research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(aceto­nitrile-κN)(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2N,N′)platinum(II) bis­­(tetra­fluorido­borate) packing as head-to-head dimers

CROSSMARK_Color_square_no_text.svg

aAustin College, 900 N Grand, Sherman, TX 75090-4400, USA, and bUniversity of North Texas, 1155 Union Circle, Denton, TX 76203-5070, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by J. Jasinsk, Keene State College, USA (Received 9 April 2018; accepted 16 April 2018; online 24 April 2018)

The crystal structure of a platinum(II) supra­molecular building block, [Pt(dbbpy)(NCCH3)2](BF4)2 (dbbpy = 4,4′-di-tert-butyl-2,2′-bi­pyridine, C18H24N2) is an example of a rare head-to-head dimer, even with the bulky tert-butyl groups of the bi­pyridine. This packing motif still enables significant ππ inter­actions between two pyridyl groups, and may result from the close proximity of the tetra­fluorido­borate ions to the platinum(II) complexes, resulting in intra­molecular H⋯F distances between 2.156 and 2.573 Å.

1. Chemical context

The title compound is soluble in a diverse range of solvents and possesses exchangeable aceto­nitrile ligands for facile incorporation of novel ligands to develop new and diverse behaviors of platinum(II) complexes. The solubility and apt geometry of the (dbbpy)platinum(II) complex make it a desirable building block for coordination-driven self-assembly of homo-metallic (Zhang, et al., 2017[Zhang, Y., Fulong, C. R. P., Hauke, C. E., Crawley, M. R., Friedman, A. E. & Cook, T. R. (2017). Chem. Eur. J. 23, 4532-4536.]) and hetero-metallic (Bera et al., 2001[Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562-2563.]) supra­molecular complexes. This platinum(II) di­imine can also be combined with di­thiol­ene ligands to study methyl­ation kinetics (Stace, et al., 2016[Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98-104.]), generate charge-transfer materials (Smucker, et al., 2003[Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714-4723.]), or make model complexes for examining photophysical properties (Laza­rides, et al., 2011[Lazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350-364.]; Yang et al., 2014[Yang, J., Kersi, D. K., Giles, L. J., Stein, B. W., Feng, C., Tichnell, C. R., Shultz, D. A. & Kirk, M. L. (2014). Inorg. Chem. 53, 4791-4793.]).

[Scheme 1]

2. Structural commentary

The platinum–nitro­gen distances for the bipyridyl N1 and N2 of the +2 cation are 1.994 (4) and 1.995 (4) Å, respectively, with a bond angle of 80.5 (2)°. These are shorter than those affected by the stronger trans-influence of chloride in two structures of the neutral (dbbpy)PtCl2 mol­ecule: one with Pt—N distances of 2.013 (2) and 2.011 (2) Å and a 79.79 (6)° N—Pt—N angle (Day, 2009[Day, M. W. (2009). CSD Communication, CCDC 246943.]), and the other having Pt—N distances of 2.010 (12) and 2.019 (10) Å and a 78.7 (5)° N—Pt—N angle (Achar & Catalano, 1997[Achar, S. & Catalano, V. J. (1997). Polyhedron, 16, 1555-1561.]). The Pt—N distances of the title compound are longer than those having the weaker trans-influence of water in the +2 cation of [(dbbpy)Pt(OH2)2](OTf)2 (Singh et al., 2008[Singh, A., Anandhi, U., Cinellu, M. A. & Sharp, P. R. (2008). Dalton Trans. pp. 2314-2327.]), which exhibits Pt—N distances of 1.966 (5) and 1.974 (5) Å and the resulting wider bond angle of 81.1 (2)° for N—Pt—N. The trans-influence of the ligand is, indeed, on par with that of the related mono-cation [(dbbpy)Pt(NCCH3)(Ph)] [BAr'4], containing a Pt—N distance of 2.000 (4) Å, located trans to the aceto­nitrile, while the phenyl ligand causes an elongation to 2.092 (4) Å for the other Pt—N bond (McKeown, et al., 2011[McKeown, B. A., Gonzalez, H. E., Friedfeld, M. R., Gunnoe, T. B., Cundari, T. R. & Sabat, M. (2011). J. Am. Chem. Soc. 133, 19131-19152.]).

3. Supra­molecular features

Most platinum(II) compounds containing the bulky dbbpy ligand pack as head-to-tail dimers, such as the aforementioned (dbbpy)PtCl2 (Day, 2009[Day, M. W. (2009). CSD Communication, CCDC 246943.]; Achar & Catalano, 1997[Achar, S. & Catalano, V. J. (1997). Polyhedron, 16, 1555-1561.]), [(dbbpy)Pt(OH2)2](OTf)2 (Singh et al., 2008[Singh, A., Anandhi, U., Cinellu, M. A. & Sharp, P. R. (2008). Dalton Trans. pp. 2314-2327.]), [(dbbpy)Pt(NCCH3)(Ph)][BAr′4] (Ar′ = 3,5-bis(tri­fluoro­methyl)phenyl; McKeown et al., 2011[McKeown, B. A., Gonzalez, H. E., Friedfeld, M. R., Gunnoe, T. B., Cundari, T. R. & Sabat, M. (2011). J. Am. Chem. Soc. 133, 19131-19152.]), and (dbbpy)Pt(dmid) (dmid = 1,3-di­thiole-2-one-4,5-di­thiol­ate; Smucker et al., 2003[Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714-4723.]). The cations in the title compound, however, pack as head-to-head dimers (Figs. 1[link] and 2[link]). In these dimers, the mol­ecules are offset (translation by half a mol­ecule)and slightly canted [the planes composed of all non-H atoms except the tert-butly groups for the (dbbpy)Pt(NCCH3)2 cation and its corresponding dimer (−x, y, [1\over2] − z) are at an angle of 10.82°], both of which accommodate the bulky tert-butyl groups of the dbbpy ligands. The intra­molecular Pt—Pt distance is quite long at 4.5123 (3) Å, yet the pyridyl rings of the dbbpy are positioned for ππ inter­actions with distances between 3.616 (5) Å (N1⋯N1i) and 4.032 (7) Å (C4⋯C4i) [symmetry code: (i) −x, y, [1\over2] − z] occurring between the two rings (Fig. 2[link]). This atypical head-to-head packing may be partly explained through the favorable non-polar inter­actions between the tert-butyl groups. Another viable explanation comes through the inter­molecular inter­actions between fluorine atoms of the BF4 ions and the hydrogen atoms on the pyridine and aceto­nitrile ligands on multiple cations. Indeed, all eight fluorine atoms of the two unique BF4 anions are in close proximity to hydrogen atoms on the cation with inter­molecular H⋯F distances between 2.16 and 2.57 Å (Fig. 1[link] and Table 1[link]). Changing the anion in related bis­(aceto­nitrile)(di­imine) platinum(II) cations seems to have a significant influence, as observed in the structures of 2,2′-bi­pyridine in [(bpy)Pt(NCCH3)2](OTf)2 (Field et al., 2003[Field, J. S., Haines, R. J. & Summerton, G. C. J. (2003). J. Coord. Chem. 56, 1149-1155.]) or 1,10-phenanthroline in [(phen)Pt(NCCh3)2](ClO4)2 (Ha, 2010[Ha, K. (2010). Acta Cryst. E66, m389.]), which do not form dimers as the positions of the triflate or perchlorate anions minimize the close proximity of the two platinum-containing cations.

Table 1
Inter­molecular H⋯F distances (Å) between all eight fluorine atoms of the two BF4 anions

F1⋯H1A 2.16 F5iii⋯H7Aiv 2.30
F1⋯H20B 2.43 F5iii⋯H4Aiv 2.35
F2⋯H9Aii 2.43 F6iii⋯H20Ci 2.28
F3⋯H9Aii 2.57 F7iii⋯H20A 2.34
F4⋯H2A 2.43 (4) F8iii⋯H22C 2.34
Symmetry codes: (i) −x, y, [{1\over 2}] − z; (ii) x, 1 − y, [{1\over 2}] + z; (iii) [{1\over 2}] − x, [{1\over 2}] + y, z; (iv) x, 1 + y, z.
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the head-to-head dimer with selected H⋯F inter­molecular distances (Å) between a BF4 anion and aceto­nitrile mol­ecules on adjacent mol­ecules.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the slightly canted head-to-head dimer with selected intra­molecular distances shown.

4. Synthesis

The synthesis of the title compound used a method which replaced the chloride from Pt(dbbpy)Cl2 (Tzeng et al., 2001[Tzeng, B.-C., Chan, S.-C., Chan, M. C. W., Che, C.-M., Cheung, K.-K. & Peng, S.-M. (2001). Inorg. Chem. 40, 6699-6704.]) with aceto­nitrile using excess AgBF4 by following the general syntheses of (dbbpy)Pt(SO3CF3)2 (Hill et al., 1996[Hill, G. S., Rendina, L. M. & Puddephatt, R. J. (1996). J. Chem. Soc. Dalton Trans. pp. 1809-1813.]) and [Pt(NCCH3)4](BF4)2 (de Renzi et al., 1976[Renzi, A. de, Panunzi, A., Vitagliano, A. & Paiaro, G. (1976). J. Chem. Soc. Chem. Commun. pp. 47.]).

[Pt(dbbpy)(NCCH3)2](BF4)2 A solution containing 25 mL of aceto­nitrile, 200.7 mg (0.2500 mmol) of Pt(dbbpy)Cl2, and 164 mg (0.8425 mmol) of AgBF4 was refluxed under stirring until a yellow solution formed. The solution was isolated, via cannula, from the AgCl precipitate and condensed under reduced pressure until ∼5 mL of orange solution remained. This was combined with 25 ml of Et2O and the resulting precipitate was washed with 3 × 20 mL Et2O to give 206.9 mg (83.8% yield) of product. UV–vis λmax ( Lmol−1cm−1): 211 (4.6 × 104), 249 (4.2 × 104), 306 (2.0 × 104), 319 (2.4 × 104) and 346 (6.0 × 103) nm.

Yellow crystals of the title compound were grown from liquid diffusion of hexa­nes into a dilute acetone solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were attached to C atoms and ideally positioned (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(CH) or Uiso(H) = 1.2Ueq(CH3).

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C18H24N2)(C2H3N)2](BF4)2
Mr 719.21
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 16.3409 (10), 13.0447 (8), 25.1105 (16)
V3) 5352.6 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.32
Crystal size (mm) 0.14 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.515, 0.682
No. of measured, independent and observed [I > 2σ(I)] reflections 61655, 5919, 4823
Rint 0.048
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.113, 1.01
No. of reflections 5919
No. of parameters 342
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −1.56
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Bis(acetonitrile-κN)(4,4'-di-tert-butyl-2,2'-bipyridine-κ2N,N')platinum(II) bis(tetrafluoridoborate) top
Crystal data top
[Pt(C18H24N2)(C2H3N)2](BF4)2F(000) = 2800
Mr = 719.21Dx = 1.785 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9946 reflections
a = 16.3409 (10) Åθ = 2.2–27.1°
b = 13.0447 (8) ŵ = 5.32 mm1
c = 25.1105 (16) ÅT = 100 K
V = 5352.6 (6) Å3Plate, yellow
Z = 80.14 × 0.14 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5919 independent reflections
Radiation source: fine-focus sealed tube4823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2020
Tmin = 0.515, Tmax = 0.682k = 1616
61655 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.080P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
5919 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 1.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.098683 (11)0.487050 (15)0.187162 (8)0.02001 (9)
N10.1092 (2)0.3711 (3)0.23845 (16)0.0200 (8)
C10.1088 (3)0.3805 (4)0.29169 (19)0.0230 (10)
H1A0.10420.44690.30700.028*
N20.1029 (2)0.3703 (3)0.13593 (17)0.0227 (9)
C20.1149 (3)0.2965 (4)0.3246 (2)0.0261 (11)
H2A0.11400.30540.36220.031*
N30.1005 (2)0.5974 (3)0.24244 (18)0.0247 (9)
C30.1223 (3)0.1981 (4)0.30320 (17)0.0188 (9)
N40.0870 (2)0.5961 (3)0.13214 (18)0.0261 (9)
C40.1233 (3)0.1908 (3)0.24737 (17)0.0203 (9)
H4A0.12800.12540.23100.024*
C50.1174 (3)0.2771 (4)0.21635 (17)0.0197 (9)
C60.1182 (3)0.2775 (4)0.15764 (18)0.0214 (10)
C70.1341 (3)0.1931 (3)0.12624 (17)0.0197 (9)
H7A0.14490.12880.14250.024*
C80.1346 (3)0.2010 (4)0.07074 (18)0.0235 (10)
C90.1159 (3)0.2968 (4)0.0501 (2)0.0282 (11)
H9A0.11420.30570.01250.034*
C100.0999 (3)0.3787 (4)0.08242 (19)0.0281 (12)
H10A0.08640.44290.06690.034*
C110.1265 (3)0.1023 (4)0.33750 (18)0.0224 (10)
C120.2078 (3)0.0461 (4)0.32623 (19)0.0261 (10)
H12A0.21150.02990.28820.039*
H12B0.20990.01740.34700.039*
H12C0.25380.09030.33640.039*
C130.0557 (3)0.0306 (4)0.3229 (2)0.0274 (11)
H13A0.06240.00690.28610.041*
H13B0.00380.06750.32630.041*
H13C0.05570.02850.34700.041*
C140.1207 (3)0.1287 (4)0.39695 (19)0.0315 (12)
H14A0.07160.16980.40340.047*
H14B0.16930.16770.40760.047*
H14C0.11770.06530.41780.047*
C150.1569 (3)0.1088 (4)0.03663 (18)0.0249 (10)
C160.0911 (4)0.0262 (4)0.0438 (2)0.0344 (13)
H16A0.08750.00720.08150.052*
H16B0.10570.03440.02270.052*
H16C0.03820.05280.03170.052*
C170.2397 (3)0.0657 (5)0.0539 (2)0.0389 (13)
H17A0.23830.05040.09210.058*
H17B0.28260.11630.04680.058*
H17C0.25120.00270.03400.058*
C180.1638 (4)0.1369 (4)0.02260 (19)0.0379 (14)
H18A0.11010.15840.03590.057*
H18B0.18260.07710.04280.057*
H18C0.20290.19320.02690.057*
C190.1018 (3)0.6625 (4)0.2714 (2)0.0249 (11)
C200.1019 (3)0.7449 (5)0.3107 (2)0.0320 (13)
H20A0.14480.79450.30190.048*
H20B0.11240.71620.34610.048*
H20C0.04860.77930.31060.048*
C210.0799 (3)0.6560 (4)0.1006 (2)0.0282 (11)
C220.0702 (4)0.7321 (4)0.0583 (2)0.0435 (15)
H22B0.08630.70180.02410.065*
H22C0.10490.79160.06590.065*
H22A0.01290.75380.05650.065*
F50.3387 (3)0.4742 (3)0.18538 (12)0.0439 (9)
F10.0964 (2)0.5412 (3)0.37735 (13)0.0444 (9)
F60.4162 (2)0.3323 (3)0.18232 (14)0.0466 (9)
F70.2907 (2)0.3270 (3)0.22056 (14)0.0499 (9)
F80.3013 (2)0.3445 (3)0.13080 (14)0.0481 (9)
F20.0499 (2)0.5587 (3)0.46122 (13)0.0498 (9)
F30.1841 (2)0.5745 (3)0.44502 (13)0.0519 (10)
F40.1237 (3)0.4179 (3)0.43888 (16)0.0742 (14)
B10.1145 (5)0.5186 (6)0.4330 (2)0.0345 (16)
B20.3361 (4)0.3695 (5)0.1792 (2)0.0293 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02479 (13)0.01503 (13)0.02021 (13)0.00068 (6)0.00068 (7)0.00112 (6)
N10.025 (2)0.018 (2)0.018 (2)0.0017 (15)0.0023 (15)0.0012 (15)
C10.034 (3)0.018 (2)0.017 (2)0.0026 (19)0.0004 (19)0.0040 (19)
N20.031 (2)0.016 (2)0.022 (2)0.0061 (15)0.0026 (16)0.0006 (16)
C20.037 (3)0.023 (3)0.019 (2)0.001 (2)0.003 (2)0.002 (2)
N30.026 (2)0.021 (2)0.028 (2)0.0024 (15)0.0013 (16)0.0027 (18)
C30.021 (2)0.018 (2)0.018 (2)0.0039 (18)0.0009 (18)0.0024 (17)
N40.030 (2)0.018 (2)0.031 (2)0.0031 (16)0.0006 (17)0.0011 (18)
C40.023 (2)0.022 (2)0.016 (2)0.0032 (18)0.0004 (18)0.0033 (18)
C50.022 (2)0.019 (2)0.018 (2)0.0040 (17)0.0009 (18)0.0023 (17)
C60.022 (2)0.022 (2)0.020 (2)0.0055 (18)0.0032 (18)0.0021 (18)
C70.023 (2)0.017 (2)0.019 (2)0.0040 (18)0.0039 (18)0.0020 (17)
C80.030 (3)0.020 (2)0.021 (2)0.0075 (19)0.002 (2)0.0024 (18)
C90.044 (3)0.027 (3)0.013 (2)0.003 (2)0.003 (2)0.0052 (19)
C100.043 (3)0.023 (3)0.018 (3)0.005 (2)0.008 (2)0.0033 (19)
C110.029 (2)0.022 (2)0.017 (2)0.002 (2)0.0029 (19)0.0013 (18)
C120.029 (3)0.024 (2)0.026 (2)0.007 (2)0.003 (2)0.009 (2)
C130.031 (3)0.022 (2)0.029 (3)0.006 (2)0.001 (2)0.007 (2)
C140.046 (3)0.027 (3)0.021 (3)0.000 (2)0.000 (2)0.009 (2)
C150.034 (3)0.025 (2)0.016 (2)0.003 (2)0.0014 (19)0.0013 (19)
C160.049 (4)0.024 (3)0.030 (3)0.001 (2)0.003 (2)0.007 (2)
C170.037 (3)0.051 (4)0.028 (3)0.006 (3)0.006 (2)0.006 (3)
C180.066 (4)0.035 (3)0.013 (2)0.006 (3)0.002 (2)0.003 (2)
C190.029 (3)0.023 (3)0.023 (3)0.0030 (19)0.002 (2)0.002 (2)
C200.041 (3)0.022 (3)0.032 (3)0.001 (2)0.000 (2)0.006 (2)
C210.032 (3)0.023 (3)0.029 (3)0.008 (2)0.005 (2)0.005 (2)
C220.057 (4)0.032 (3)0.041 (4)0.009 (3)0.006 (3)0.022 (3)
F50.056 (2)0.033 (2)0.042 (2)0.0095 (17)0.0005 (15)0.0018 (15)
F10.054 (2)0.052 (2)0.0273 (18)0.0104 (16)0.0050 (14)0.0065 (17)
F60.0295 (17)0.041 (2)0.070 (3)0.0038 (15)0.0019 (15)0.0015 (17)
F70.0379 (19)0.060 (2)0.052 (2)0.0054 (16)0.0043 (16)0.0274 (19)
F80.049 (2)0.049 (2)0.046 (2)0.0100 (17)0.0084 (16)0.0111 (16)
F20.051 (2)0.064 (3)0.0348 (19)0.0122 (19)0.0087 (16)0.0163 (17)
F30.046 (2)0.074 (3)0.0358 (19)0.0100 (19)0.0048 (15)0.0153 (18)
F40.132 (4)0.035 (2)0.056 (3)0.012 (2)0.024 (3)0.004 (2)
B10.035 (3)0.046 (4)0.023 (3)0.014 (3)0.009 (3)0.026 (3)
B20.023 (3)0.022 (3)0.043 (4)0.005 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Pt1—N41.992 (4)C13—H13B0.9800
Pt1—N11.994 (4)C13—H13C0.9800
Pt1—N21.995 (4)C14—H14A0.9800
Pt1—N32.000 (5)C14—H14B0.9800
N1—C11.343 (6)C14—H14C0.9800
N1—C51.353 (6)C15—C171.528 (7)
C1—C21.377 (7)C15—C161.533 (7)
C1—H1A0.9500C15—C181.536 (6)
N2—C101.349 (6)C16—H16A0.9800
N2—C61.350 (6)C16—H16B0.9800
C2—C31.396 (7)C16—H16C0.9800
C2—H2A0.9500C17—H17A0.9800
N3—C191.118 (7)C17—H17B0.9800
C3—C41.405 (6)C17—H17C0.9800
C3—C111.520 (6)C18—H18A0.9800
N4—C211.119 (7)C18—H18B0.9800
C4—C51.372 (6)C18—H18C0.9800
C4—H4A0.9500C19—C201.460 (7)
C5—C61.474 (6)C20—H20A0.9800
C6—C71.379 (6)C20—H20B0.9800
C7—C81.398 (6)C20—H20C0.9800
C7—H7A0.9500C21—C221.462 (7)
C8—C91.386 (7)C22—H22B0.9800
C8—C151.521 (7)C22—H22C0.9800
C9—C101.368 (8)C22—H22A0.9800
C9—H9A0.9500F5—B21.375 (7)
C10—H10A0.9500F1—B11.459 (7)
C11—C131.532 (7)F6—B21.398 (7)
C11—C141.535 (6)F7—B21.392 (6)
C11—C121.544 (7)F8—B21.381 (7)
C12—H12A0.9800F2—B11.374 (7)
C12—H12B0.9800F3—B11.385 (8)
C12—H12C0.9800F4—B11.330 (8)
C13—H13A0.9800
N4—Pt1—N1176.23 (16)C11—C13—H13C109.5
N4—Pt1—N295.81 (18)H13A—C13—H13C109.5
N1—Pt1—N280.47 (18)H13B—C13—H13C109.5
N4—Pt1—N388.22 (19)C11—C14—H14A109.5
N1—Pt1—N395.53 (18)C11—C14—H14B109.5
N2—Pt1—N3175.27 (16)H14A—C14—H14B109.5
C1—N1—C5119.5 (4)C11—C14—H14C109.5
C1—N1—Pt1125.0 (3)H14A—C14—H14C109.5
C5—N1—Pt1115.6 (3)H14B—C14—H14C109.5
N1—C1—C2121.7 (5)C8—C15—C17110.1 (4)
N1—C1—H1A119.2C8—C15—C16108.8 (4)
C2—C1—H1A119.2C17—C15—C16109.2 (4)
C10—N2—C6118.8 (4)C8—C15—C18112.0 (4)
C10—N2—Pt1125.4 (4)C17—C15—C18107.4 (4)
C6—N2—Pt1115.5 (3)C16—C15—C18109.4 (4)
C1—C2—C3120.4 (5)C15—C16—H16A109.5
C1—C2—H2A119.8C15—C16—H16B109.5
C3—C2—H2A119.8H16A—C16—H16B109.5
C19—N3—Pt1176.6 (4)C15—C16—H16C109.5
C2—C3—C4116.7 (4)H16A—C16—H16C109.5
C2—C3—C11122.8 (4)H16B—C16—H16C109.5
C4—C3—C11120.6 (4)C15—C17—H17A109.5
C21—N4—Pt1178.7 (5)C15—C17—H17B109.5
C5—C4—C3120.6 (4)H17A—C17—H17B109.5
C5—C4—H4A119.7C15—C17—H17C109.5
C3—C4—H4A119.7H17A—C17—H17C109.5
N1—C5—C4121.2 (4)H17B—C17—H17C109.5
N1—C5—C6114.0 (4)C15—C18—H18A109.5
C4—C5—C6124.8 (4)C15—C18—H18B109.5
N2—C6—C7121.3 (4)H18A—C18—H18B109.5
N2—C6—C5114.0 (4)C15—C18—H18C109.5
C7—C6—C5124.7 (4)H18A—C18—H18C109.5
C6—C7—C8120.8 (4)H18B—C18—H18C109.5
C6—C7—H7A119.6N3—C19—C20177.7 (6)
C8—C7—H7A119.6C19—C20—H20A109.5
C9—C8—C7116.0 (4)C19—C20—H20B109.5
C9—C8—C15123.7 (4)H20A—C20—H20B109.5
C7—C8—C15120.3 (4)C19—C20—H20C109.5
C10—C9—C8121.6 (5)H20A—C20—H20C109.5
C10—C9—H9A119.2H20B—C20—H20C109.5
C8—C9—H9A119.2N4—C21—C22178.4 (6)
N2—C10—C9121.4 (5)C21—C22—H22B109.5
N2—C10—H10A119.3C21—C22—H22C109.5
C9—C10—H10A119.3H22B—C22—H22C109.5
C3—C11—C13109.4 (4)C21—C22—H22A109.5
C3—C11—C14111.3 (4)H22B—C22—H22A109.5
C13—C11—C14108.9 (4)H22C—C22—H22A109.5
C3—C11—C12109.0 (4)F4—B1—F2113.9 (7)
C13—C11—C12108.5 (4)F4—B1—F3113.8 (5)
C14—C11—C12109.7 (4)F2—B1—F3108.6 (4)
C11—C12—H12A109.5F4—B1—F1109.1 (5)
C11—C12—H12B109.5F2—B1—F1105.1 (5)
H12A—C12—H12B109.5F3—B1—F1105.6 (6)
C11—C12—H12C109.5F5—B2—F8110.2 (5)
H12A—C12—H12C109.5F5—B2—F7109.1 (5)
H12B—C12—H12C109.5F8—B2—F7110.0 (4)
C11—C13—H13A109.5F5—B2—F6108.0 (5)
C11—C13—H13B109.5F8—B2—F6110.7 (5)
H13A—C13—H13B109.5F7—B2—F6108.7 (5)
Intermolecular H···F distances (Å) between all eight fluorine atoms of the two BF4- anions top
F1···H1A2.16F5iii···H7Aiv2.30
F1···H20B2.43F5iii···H4Aiv2.35
F2···H9Aii2.43F6iii···H20Ci2.28
F3···H9Aii2.57F7iii···H20A2.34
F4···H2A2.43 (4)F8iii···H22C2.34
Symmetry codes: (i) -x, y, 1/2 - z; (ii) x, 1 - y, 1/2 + z; (iii) 1/2 - x, 1/2 + y, z; (iv) x, 1 + y, z.
 

Acknowledgements

X-ray data were collected at the University of North Texas using a Bruker APEXII CCD diffractometer.

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College for Undergraduate Research).

References

First citationAchar, S. & Catalano, V. J. (1997). Polyhedron, 16, 1555–1561.  CSD CrossRef CAS Web of Science Google Scholar
First citationBera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). Chem. Commun. pp. 2562–2563.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, M. W. (2009). CSD Communication, CCDC 246943.  Google Scholar
First citationField, J. S., Haines, R. J. & Summerton, G. C. J. (2003). J. Coord. Chem. 56, 1149–1155.  CAS Google Scholar
First citationHa, K. (2010). Acta Cryst. E66, m389.  CSD CrossRef IUCr Journals Google Scholar
First citationHill, G. S., Rendina, L. M. & Puddephatt, R. J. (1996). J. Chem. Soc. Dalton Trans. pp. 1809–1813.  CrossRef Google Scholar
First citationLazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350–364.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKeown, B. A., Gonzalez, H. E., Friedfeld, M. R., Gunnoe, T. B., Cundari, T. R. & Sabat, M. (2011). J. Am. Chem. Soc. 133, 19131–19152.  CSD CrossRef CAS Google Scholar
First citationRenzi, A. de, Panunzi, A., Vitagliano, A. & Paiaro, G. (1976). J. Chem. Soc. Chem. Commun. pp. 47.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A., Anandhi, U., Cinellu, M. A. & Sharp, P. R. (2008). Dalton Trans. pp. 2314–2327.  CSD CrossRef Google Scholar
First citationSmucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). Inorg. Chem. 42, 4714–4723.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationStace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). Inorg. Chim. Acta, 447, 98–104.  CSD CrossRef CAS Google Scholar
First citationTzeng, B.-C., Chan, S.-C., Chan, M. C. W., Che, C.-M., Cheung, K.-K. & Peng, S.-M. (2001). Inorg. Chem. 40, 6699–6704.  CSD CrossRef CAS Google Scholar
First citationYang, J., Kersi, D. K., Giles, L. J., Stein, B. W., Feng, C., Tichnell, C. R., Shultz, D. A. & Kirk, M. L. (2014). Inorg. Chem. 53, 4791–4793.  CrossRef CAS Google Scholar
First citationZhang, Y., Fulong, C. R. P., Hauke, C. E., Crawley, M. R., Friedman, A. E. & Cook, T. R. (2017). Chem. Eur. J. 23, 4532–4536.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds