research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syn and anti conformers of di­ammonium aqua­bis­(malonato)oxidovanadate(IV) in an anhydrate crystal

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, bSaitama Prefectural Matsuyama Senior High School, 6-10, Matsuyama machi 1-chome, Higashi-Matsuyama, 355-0018, Japan, and cComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 30 January 2018; accepted 11 April 2018; online 17 April 2018)

The asymmetric unit of the title anhydrate compound, (NH4)2[VO(C3H2O4)2(H2O)], consists of two independent complex anions and four ammonium cations. In the complex anions, the VIV atoms are each coordinated by two malonate ligands, one water mol­ecule and one oxide O atom in a distorted octa­hedral geometry. The equatorial plane is formed by the malonate O atoms, while the axial positions are occupied by water and oxide O atoms. The difference between the two independent complexes is the relative conformation of the malonate ligands. The two ligands in one complex anion are in a syn conformation, while in the other they adopt an anti conformation. In the crystal, the complex anions inter­act with the counter-cations and adjacent anions through O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. Stacks of alternating layers consisting of either anti or syn isomers, formed with the aid of the hydrogen bonding, are observed. DFT calculations for the anti and syn isomers show a similar thermodynamic stability to each other. The crystal used for this analysis was an inversion twin with the ratio of the twin components being 0.270 (13):0.730 (13).

1. Chemical context

Dianionic aqua­bis­(malonato)oxidovanadate(IV) has been synthesized with various counter-cations to investigate their structures and magnetic and thermal properties (Tomiyasu et al., 1974[Tomiyasu, H., Ito, S. & Tagami, S. (1974). Bull. Chem. Soc. Jpn, 47, 2843-2846.]; Pajunen & Pajunen, 1980[Pajunen, A. & Pajunen, S. (1980). Acta Cryst. B36, 2425-2428.]; Rocha & Baran, 1988[Rocha, A. L. & Baran, E. J. (1988). J. Therm. Anal. 34, 693-710.]; Sutradhar et al., 2011[Sutradhar, M., Barman, T. R., Mukherjee, G., Kar, M., Saha, S. S., Drew, M. G. B. & Ghosh, S. (2011). Inorg. Chim. Acta, 368, 13-20.]; Sehimi et al., 2016[Sehimi, H., Chérif, I. & Zid, M. F. (2016). Acta Cryst. E72, 1002-1005.]). Previously, the mol­ecular and crystal structures of di­ammonium aqua­bis(malonato)oxidovanadate(IV) monohydrate were reported (Piro & Baran, 1997[Piro, O. E. & Baran, E. J. (1997). J. Chem. Crystallogr. 27, 475-479.]). In the present report, we describe the mol­ecular and crystal structures of the title anhydrate compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two crystallographically independent mononuclear complexes and four counter NH4+ cations. In each complex the water mol­ecule occupies the trans position to the oxido O atom, and two malonate ligands coordinate to the VIV center occupying an equatorial plane. Although all six-membered V/O/C–C/O chelate rings in the complexes adopt boat conformations, the whole conformation on the equatorial plane is in either a syn conformation or an anti conformation (Yuksel et al., 2008[Yuksel, F., Gürek, A. G., Durmuş, M., Gürol, İ., Ahsen, V., Jeanneau, E. & Luneau, D. (2008). Inorg. Chim. Acta, 361, 2225-2235.]); in the syn conformer the two malonate ligands are related to each other by a pseudo twofold rotation axis along the V—O bond, while in the anti conformer they are related by an pseudo inversion centre near the V atom (Fig. 1[link]). The corres­ponding coordination bonds in both conformational isomers show similar distances to each other, and atom V1 in the syn isomer and atom V2 in anti isomer are located 0.35 and 0.29 Å out of the O3/O4/O8/O7 and O13/O14/O18/O17 planes, respectively. These crystallographic data suggest no influence of the anti and syn conformations on the coordination geometry around the VIV centre.

[Figure 1]
Figure 1
Mol­ecular structures of (a) syn isomer and (b) anti isomer. Displacement ellipsoids are drawn at the 50% probability level. The NH4+ counter-cations have been omitted for clarity.

Density functional theory (DFT) calculations based on the optimized geometrical parameters were performed at the UB3LYP/6-31G(d) level as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford, Connecticut, USA.]). Their structural parameters were extracted from the corresponding X-ray crystallographic data, and the positions of the hydrogen atoms were optimized, while the positions of all other atoms were fixed at their original positions. The results indicate little influence of the conformations on their thermodynamic stability. The calculated sum of electronic and thermal free energies for these isomers show a slight difference (ca 11 kJ mol−1); the energies of the anti and syn isomers are −5062702 and −5062713 kJ mol−1, respectively.

3. Supra­molecular features

The syn isomer inter­acts with adjacent seven adjacent ammonium cations via N—H⋯O hydrogen bonds and with four other syn isomers and one anti isomer via O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). On the other hand, the anti isomer inter­acts with nine adjacent ammonium cations and two anti isomers (Fig. 2[link]). These hydrogen bonds lead to the construction of layers consisting of either anti or syn isomers expanding parallel to the ab plane; the two different layers stack alternately, as depicted in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯O9i 0.84 (2) 2.08 (2) 2.902 (2) 165 (3)
O2—H2D⋯O5ii 0.82 (2) 1.99 (3) 2.758 (2) 157 (4)
O12—H12A⋯O9iii 0.85 (2) 1.98 (2) 2.826 (2) 174 (3)
O12—H12B⋯O15iv 0.84 (2) 2.04 (2) 2.855 (2) 161 (3)
N1—H1A⋯O6v 0.89 (2) 1.97 (2) 2.833 (2) 164 (2)
N1—H1B⋯O20vi 0.84 (2) 1.96 (2) 2.787 (2) 168 (3)
N1—H1C⋯O16vii 0.85 (2) 1.88 (2) 2.711 (2) 164 (2)
N1—H1D⋯O17 0.83 (2) 2.02 (2) 2.851 (2) 175 (3)
N2—H2E⋯O16vii 0.83 (2) 2.01 (2) 2.818 (2) 161 (3)
N2—H2F⋯O10viii 0.88 (2) 1.96 (2) 2.826 (3) 170 (3)
N2—H2G⋯O7iii 0.86 (2) 2.18 (2) 3.006 (2) 159 (3)
N2—H2H⋯O6v 0.87 (2) 2.04 (2) 2.865 (2) 156 (3)
N3—H3A⋯O20ix 0.82 (2) 2.12 (2) 2.874 (2) 153 (3)
N3—H3B⋯O19viii 0.84 (2) 1.92 (2) 2.759 (2) 173 (3)
N3—H3C⋯O4 0.85 (2) 2.04 (2) 2.828 (2) 153 (3)
N3—H3D⋯O8 0.83 (2) 2.33 (3) 2.800 (2) 116 (3)
N4—H4A⋯O15x 0.85 (2) 1.98 (2) 2.809 (2) 164 (3)
N4—H4B⋯O5ii 0.85 (2) 2.10 (3) 2.767 (2) 135 (3)
N4—H4B⋯O10 0.85 (2) 2.43 (3) 3.105 (2) 136 (3)
N4—H4C⋯O14xi 0.83 (2) 2.05 (2) 2.872 (2) 169 (3)
N4—H4D⋯O19viii 0.85 (2) 2.09 (2) 2.885 (2) 156 (3)
C2—H2B⋯O10viii 0.99 2.59 3.235 (3) 123
C5—H5A⋯O6v 0.99 2.58 3.275 (3) 127
C5—H5B⋯O2ii 0.99 2.59 3.432 (3) 143
C8—H8A⋯O15iv 0.99 2.51 3.207 (2) 127
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (xi) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagrams showing N—H⋯O hydrogen bonds (blue dashed lines) (a) between the syn isomer and adjacent cations and (b) between the anti isomer and adjacent cations. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (v) −x, y + [{1\over 2}], −z + [{1\over 2}]; (vi) x + 1, y, z; (vii) x − 1, y, z; (xii) −x + [{1\over 2}], −y + 1, −z + [{1\over 2}]; (xiii) −x + [{3\over 2}], −y + 1, −z + [{1\over 2}]; (xiv) −x + 2, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
A packing diagram showing the alternating stacking structure. Hydrogen atoms have been omitted for clarity.

4. Synthesis and crystallization

To an aqueous solution of malonic acid (3.0 g, 29 mmol in 3 ml) was added a concentrated aqueous ammonia solution (0.5 ml). Ammonium metavanadate NH4VO3 (1.0 g, 8.5 mmol) was added to the solution while it boiled. The solution was then cooled down to room temperature, and EtOH (40 ml) was added to give precipitates. The solution was left standing overnight and then deca­nted to collect the precipitates, which were washed twice with EtOH (20 ml) by stirring followed by deca­ntation. The volume of the resulting blue solution was reduced by heating until crystals appeared. The crude crystals were filtered off at room temperature, dissolved again in water and then ethanol vapor was diffused gradually into the solution. Deep-blue crystals were collected by filtration and dried in vacuo. Yield 0.0112 g (0.4% based on NH4VO3). Analysis found: C 22.04, H 4.28, N 8.32%; calculated for C6H14N2O10V: C 22.17, H 4.34, N 8.62%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was an inversion twin with a ratio of the twin components of 0.270 (13):0.730 (13). The methyl­ene H atoms were included in calculated positions (C—H = 0.99 Å) and treated as riding atoms with Uiso(H) = 1.2Ueq(C). The H atoms on O and N atoms were located in a difference-Fourier map and refined freely, with restraints of O—H = 0.84 (2) Å and H⋯H = 1.33 (4) Å for the water mol­ecule, and with N—H = 0.84 (2) Å and H⋯H = 1.33 (4) Å for the ammonium ions.

Table 2
Experimental details

Crystal data
Chemical formula (NH4)2[V(C3H2O4)2O(H2O)]
Mr 325.13
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 8.3461 (6), 12.1011 (9), 24.2118 (17)
V3) 2445.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.15 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 13364, 5194, 5080
Rint 0.018
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.053, 1.15
No. of reflections 5194
No. of parameters 424
No. of restraints 32
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.29
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.270 (13)
Computer programs: APEX2, SAINT XPREP and XCIF (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Bruker, 2014).

Diammonium aquabis(malonato)oxidovanadate(IV) top
Crystal data top
(NH4)2[V(C3H2O4)2O(H2O)]Dx = 1.766 Mg m3
Mr = 325.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9961 reflections
a = 8.3461 (6) Åθ = 2.6–28.5°
b = 12.1011 (9) ŵ = 0.86 mm1
c = 24.2118 (17) ÅT = 200 K
V = 2445.3 (3) Å3Block, blue
Z = 80.15 × 0.13 × 0.12 mm
F(000) = 1336
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5194 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode5080 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.018
Detector resolution: 8.333 pixels mm-1θmax = 26.7°, θmin = 1.7°
φ and ω scansh = 107
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1315
l = 3029
13364 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.1094P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.25 e Å3
5194 reflectionsΔρmin = 0.29 e Å3
424 parametersAbsolute structure: Refined as an inversion twin.
32 restraintsAbsolute structure parameter: 0.270 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.8223 (0.0030) x - 0.2546 (0.0072) y + 17.3398 (0.0086) z = 5.6054 (0.0058)

* -0.0205 (0.0008) O3 * 0.0208 (0.0008) O4 * 0.0206 (0.0008) O7 * -0.0209 (0.0008) O8 0.3504 (0.0008) V1

Rms deviation of fitted atoms = 0.0207

0.4684 (0.0044) x - 7.3274 (0.0051) y + 19.2206 (0.0079) z = 6.4071 (0.0078)

Angle to previous plane (with approximate esd) = 51.653 ( 0.044 )

* -0.0056 (0.0007) O13 * 0.0059 (0.0008) O14 * 0.0056 (0.0007) O17 * -0.0058 (0.0008) O18 0.2916 (0.0008) V2

Rms deviation of fitted atoms = 0.0057

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1093 (2)0.97326 (16)0.31042 (8)0.0173 (4)
C20.2765 (2)1.01068 (17)0.29288 (9)0.0218 (4)
H2A0.2783771.0924330.2914810.026*
H2B0.3543660.9870450.3213860.026*
C30.3304 (2)0.96631 (15)0.23756 (8)0.0175 (4)
C40.0831 (2)0.53339 (15)0.31370 (8)0.0178 (4)
C50.2300 (3)0.48090 (17)0.28797 (9)0.0240 (4)
H5A0.3173700.4840060.3155680.029*
H5B0.2055580.4018560.2816130.029*
C60.2942 (2)0.52788 (16)0.23444 (8)0.0175 (4)
C70.6867 (2)0.65812 (15)0.54354 (8)0.0154 (4)
C80.8152 (2)0.74659 (16)0.54139 (8)0.0182 (4)
H8A0.8138310.7787520.5037930.022*
H8B0.7832890.8060390.5672300.022*
C90.9870 (2)0.71586 (15)0.55452 (8)0.0154 (4)
C100.8886 (2)0.28840 (15)0.44433 (8)0.0175 (4)
C111.0631 (2)0.26360 (16)0.45697 (9)0.0233 (4)
H11A1.0702060.2343420.4950730.028*
H11B1.0999360.2045460.4316700.028*
C121.1769 (2)0.36074 (16)0.45190 (9)0.0203 (4)
O10.35531 (19)0.74834 (14)0.32680 (6)0.0303 (3)
O20.02178 (18)0.75665 (12)0.21346 (6)0.0244 (3)
H2C0.026 (4)0.8130 (19)0.1931 (11)0.038 (8)*
H2D0.028 (5)0.701 (2)0.1947 (15)0.080 (13)*
O30.07710 (18)0.87050 (11)0.30898 (6)0.0215 (3)
O40.32172 (17)0.86178 (11)0.22910 (6)0.0196 (3)
O50.01295 (19)1.04423 (12)0.32610 (7)0.0262 (3)
O60.38542 (17)1.03131 (12)0.20276 (6)0.0232 (3)
O70.06645 (19)0.63882 (11)0.31152 (6)0.0222 (3)
O80.30314 (18)0.63319 (11)0.22957 (6)0.0201 (3)
O90.01402 (18)0.47315 (12)0.33805 (6)0.0251 (3)
O100.34264 (18)0.46437 (12)0.19827 (7)0.0243 (3)
O110.9394 (2)0.40964 (12)0.56450 (7)0.0301 (3)
O120.91515 (18)0.59625 (11)0.43422 (6)0.0205 (3)
H12A0.934 (4)0.563 (2)0.4037 (10)0.046 (9)*
H12B0.974 (3)0.6532 (18)0.4332 (11)0.031 (7)*
O130.71826 (16)0.55905 (11)0.52868 (6)0.0187 (3)
O141.03772 (16)0.61833 (11)0.54409 (7)0.0222 (3)
O150.55026 (16)0.68753 (11)0.55807 (6)0.0202 (3)
O161.07776 (17)0.78642 (11)0.57380 (6)0.0205 (3)
O170.82840 (16)0.38163 (11)0.45893 (6)0.0189 (3)
O181.14289 (16)0.45036 (11)0.47688 (6)0.0227 (3)
O190.80826 (18)0.21662 (12)0.42110 (7)0.0300 (4)
O201.30257 (19)0.34831 (13)0.42501 (8)0.0321 (4)
N10.5604 (2)0.49194 (15)0.41104 (8)0.0220 (3)
H1A0.576 (3)0.490 (2)0.3747 (8)0.032 (7)*
H1B0.478 (3)0.455 (2)0.4191 (12)0.041 (8)*
H1C0.561 (3)0.5586 (16)0.4223 (10)0.022 (6)*
H1D0.639 (3)0.463 (2)0.4265 (12)0.041 (8)*
N20.7424 (2)0.74351 (16)0.32571 (9)0.0261 (4)
H2E0.714 (4)0.739 (2)0.3587 (9)0.044 (8)*
H2F0.717 (4)0.8101 (18)0.3140 (11)0.034 (7)*
H2G0.844 (3)0.730 (2)0.3247 (12)0.039 (8)*
H2H0.697 (4)0.689 (2)0.3082 (12)0.045 (9)*
N30.4637 (2)0.73855 (16)0.14276 (7)0.0216 (4)
H3A0.549 (3)0.753 (2)0.1276 (11)0.036 (7)*
H3B0.386 (3)0.732 (2)0.1208 (11)0.044 (8)*
H3C0.443 (4)0.792 (2)0.1649 (11)0.042 (8)*
H3D0.477 (4)0.678 (2)0.1577 (14)0.057 (10)*
N40.1713 (2)0.47891 (16)0.08469 (8)0.0219 (4)
H4A0.097 (3)0.438 (2)0.0725 (10)0.030 (7)*
H4B0.164 (4)0.486 (3)0.1196 (9)0.055 (10)*
H4C0.259 (3)0.450 (2)0.0776 (12)0.040 (8)*
H4D0.162 (4)0.5452 (19)0.0741 (12)0.039 (8)*
V10.22054 (4)0.74995 (3)0.28043 (2)0.01603 (8)
V20.93035 (4)0.48827 (2)0.51199 (2)0.01528 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (9)0.0191 (9)0.0140 (9)0.0013 (7)0.0016 (7)0.0008 (7)
C20.0204 (9)0.0183 (9)0.0268 (10)0.0046 (8)0.0054 (8)0.0056 (8)
C30.0125 (7)0.0168 (9)0.0232 (10)0.0006 (7)0.0016 (7)0.0010 (7)
C40.0201 (9)0.0174 (9)0.0157 (9)0.0015 (7)0.0002 (8)0.0007 (7)
C50.0244 (9)0.0180 (9)0.0296 (11)0.0034 (8)0.0073 (8)0.0080 (8)
C60.0134 (8)0.0167 (8)0.0225 (10)0.0015 (7)0.0003 (7)0.0012 (7)
C70.0152 (8)0.0183 (8)0.0128 (9)0.0002 (7)0.0019 (7)0.0019 (7)
C80.0147 (8)0.0146 (8)0.0255 (9)0.0005 (7)0.0005 (7)0.0005 (8)
C90.0154 (8)0.0185 (9)0.0123 (9)0.0016 (7)0.0006 (7)0.0009 (7)
C100.0169 (9)0.0157 (8)0.0199 (10)0.0006 (7)0.0007 (7)0.0003 (7)
C110.0165 (9)0.0166 (9)0.0369 (11)0.0020 (8)0.0010 (8)0.0021 (8)
C120.0148 (9)0.0186 (9)0.0274 (11)0.0016 (7)0.0009 (8)0.0022 (8)
O10.0312 (8)0.0327 (8)0.0268 (8)0.0009 (7)0.0055 (6)0.0020 (8)
O20.0320 (8)0.0141 (7)0.0273 (7)0.0011 (6)0.0044 (6)0.0012 (6)
O30.0205 (7)0.0180 (6)0.0260 (8)0.0008 (6)0.0079 (6)0.0024 (5)
O40.0231 (7)0.0151 (6)0.0207 (8)0.0029 (5)0.0061 (6)0.0012 (5)
O50.0258 (7)0.0197 (7)0.0333 (9)0.0047 (6)0.0106 (6)0.0028 (6)
O60.0244 (7)0.0180 (7)0.0272 (8)0.0030 (6)0.0048 (6)0.0033 (6)
O70.0242 (7)0.0162 (6)0.0263 (8)0.0007 (6)0.0094 (6)0.0014 (5)
O80.0233 (7)0.0152 (6)0.0217 (8)0.0013 (5)0.0070 (6)0.0013 (5)
O90.0283 (7)0.0196 (7)0.0272 (8)0.0057 (6)0.0104 (6)0.0004 (6)
O100.0243 (7)0.0208 (7)0.0279 (8)0.0039 (6)0.0029 (6)0.0047 (6)
O110.0403 (9)0.0234 (7)0.0267 (8)0.0059 (7)0.0047 (7)0.0058 (6)
O120.0235 (7)0.0164 (7)0.0217 (8)0.0007 (6)0.0036 (6)0.0007 (5)
O130.0159 (6)0.0162 (6)0.0240 (7)0.0005 (5)0.0014 (5)0.0015 (5)
O140.0163 (7)0.0183 (6)0.0320 (8)0.0022 (5)0.0069 (6)0.0066 (6)
O150.0155 (6)0.0202 (6)0.0248 (7)0.0019 (6)0.0032 (6)0.0000 (5)
O160.0199 (6)0.0188 (6)0.0227 (7)0.0042 (6)0.0030 (6)0.0031 (5)
O170.0150 (6)0.0155 (6)0.0261 (8)0.0005 (5)0.0015 (6)0.0023 (5)
O180.0151 (6)0.0182 (7)0.0347 (9)0.0003 (5)0.0003 (6)0.0062 (6)
O190.0230 (7)0.0201 (7)0.0468 (10)0.0003 (6)0.0077 (7)0.0126 (7)
O200.0192 (7)0.0267 (8)0.0504 (11)0.0009 (6)0.0117 (7)0.0093 (7)
N10.0209 (8)0.0189 (8)0.0262 (10)0.0001 (8)0.0030 (7)0.0015 (7)
N20.0274 (9)0.0205 (9)0.0304 (10)0.0005 (8)0.0079 (8)0.0002 (8)
N30.0238 (9)0.0205 (9)0.0206 (9)0.0007 (7)0.0053 (7)0.0004 (7)
N40.0195 (8)0.0196 (9)0.0264 (10)0.0006 (7)0.0040 (7)0.0006 (7)
V10.01743 (15)0.01364 (15)0.01701 (16)0.00016 (12)0.00290 (11)0.00055 (13)
V20.01464 (14)0.01294 (14)0.01825 (16)0.00112 (12)0.00192 (12)0.00076 (12)
Geometric parameters (Å, º) top
C1—O51.236 (2)O1—V11.5892 (15)
C1—O31.273 (2)O2—V12.3211 (15)
C1—C21.527 (3)O2—H2C0.84 (2)
C2—C31.511 (3)O2—H2D0.82 (2)
C2—H2A0.9900O3—V12.0097 (14)
C2—H2B0.9900O4—V12.0223 (14)
C3—O61.241 (2)O7—V12.0072 (14)
C3—O41.283 (2)O8—V11.9970 (14)
C4—O91.239 (2)O11—V21.5899 (15)
C4—O71.284 (2)O12—V22.2954 (15)
C4—C51.514 (3)O12—H12A0.85 (2)
C5—C61.513 (3)O12—H12B0.84 (2)
C5—H5A0.9900O13—V22.0076 (14)
C5—H5B0.9900O14—V21.9708 (14)
C6—O101.233 (2)O17—V22.0098 (14)
C6—O81.282 (2)O18—V22.0198 (14)
C7—O151.244 (2)N1—H1A0.891 (19)
C7—O131.279 (2)N1—H1B0.84 (2)
C7—C81.517 (3)N1—H1C0.851 (19)
C8—C91.515 (2)N1—H1D0.83 (2)
C8—H8A0.9900N2—H2E0.83 (2)
C8—H8B0.9900N2—H2F0.88 (2)
C9—O161.233 (2)N2—H2G0.86 (2)
C9—O141.279 (2)N2—H2H0.87 (2)
C10—O191.233 (2)N3—H3A0.82 (2)
C10—O171.284 (2)N3—H3B0.84 (2)
C10—C111.519 (3)N3—H3C0.85 (2)
C11—C121.516 (3)N3—H3D0.83 (2)
C11—H11A0.9900N4—H4A0.85 (2)
C11—H11B0.9900N4—H4B0.85 (2)
C12—O201.244 (3)N4—H4C0.83 (2)
C12—O181.274 (2)N4—H4D0.85 (2)
O5—C1—O3123.34 (18)C7—O13—V2129.64 (12)
O5—C1—C2118.28 (18)C9—O14—V2131.62 (12)
O3—C1—C2118.37 (17)C10—O17—V2125.06 (13)
C3—C2—C1114.38 (16)C12—O18—V2126.06 (13)
C3—C2—H2A108.7H1A—N1—H1B110 (3)
C1—C2—H2A108.7H1A—N1—H1C110 (2)
C3—C2—H2B108.7H1B—N1—H1C116 (3)
C1—C2—H2B108.7H1A—N1—H1D109 (3)
H2A—C2—H2B107.6H1B—N1—H1D108 (3)
O6—C3—O4122.49 (19)H1C—N1—H1D105 (3)
O6—C3—C2119.12 (17)H2E—N2—H2F108 (3)
O4—C3—C2118.35 (17)H2E—N2—H2G107 (3)
O9—C4—O7122.19 (19)H2F—N2—H2G114 (3)
O9—C4—C5118.58 (17)H2E—N2—H2H107 (3)
O7—C4—C5119.17 (17)H2F—N2—H2H116 (3)
C6—C5—C4118.78 (16)H2G—N2—H2H106 (3)
C6—C5—H5A107.6H3A—N3—H3B114 (2)
C4—C5—H5A107.6H3A—N3—H3C107 (3)
C6—C5—H5B107.6H3B—N3—H3C108 (3)
C4—C5—H5B107.6H3A—N3—H3D105 (3)
H5A—C5—H5B107.1H3B—N3—H3D107 (3)
O10—C6—O8122.34 (18)H3C—N3—H3D115 (3)
O10—C6—C5119.35 (17)H4A—N4—H4B111 (3)
O8—C6—C5118.22 (17)H4A—N4—H4C109 (3)
O15—C7—O13122.43 (17)H4B—N4—H4C108 (3)
O15—C7—C8117.08 (16)H4A—N4—H4D112 (3)
O13—C7—C8120.42 (16)H4B—N4—H4D101 (3)
C9—C8—C7119.27 (16)H4C—N4—H4D115 (3)
C9—C8—H8A107.5O1—V1—O8100.52 (8)
C7—C8—H8A107.5O1—V1—O7100.39 (8)
C9—C8—H8B107.5O8—V1—O788.76 (6)
C7—C8—H8B107.5O1—V1—O3100.81 (8)
H8A—C8—H8B107.0O8—V1—O3158.63 (6)
O16—C9—O14120.68 (17)O7—V1—O388.61 (6)
O16—C9—C8119.39 (17)O1—V1—O498.44 (7)
O14—C9—C8119.90 (16)O8—V1—O487.15 (5)
O19—C10—O17122.13 (18)O7—V1—O4161.16 (6)
O19—C10—C11118.31 (17)O3—V1—O488.53 (6)
O17—C10—C11119.54 (17)O1—V1—O2178.57 (7)
C12—C11—C10115.54 (16)O8—V1—O280.83 (6)
C12—C11—H11A108.4O7—V1—O280.07 (6)
C10—C11—H11A108.4O3—V1—O277.83 (6)
C12—C11—H11B108.4O4—V1—O281.12 (6)
C10—C11—H11B108.4O11—V2—O1498.10 (8)
H11A—C11—H11B107.5O11—V2—O1397.84 (8)
O20—C12—O18122.63 (18)O14—V2—O1388.90 (6)
O20—C12—C11118.47 (17)O11—V2—O1798.45 (7)
O18—C12—C11118.85 (18)O14—V2—O17163.20 (6)
V1—O2—H2C114 (2)O13—V2—O1791.68 (6)
V1—O2—H2D108 (3)O11—V2—O1899.14 (8)
H2C—O2—H2D110 (3)O14—V2—O1887.02 (6)
C1—O3—V1126.35 (13)O13—V2—O18162.94 (6)
C3—O4—V1125.80 (13)O17—V2—O1887.54 (6)
C4—O7—V1127.70 (14)O11—V2—O12177.91 (7)
C6—O8—V1128.79 (13)O14—V2—O1283.92 (6)
V2—O12—H12A116 (2)O13—V2—O1282.74 (6)
V2—O12—H12B117.2 (19)O17—V2—O1279.51 (6)
H12A—O12—H12B104 (3)O18—V2—O1280.36 (6)
O5—C1—C2—C3130.1 (2)O5—C1—O3—V1176.46 (15)
O3—C1—C2—C351.0 (3)C2—C1—O3—V14.7 (3)
C1—C2—C3—O6130.24 (19)O6—C3—O4—V1175.44 (14)
C1—C2—C3—O451.8 (2)C2—C3—O4—V16.7 (2)
O9—C4—C5—C6144.90 (19)O9—C4—O7—V1173.81 (15)
O7—C4—C5—C637.8 (3)C5—C4—O7—V13.4 (3)
C4—C5—C6—O10139.71 (19)O10—C6—O8—V1175.81 (14)
C4—C5—C6—O843.6 (3)C5—C6—O8—V17.6 (3)
O15—C7—C8—C9147.45 (18)O15—C7—O13—V2172.31 (14)
O13—C7—C8—C935.4 (3)C8—C7—O13—V210.7 (3)
C7—C8—C9—O16151.89 (18)O16—C9—O14—V2178.19 (13)
C7—C8—C9—O1430.1 (3)C8—C9—O14—V20.2 (3)
O19—C10—C11—C12144.3 (2)O19—C10—O17—V2164.68 (16)
O17—C10—C11—C1237.0 (3)C11—C10—O17—V213.9 (3)
C10—C11—C12—O20131.2 (2)O20—C12—O18—V2170.31 (16)
C10—C11—C12—O1851.3 (3)C11—C12—O18—V212.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···O9i0.84 (2)2.08 (2)2.902 (2)165 (3)
O2—H2D···O5ii0.82 (2)1.99 (3)2.758 (2)157 (4)
O12—H12A···O9iii0.85 (2)1.98 (2)2.826 (2)174 (3)
O12—H12B···O15iv0.84 (2)2.04 (2)2.855 (2)161 (3)
N1—H1A···O6v0.89 (2)1.97 (2)2.833 (2)164 (2)
N1—H1B···O20vi0.84 (2)1.96 (2)2.787 (2)168 (3)
N1—H1C···O16vii0.85 (2)1.88 (2)2.711 (2)164 (2)
N1—H1D···O170.83 (2)2.02 (2)2.851 (2)175 (3)
N2—H2E···O16vii0.83 (2)2.01 (2)2.818 (2)161 (3)
N2—H2F···O10viii0.88 (2)1.96 (2)2.826 (3)170 (3)
N2—H2G···O7iii0.86 (2)2.18 (2)3.006 (2)159 (3)
N2—H2H···O6v0.87 (2)2.04 (2)2.865 (2)156 (3)
N3—H3A···O20ix0.82 (2)2.12 (2)2.874 (2)153 (3)
N3—H3B···O19viii0.84 (2)1.92 (2)2.759 (2)173 (3)
N3—H3C···O40.85 (2)2.04 (2)2.828 (2)153 (3)
N3—H3D···O80.83 (2)2.33 (3)2.800 (2)116 (3)
N4—H4A···O15x0.85 (2)1.98 (2)2.809 (2)164 (3)
N4—H4B···O5ii0.85 (2)2.10 (3)2.767 (2)135 (3)
N4—H4B···O100.85 (2)2.43 (3)3.105 (2)136 (3)
N4—H4C···O14xi0.83 (2)2.05 (2)2.872 (2)169 (3)
N4—H4D···O19viii0.85 (2)2.09 (2)2.885 (2)156 (3)
C2—H2B···O10viii0.992.593.235 (3)123
C5—H5A···O6v0.992.583.275 (3)127
C5—H5B···O2ii0.992.593.432 (3)143
C8—H8A···O15iv0.992.513.207 (2)127
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z+1; (v) x+1, y1/2, z+1/2; (vi) x1, y, z; (vii) x1/2, y+3/2, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x+2, y+1/2, z+1/2; (x) x+1/2, y+1, z1/2; (xi) x+3/2, y+1, z1/2.
 

Funding information

We thank Saitama University for the support to TY by the `High-grade Global Education Program for Sciences', which is supported financially by the Japan Science and Technology Agency in the `Global Science Campus' program.

References

First citationBruker (2014). APEX2, SADABS, SAINT, XPREP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationPajunen, A. & Pajunen, S. (1980). Acta Cryst. B36, 2425–2428.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPiro, O. E. & Baran, E. J. (1997). J. Chem. Crystallogr. 27, 475–479.  CSD CrossRef CAS Web of Science Google Scholar
First citationRocha, A. L. & Baran, E. J. (1988). J. Therm. Anal. 34, 693–710.  CrossRef CAS Google Scholar
First citationSehimi, H., Chérif, I. & Zid, M. F. (2016). Acta Cryst. E72, 1002–1005.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Barman, T. R., Mukherjee, G., Kar, M., Saha, S. S., Drew, M. G. B. & Ghosh, S. (2011). Inorg. Chim. Acta, 368, 13–20.  CSD CrossRef CAS Google Scholar
First citationTomiyasu, H., Ito, S. & Tagami, S. (1974). Bull. Chem. Soc. Jpn, 47, 2843–2846.  CrossRef CAS Google Scholar
First citationYuksel, F., Gürek, A. G., Durmuş, M., Gürol, İ., Ahsen, V., Jeanneau, E. & Luneau, D. (2008). Inorg. Chim. Acta, 361, 2225–2235.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds