo et al., 2012). The angle between the phenyl rings of 10.22 (4)° is consistent with a small deviation from planarity of the azobenzene moiety. The carboxylate groups are inclined to the molecular mean plane at angles of 38.40 (3)° (O11/C12/O13) and 16.53 (5)° (O29/C28/O30).
3. Supramolecular features
In addition to the electrostatic interactions, the anions and cations are connected by charge-assisted N—H⋯O hydrogen bonds (Table 2). The complex pattern of hydrogen bonds also includes the water molecules. Therefore, the 4,4′-azinodibenzoic dianion is linked through hydrogen bonds with three cations on one side and with two cations and two water molecules on the other side. Anions and cation stack in two-dimensional arrays in the ab plane separated by a zone with the hydrogen-bonded network involving the ionized amino and carboxylic groups and the water molecules (Fig. 2). This network contains two 12-membered rings comprising either two cations and two anions or two cations, two anions and two water molecules (Fig. 3), according to the graph set descriptor R44(12) (Etter et al., 1990).
|
4. Database survey
A search in the Cambridge Structural Database (Version 5.39 with one update; Groom et al., 2016) returned 48 entries for octane-1,8-diaminium compounds. These include simple halide salts (Brisson & Brisse, 1984; van Blerk & Kruger, 2007; van Megen & Reiss, 2013); metal halide salts (Kessentini et al., 2011) comprising lead halide complexes (Lemmerer & Billing, 2012; Smith et al., 2017), and more complex systems where the diaminium cations are encapsulated in a macrocycle (Kim et al., 2009; Yu et al., 2014). A similar search for 4,4′-azinodibenzoic acid and its salts returned 43 entries, including the structure of the simple acid (Yu & Liu, 2009). The dianion has been also used as linker to prepare MOF or coordination frameworks (see, for example, Hou et al., 2013, Zhang et al., 2016, Guo et al., 2013 and Deng et al., 2015), and co-crystallized to give gelator salts (Sahoo & Dastidar, 2012; Sahoo et al., 2012) or supramolecular assemblies (Beatty et al., 2002; Yu et al., 2011).
5. Synthesis and crystallization
Crystals of the title compound were obtained by the dropwise addition with intensive stirring of 5 ml of 0.10 M aqueous 1,8-octamethylenediamine into 25 ml of 0.02 M aqueous 4,4′-dicarboxyazobenzene disodium salt at room temperature. The final solution (pH 12.5) was allowed to partly evaporate at room temperature and atmospheric pressure. The resulting orange oblong crystals in the form of thin narrow leaves up to 1 cm long were gently removed from the liquid phase and air-dried on filter paper.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bound to nitrogen or oxygen atoms were located from difference syntheses and refined without any restraints. Hydrogen atoms linked to carbon atoms were included using an appropriate riding model (AFIX 43 and AFIX 23 for aromatic and methylene hydrogen atoms respectively) with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1839024
https://doi.org/10.1107/S2056989018006187/hb7747sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018006187/hb7747Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018006187/hb7747Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C8H22N22+·C14H8N2O42−·H2O | Z = 2 |
Mr = 432.51 | F(000) = 464 |
Triclinic, P1 | Dx = 1.271 Mg m−3 |
a = 8.3604 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.4100 (2) Å | Cell parameters from 3920 reflections |
c = 12.4661 (2) Å | θ = 4.1–68.1° |
α = 83.001 (1)° | µ = 0.75 mm−1 |
β = 83.364 (1)° | T = 100 K |
γ = 73.973 (1)° | Block, orange |
V = 1130.24 (3) Å3 | 0.4 × 0.4 × 0.1 mm |
Bruker APEXII CCD diffractometer | 4048 independent reflections |
Radiation source: fine-focus sealed tube | 3920 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
φ and ω scans | θmax = 68.1°, θmin = 4.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.525, Tmax = 0.753 | k = −13→13 |
28413 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3252P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.20 e Å−3 |
4048 reflections | Δρmin = −0.30 e Å−3 |
313 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0427 (17) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C12 | 0.44977 (13) | 0.39551 (9) | 0.39040 (8) | 0.0164 (2) | |
C14 | 0.39242 (13) | 0.48992 (10) | 0.29711 (9) | 0.0163 (2) | |
C15 | 0.50609 (13) | 0.50353 (10) | 0.20773 (9) | 0.0180 (2) | |
H15 | 0.618450 | 0.454880 | 0.207597 | 0.022* | |
C16 | 0.45684 (14) | 0.58671 (10) | 0.11990 (9) | 0.0187 (2) | |
H16 | 0.534114 | 0.593956 | 0.058933 | 0.022* | |
C17 | 0.29240 (14) | 0.66026 (10) | 0.12125 (9) | 0.0175 (2) | |
C18 | 0.17852 (14) | 0.64902 (10) | 0.21041 (9) | 0.0193 (2) | |
H18 | 0.067342 | 0.699946 | 0.211663 | 0.023* | |
C19 | 0.22842 (14) | 0.56296 (10) | 0.29746 (9) | 0.0185 (2) | |
H19 | 0.150301 | 0.553905 | 0.357480 | 0.022* | |
C22 | 0.27923 (14) | 0.83834 (10) | −0.13411 (9) | 0.0169 (2) | |
C23 | 0.12601 (14) | 0.92810 (10) | −0.13255 (9) | 0.0182 (2) | |
H23 | 0.049801 | 0.933790 | −0.069462 | 0.022* | |
C24 | 0.08731 (13) | 1.00833 (10) | −0.22421 (9) | 0.0174 (2) | |
H24 | −0.015163 | 1.070596 | −0.222999 | 0.021* | |
C25 | 0.19653 (13) | 0.99937 (9) | −0.31875 (9) | 0.0162 (2) | |
C26 | 0.35000 (14) | 0.91128 (10) | −0.31874 (9) | 0.0173 (2) | |
H26 | 0.426383 | 0.905667 | −0.381738 | 0.021* | |
C27 | 0.39101 (13) | 0.83176 (10) | −0.22644 (9) | 0.0178 (2) | |
H27 | 0.496160 | 0.772422 | −0.226335 | 0.021* | |
C28 | 0.14659 (13) | 1.08221 (10) | −0.42094 (9) | 0.0168 (2) | |
N20 | 0.23031 (12) | 0.75035 (8) | 0.03481 (8) | 0.0199 (2) | |
N21 | 0.33560 (12) | 0.75025 (8) | −0.04586 (7) | 0.0194 (2) | |
O11 | 0.34625 (9) | 0.34229 (7) | 0.44062 (6) | 0.0200 (2) | |
O13 | 0.59935 (9) | 0.37427 (7) | 0.41176 (6) | 0.0209 (2) | |
O29 | 0.01715 (9) | 1.17097 (7) | −0.41274 (6) | 0.0204 (2) | |
O30 | 0.23647 (10) | 1.05688 (7) | −0.50725 (6) | 0.0234 (2) | |
C2 | 0.54646 (13) | 0.18776 (10) | 0.66601 (9) | 0.0181 (2) | |
H2A | 0.442430 | 0.177349 | 0.642576 | 0.022* | |
H2B | 0.521051 | 0.269756 | 0.692620 | 0.022* | |
C3 | 0.60840 (13) | 0.08987 (10) | 0.75674 (9) | 0.0183 (2) | |
H3A | 0.715478 | 0.098563 | 0.776743 | 0.022* | |
H3B | 0.630505 | 0.008358 | 0.729672 | 0.022* | |
C4 | 0.48635 (13) | 0.09539 (10) | 0.85797 (8) | 0.0176 (2) | |
H4A | 0.380562 | 0.083043 | 0.839346 | 0.021* | |
H4B | 0.461117 | 0.177451 | 0.884428 | 0.021* | |
C5 | 0.55783 (13) | −0.00224 (10) | 0.94788 (8) | 0.0178 (2) | |
H5A | 0.580205 | −0.084114 | 0.921493 | 0.021* | |
H5B | 0.665684 | 0.008692 | 0.964131 | 0.021* | |
N1 | 0.67578 (12) | 0.17874 (9) | 0.57222 (8) | 0.0177 (2) | |
H1A | 0.6930 (19) | 0.1068 (16) | 0.5450 (12) | 0.033 (4)* | |
H1B | 0.6457 (19) | 0.2412 (15) | 0.5188 (12) | 0.031 (4)* | |
H1C | 0.777 (2) | 0.1830 (13) | 0.5905 (12) | 0.028 (4)* | |
C7 | 0.04089 (14) | 0.23686 (10) | 0.30051 (9) | 0.0206 (3) | |
H7A | −0.076237 | 0.235667 | 0.296577 | 0.025* | |
H7B | 0.107206 | 0.151394 | 0.317135 | 0.025* | |
C8 | 0.10729 (14) | 0.28667 (10) | 0.19086 (9) | 0.0222 (3) | |
H8A | 0.134670 | 0.221260 | 0.141092 | 0.027* | |
H8B | 0.212435 | 0.306963 | 0.199818 | 0.027* | |
C9 | −0.01161 (13) | 0.39982 (10) | 0.13799 (9) | 0.0194 (2) | |
H9A | −0.117543 | 0.380517 | 0.129346 | 0.023* | |
H9B | −0.037363 | 0.466406 | 0.186456 | 0.023* | |
C10 | 0.06004 (14) | 0.44447 (10) | 0.02760 (9) | 0.0210 (3) | |
H10A | 0.089089 | 0.376931 | −0.020020 | 0.025* | |
H10B | 0.164268 | 0.465977 | 0.036703 | 0.025* | |
N6 | 0.04744 (12) | 0.31029 (9) | 0.39017 (7) | 0.0178 (2) | |
H6A | −0.0289 (18) | 0.3860 (14) | 0.3860 (11) | 0.026 (3)* | |
H6B | 0.153 (2) | 0.3200 (13) | 0.3926 (12) | 0.029 (4)* | |
H6C | 0.0223 (19) | 0.2670 (14) | 0.4569 (13) | 0.033 (4)* | |
O31 | 0.20434 (10) | 0.46567 (8) | 0.62560 (7) | 0.0235 (2) | |
H31A | 0.281 (2) | 0.5069 (17) | 0.6193 (14) | 0.049 (5)* | |
H31B | 0.241 (2) | 0.4140 (17) | 0.5755 (15) | 0.048 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C12 | 0.0197 (6) | 0.0127 (5) | 0.0160 (5) | −0.0030 (4) | 0.0010 (4) | −0.0038 (4) |
C14 | 0.0187 (5) | 0.0134 (5) | 0.0176 (5) | −0.0050 (4) | −0.0011 (4) | −0.0029 (4) |
C15 | 0.0165 (5) | 0.0163 (5) | 0.0192 (5) | −0.0014 (4) | −0.0007 (4) | −0.0022 (4) |
C16 | 0.0201 (6) | 0.0182 (5) | 0.0170 (5) | −0.0046 (4) | 0.0020 (4) | −0.0024 (4) |
C17 | 0.0209 (6) | 0.0135 (5) | 0.0184 (5) | −0.0048 (4) | −0.0030 (4) | −0.0012 (4) |
C18 | 0.0160 (5) | 0.0161 (5) | 0.0234 (6) | −0.0009 (4) | −0.0009 (4) | −0.0015 (4) |
C19 | 0.0188 (5) | 0.0161 (5) | 0.0197 (5) | −0.0048 (4) | 0.0029 (4) | −0.0017 (4) |
C22 | 0.0203 (5) | 0.0137 (5) | 0.0174 (5) | −0.0041 (4) | −0.0041 (4) | −0.0023 (4) |
C23 | 0.0193 (5) | 0.0183 (5) | 0.0168 (5) | −0.0053 (4) | 0.0003 (4) | −0.0027 (4) |
C24 | 0.0156 (5) | 0.0147 (5) | 0.0210 (5) | −0.0017 (4) | −0.0020 (4) | −0.0026 (4) |
C25 | 0.0177 (5) | 0.0136 (5) | 0.0183 (5) | −0.0051 (4) | −0.0028 (4) | −0.0021 (4) |
C26 | 0.0186 (5) | 0.0171 (5) | 0.0164 (5) | −0.0044 (4) | −0.0005 (4) | −0.0034 (4) |
C27 | 0.0170 (5) | 0.0155 (5) | 0.0198 (5) | −0.0006 (4) | −0.0036 (4) | −0.0036 (4) |
C28 | 0.0180 (5) | 0.0147 (5) | 0.0186 (5) | −0.0057 (4) | −0.0017 (4) | −0.0014 (4) |
N20 | 0.0213 (5) | 0.0176 (5) | 0.0197 (5) | −0.0042 (4) | −0.0027 (4) | 0.0006 (4) |
N21 | 0.0234 (5) | 0.0167 (5) | 0.0170 (5) | −0.0031 (4) | −0.0027 (4) | −0.0015 (4) |
O11 | 0.0222 (4) | 0.0189 (4) | 0.0190 (4) | −0.0074 (3) | −0.0003 (3) | 0.0013 (3) |
O13 | 0.0196 (4) | 0.0197 (4) | 0.0220 (4) | −0.0042 (3) | −0.0038 (3) | 0.0033 (3) |
O29 | 0.0190 (4) | 0.0174 (4) | 0.0211 (4) | −0.0002 (3) | −0.0014 (3) | 0.0014 (3) |
O30 | 0.0284 (4) | 0.0192 (4) | 0.0169 (4) | 0.0010 (3) | 0.0015 (3) | 0.0007 (3) |
C2 | 0.0176 (5) | 0.0178 (5) | 0.0170 (5) | −0.0032 (4) | 0.0020 (4) | −0.0009 (4) |
C3 | 0.0162 (5) | 0.0195 (5) | 0.0176 (5) | −0.0035 (4) | 0.0001 (4) | −0.0003 (4) |
C4 | 0.0174 (5) | 0.0183 (5) | 0.0168 (5) | −0.0049 (4) | 0.0007 (4) | −0.0018 (4) |
C5 | 0.0178 (5) | 0.0186 (6) | 0.0165 (6) | −0.0044 (4) | 0.0001 (5) | −0.0020 (4) |
N1 | 0.0176 (5) | 0.0169 (5) | 0.0163 (5) | −0.0023 (4) | 0.0001 (4) | 0.0008 (4) |
C7 | 0.0246 (6) | 0.0164 (5) | 0.0200 (6) | −0.0033 (4) | −0.0032 (4) | −0.0017 (4) |
C8 | 0.0199 (6) | 0.0231 (6) | 0.0200 (6) | 0.0002 (4) | −0.0004 (4) | −0.0035 (4) |
C9 | 0.0178 (5) | 0.0213 (6) | 0.0170 (5) | −0.0026 (4) | 0.0007 (4) | −0.0023 (4) |
C10 | 0.0193 (5) | 0.0241 (6) | 0.0177 (6) | −0.0037 (5) | 0.0023 (4) | −0.0025 (5) |
N6 | 0.0184 (5) | 0.0160 (5) | 0.0179 (5) | −0.0040 (4) | −0.0016 (4) | 0.0008 (4) |
O31 | 0.0213 (4) | 0.0217 (4) | 0.0262 (4) | −0.0041 (3) | 0.0024 (3) | −0.0056 (3) |
C12—C14 | 1.5103 (14) | C2—N1 | 1.4907 (13) |
C12—O11 | 1.2578 (13) | C3—H3A | 0.9900 |
C12—O13 | 1.2599 (14) | C3—H3B | 0.9900 |
C14—C15 | 1.4011 (15) | C3—C4 | 1.5244 (14) |
C14—C19 | 1.3939 (15) | C4—H4A | 0.9900 |
C15—H15 | 0.9500 | C4—H4B | 0.9900 |
C15—C16 | 1.3800 (15) | C4—C5 | 1.5289 (15) |
C16—H16 | 0.9500 | C5—C5i | 1.525 (2) |
C16—C17 | 1.3984 (16) | C5—H5A | 0.9900 |
C17—C18 | 1.3951 (15) | C5—H5B | 0.9900 |
C17—N20 | 1.4325 (14) | N1—H1A | 0.895 (17) |
C18—H18 | 0.9500 | N1—H1B | 0.916 (16) |
C18—C19 | 1.3909 (16) | N1—H1C | 0.918 (16) |
C19—H19 | 0.9500 | C7—H7A | 0.9900 |
C22—C23 | 1.4018 (16) | C7—H7B | 0.9900 |
C22—C27 | 1.3920 (15) | C7—C8 | 1.5196 (16) |
C22—N21 | 1.4253 (14) | C7—N6 | 1.4905 (14) |
C23—H23 | 0.9500 | C8—H8A | 0.9900 |
C23—C24 | 1.3839 (16) | C8—H8B | 0.9900 |
C24—H24 | 0.9500 | C8—C9 | 1.5247 (15) |
C24—C25 | 1.4008 (15) | C9—H9A | 0.9900 |
C25—C26 | 1.3944 (16) | C9—H9B | 0.9900 |
C25—C28 | 1.5172 (15) | C9—C10 | 1.5228 (15) |
C26—H26 | 0.9500 | C10—C10ii | 1.527 (2) |
C26—C27 | 1.3891 (15) | C10—H10A | 0.9900 |
C27—H27 | 0.9500 | C10—H10B | 0.9900 |
C28—O29 | 1.2656 (13) | N6—H6A | 0.921 (16) |
C28—O30 | 1.2549 (13) | N6—H6B | 0.921 (16) |
N20—N21 | 1.2575 (14) | N6—H6C | 0.947 (16) |
C2—H2A | 0.9900 | O31—H31A | 0.89 (2) |
C2—H2B | 0.9900 | O31—H31B | 0.88 (2) |
C2—C3 | 1.5176 (15) | ||
O11—C12—C14 | 118.09 (9) | H3A—C3—H3B | 107.7 |
O11—C12—O13 | 124.36 (10) | C4—C3—H3A | 108.8 |
O13—C12—C14 | 117.54 (9) | C4—C3—H3B | 108.8 |
C15—C14—C12 | 119.29 (9) | C3—C4—H4A | 109.3 |
C19—C14—C12 | 121.45 (9) | C3—C4—H4B | 109.3 |
C19—C14—C15 | 119.26 (10) | C3—C4—C5 | 111.41 (9) |
C14—C15—H15 | 119.6 | H4A—C4—H4B | 108.0 |
C16—C15—C14 | 120.82 (10) | C5—C4—H4A | 109.3 |
C16—C15—H15 | 119.6 | C5—C4—H4B | 109.3 |
C15—C16—H16 | 120.2 | C4—C5—H5A | 108.9 |
C15—C16—C17 | 119.54 (10) | C4—C5—H5B | 108.9 |
C17—C16—H16 | 120.2 | C5i—C5—C4 | 113.31 (11) |
C16—C17—N20 | 123.64 (10) | C5i—C5—H5A | 108.9 |
C18—C17—C16 | 120.26 (10) | C5i—C5—H5B | 108.9 |
C18—C17—N20 | 116.10 (9) | H5A—C5—H5B | 107.7 |
C17—C18—H18 | 120.1 | C2—N1—H1A | 109.6 (10) |
C19—C18—C17 | 119.74 (10) | C2—N1—H1B | 112.0 (9) |
C19—C18—H18 | 120.1 | C2—N1—H1C | 113.2 (9) |
C14—C19—H19 | 119.8 | H1A—N1—H1B | 109.5 (13) |
C18—C19—C14 | 120.36 (10) | H1A—N1—H1C | 107.0 (13) |
C18—C19—H19 | 119.8 | H1B—N1—H1C | 105.4 (13) |
C23—C22—N21 | 125.14 (10) | H7A—C7—H7B | 107.8 |
C27—C22—C23 | 120.04 (10) | C8—C7—H7A | 109.0 |
C27—C22—N21 | 114.81 (9) | C8—C7—H7B | 109.0 |
C22—C23—H23 | 120.5 | N6—C7—H7A | 109.0 |
C24—C23—C22 | 119.07 (10) | N6—C7—H7B | 109.0 |
C24—C23—H23 | 120.5 | N6—C7—C8 | 112.95 (9) |
C23—C24—H24 | 119.4 | C7—C8—H8A | 108.5 |
C23—C24—C25 | 121.19 (10) | C7—C8—H8B | 108.5 |
C25—C24—H24 | 119.4 | C7—C8—C9 | 114.99 (9) |
C24—C25—C28 | 120.42 (9) | H8A—C8—H8B | 107.5 |
C26—C25—C24 | 119.24 (10) | C9—C8—H8A | 108.5 |
C26—C25—C28 | 120.32 (10) | C9—C8—H8B | 108.5 |
C25—C26—H26 | 120.1 | C8—C9—H9A | 109.0 |
C27—C26—C25 | 119.89 (10) | C8—C9—H9B | 109.0 |
C27—C26—H26 | 120.1 | H9A—C9—H9B | 107.8 |
C22—C27—H27 | 119.7 | C10—C9—C8 | 112.75 (9) |
C26—C27—C22 | 120.51 (10) | C10—C9—H9A | 109.0 |
C26—C27—H27 | 119.7 | C10—C9—H9B | 109.0 |
O29—C28—C25 | 117.57 (9) | C9—C10—C10ii | 113.21 (11) |
O30—C28—C25 | 117.37 (9) | C9—C10—H10A | 108.9 |
O30—C28—O29 | 125.06 (10) | C9—C10—H10B | 108.9 |
N21—N20—C17 | 112.88 (9) | C10ii—C10—H10A | 108.9 |
N20—N21—C22 | 114.90 (9) | C10ii—C10—H10B | 108.9 |
H2A—C2—H2B | 108.1 | H10A—C10—H10B | 107.7 |
C3—C2—H2A | 109.6 | C7—N6—H6A | 112.5 (9) |
C3—C2—H2B | 109.6 | C7—N6—H6B | 111.9 (9) |
N1—C2—H2A | 109.6 | C7—N6—H6C | 108.3 (9) |
N1—C2—H2B | 109.6 | H6A—N6—H6B | 109.4 (13) |
N1—C2—C3 | 110.15 (9) | H6A—N6—H6C | 107.9 (12) |
C2—C3—H3A | 108.8 | H6B—N6—H6C | 106.5 (13) |
C2—C3—H3B | 108.8 | H31A—O31—H31B | 102.9 (16) |
C2—C3—C4 | 113.74 (9) | ||
C12—C14—C15—C16 | 178.35 (9) | C25—C26—C27—C22 | 0.71 (16) |
C12—C14—C19—C18 | −179.80 (9) | C26—C25—C28—O29 | −170.63 (9) |
C14—C15—C16—C17 | 1.46 (16) | C26—C25—C28—O30 | 9.78 (15) |
C15—C14—C19—C18 | −0.49 (16) | C27—C22—C23—C24 | 0.85 (16) |
C15—C16—C17—C18 | −0.48 (16) | C27—C22—N21—N20 | −175.22 (9) |
C15—C16—C17—N20 | 179.03 (9) | C28—C25—C26—C27 | −176.74 (9) |
C16—C17—C18—C19 | −0.97 (16) | N20—C17—C18—C19 | 179.48 (9) |
C16—C17—N20—N21 | 4.90 (15) | N21—C22—C23—C24 | 179.78 (9) |
C17—C18—C19—C14 | 1.45 (16) | N21—C22—C27—C26 | 178.99 (9) |
C17—N20—N21—C22 | 179.88 (8) | O11—C12—C14—C15 | −146.46 (10) |
C18—C17—N20—N21 | −175.57 (9) | O11—C12—C14—C19 | 32.86 (14) |
C19—C14—C15—C16 | −0.99 (16) | O13—C12—C14—C15 | 32.65 (14) |
C22—C23—C24—C25 | 1.52 (16) | O13—C12—C14—C19 | −148.03 (10) |
C23—C22—C27—C26 | −1.97 (16) | C2—C3—C4—C5 | −177.97 (9) |
C23—C22—N21—N20 | 5.80 (15) | C3—C4—C5—C5i | 178.25 (10) |
C23—C24—C25—C26 | −2.76 (16) | N1—C2—C3—C4 | 177.78 (9) |
C23—C24—C25—C28 | 175.60 (9) | C7—C8—C9—C10 | −179.03 (9) |
C24—C25—C26—C27 | 1.62 (15) | C8—C9—C10—C10ii | 178.30 (11) |
C24—C25—C28—O29 | 11.03 (14) | N6—C7—C8—C9 | −76.89 (12) |
C24—C25—C28—O30 | −168.56 (10) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O30iii | 0.895 (17) | 1.897 (17) | 2.7796 (13) | 168.3 (14) |
N1—H1B···O13 | 0.916 (16) | 1.881 (17) | 2.7942 (12) | 175.0 (14) |
N1—H1C···O29iv | 0.918 (16) | 1.970 (16) | 2.8579 (12) | 162.5 (13) |
N6—H6A···O31v | 0.921 (16) | 1.912 (16) | 2.8296 (13) | 174.0 (13) |
N6—H6B···O11 | 0.921 (16) | 1.879 (16) | 2.7735 (12) | 163.2 (13) |
N6—H6C···O29vi | 0.947 (16) | 1.849 (17) | 2.7847 (12) | 169.0 (14) |
N6—H6C···O30vi | 0.947 (16) | 2.590 (16) | 3.0880 (12) | 113.2 (11) |
O31—H31A···O13vii | 0.89 (2) | 1.88 (2) | 2.7418 (11) | 165.2 (17) |
O31—H31B···O11 | 0.88 (2) | 1.97 (2) | 2.8184 (11) | 162.2 (16) |
Symmetry codes: (iii) −x+1, −y+1, −z; (iv) x+1, y−1, z+1; (v) −x, −y+1, −z+1; (vi) x, y−1, z+1; (vii) −x+1, −y+1, −z+1. |
Acknowledgements
Prof. Tomislav Friščić and Dr Hatem M. Titi are gratefully acknowledged for their help and valuable advice related to this project. The Fonds de Recherche du Québec – Nature et Technologies is gratefully acknowledged for a postdoctoral fellowship to IE.
References
Beatty, A. M., Schneider, C. M., Simpson, A. E. & Zaher, J. L. (2002). CrystEngComm, 4, 282–287. Web of Science CSD CrossRef CAS Google Scholar
Blerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o4289. CrossRef IUCr Journals Google Scholar
Brisson, J. & Brisse, F. (1984). Acta Cryst. C40, 1405–1407. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brozdowska, A. & Chojnacki, J. (2017). Acta Cryst. B73, 507–518. CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bushuyev, O. S., Aizawa, M., Shishido, A. & Barrett, C. J. (2018). Macromol. Rapid Commun. 39, 1700253. CrossRef Google Scholar
Bushuyev, O. S., Friščić, T. & Barrett, C. J. (2016). CrystEngComm, 18, 7204–7211. CrossRef CAS Google Scholar
Deng, M., Tai, S., Zhang, W., Wang, Y., Zhu, J., Zhang, J., Ling, Y. & Zhou, Y. (2015). CrystEngComm, 17, 6023–6029. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Fernández, B., Seco, J. M., Cepeda, J., Calahorro, A. J. & Rodríguez-Diéguez, A. (2015). CrystEngComm, 17, 7636–7645. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, J. S., Xu, G., Guo, G.-C. & Huang, J.-S. (2013). Cryst. Growth Des. 13, 2642–2649. CrossRef CAS Google Scholar
Hou, Y.-F., Yu, Y., Yue, K.-F., Wei, Q., Liu, Y., Zhou, C.-S. & Wang, Y.-Y. (2013). CrystEngComm, 15, 7161–7165. CrossRef CAS Google Scholar
Kessentini, A., Belhouchet, M. & Mhiri, T. (2011). X-ray Struct. Anal. Online, 27, 31–32. CrossRef CAS Google Scholar
Kim, Y., Kim, H., Ko, Y. H., Selvapalam, N., Rekharsky, M. V., Inoue, Y. & Kim, K. (2009). Chem. Eur. J. 15, 6143–6151. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954–1966. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mann, S. (2009). Nat. Mater. 8, 781–792. CrossRef CAS Google Scholar
Megen, M. van & Reiss, G. J. (2013). Inorganic 1, 3–13. Google Scholar
Sahoo, P., Chakraborty, I. & Dastidar, P. (2012). Soft Matter, 8, 2595–2598. CrossRef CAS Google Scholar
Sahoo, P. & Dastidar, P. (2012). Cryst. Growth Des. 12, 5917–5924. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, M. D., Jaffe, A., Dohner, E. R., Lindenberg, A. M. & Karunadasa, H. I. (2017). Chem. Sci. 8, 4497–4504. CrossRef CAS Google Scholar
Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. (2016). Nat. Mater. 15, 13–26. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, G., Hua, B. & Han, C. (2014). Org. Lett. 16, 2486–2489. CrossRef CAS Google Scholar
Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, Z. B., Sun, J., Huang, Z. T. & Zheng, Q. Y. (2011). CrystEngComm, 13, 1287–1290. CrossRef CAS Google Scholar
Zhang, L., Feng, X. F., Meng, P. P., Gong, L. L. & Luo, F. (2016). CrystEngComm, 18, 1693–1698. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.