research communications
μ-2-(methoxycarbonyl)benzoato-κ2O1:O1′]bis[(N,N-dimethylformamide-κO)copper(II)](Cu—Cu) dimethylformamide disolvate
of tetrakis[aDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: jlwangczu@163.com
The title compound, [Cu2(C9H7O4)4(C3H7NO)2]·2C3H7NO, crystallizes in the monoclinic P21/c with the binuclear copper unit occupying a special position on an inversion center, i.e. the of the crystal consists of one CuII ion, two 2-(methoxycarbonyl)benzoate ligands, and two DMF molecules (one coordinated and one solvate). The binuclear complex displays a paddle-wheel-shaped structure with the two copper atoms being in a Jahn–Teller-distorted octahedral coordination environment. Each 2-(methoxycarbonyl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu—Cu distance of 2.633 (1) Å. The carboxylate groups of the 2-(methoxycarbonyl)benzoate ligands adopt bidentate syn–syn bridging modes, with dihedral angles between the carboxylate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°. In the crystal, adjacent DMF molecules coordinated to copper atoms are arranged in a mutual `head-to-tail' manner by offset face-to-face π–π stacking interactions, resulting in chains along the c-axis direction. The planes of the coordinated DMF molecules are parallel to each other, the distance between them being 3.33 (1) Å. A three-dimensional structure is assembled from the chains by weak C—H⋯O and C—H⋯π intermolecular interactions involving the DMF solvent molecules. One of the methyl ester groups is disordered over two sites with an occupancy ratio of 0.751 (12):0.249 (12).
Keywords: 2-(methoxycarbonyl)benzoate; binuclear copper compound; supramolecular structure; π–π stacking interactions; crystal structure.
CCDC reference: 1837401
1. Chemical context
Binuclear CuII compounds have been an attractive target for chemical research because of their wide range of applications in materials chemistry (Kato et al., 1964; Farraj et al., 2017), environmental (Pokharel et al., 2014) and biological chemistry (Ma & Moulton, 2007). In crystal engineering, the carboxylate ligands are widely used as linkers in the design of binuclear complexes as they exhibit versatile coordination modes for bonding of different metal ions, including monodentate – chelating and monoatomic bridging, as well as bridging modes in syn–anti, anti–anti and syn–syn conformations (Su et al., 2015). Thus, carboxylate ligands can adopt μ2-O, chelate or bridging modes to construct binuclear copper complexes. In addition, the Cu—Cu dimer can be tetra bridged by four carboxylate groups to form a paddle-wheel building unit. Furthermore, the paddle-wheel building unit may be axially coordinated by means of two monodentate ligands to give the formula [Cu2(OOCR)4L2] (Suh et al., 2012). For example, [Cu2(aspirinate)4L2] [L = N,N-dimethylformamide (DMF), 3-bromopyridine, quinoline, pyridine; Ma & Moulton, 2007], [Cu2(Sal)4(acetonitrile)2] (Sal = salicylate; Liu et al., 2017), [Cu2[2-(methoxycarbonyl)benzoate]4(MeOH)(DMF)], (Liu et al., 2008), [Cu2(2-(methoxycarbonyl) benzoate)4(acetonitrile)2] (Wang et al., 2013). In a similar way, binuclear copper coordination polymers (CPs) with paddle-wheel cluster units can be coordinated by functional ligands in the axial position, including 4,4′-bipyridine (Liu et al., 2005), pyrazine (Kitao et al., 2017), 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (Hou et al., 2004), forming a class of multifunctional polymer materials. Moreover, it is well known that the solubility and are the key parameters of drugs, and the appropriate choice of an axial ligand affords the ability to significantly alter these properties.
In this paper, we report the synthesis and 2(2-(methoxycarbonyl)benzoate)4(DMF)2], (I), containing the paddle-wheel building unit.
of a new binuclear copper complex [Cu2. Structural commentary
The title compound crystallizes in the monoclinic P21/c with the binuclear copper unit occupying a special position on the inversion center. The consists of one CuII ion, two 2-(methoxycarbonyl)benzoate ligands, and two DMF molecules (one coordinated and one solvate). The complex displays a paddle-wheel-shaped binuclear structure (Fig. 1). If the Cu—Cu bonding contact is neglected, each CuII ion is pentacoordinated to four carboxylate oxygen atoms [O1, O2i, O5 and O6i] of four 2-(methoxycarbonyl)benzoate ligands and one oxygen atom [O9] from the DMF molecule. Both CuII ions exhibit Jahn–Teller square-pyramidal geometries (τ = 0), with four short Cu—O(carboxylate) [1.934 (4) to 1.968 (4) Å; Table 1] bond lengths in the equatorial plane and one long Cu—O(DMF) [2.132 (4) Å] bond length at the axial position. Each 2-(methoxycarbonyl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu—Cu(−x + 1, −y + 1, −z + 1) distance of 2.633 (1) Å; this is close to the 2.64 Å reported for the similar dinuclear complex [Cu2(OAc)4·2H2O] (Kato et al., 1964). However, the Cu—Cui distance in (I) is slightly longer than the Cu—Cu separation of 2.56 Å in metallic copper (Jones et al., 1997). The carboxylate groups of the 2-(methoxycarbonyl)benzoate ligands adopt bidentate syn–syn bridging modes, with the dihedral angles between the carboxylate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°.
3. Supramolecular features
The contains both coordinated and solvate DMF molecules. As illustrated in Fig. 2, adjacent DMF molecules coordinated to copper atoms are arranged in a mutual `head-to-tail' manner by offset face-to-face π–π stacking interactions (Wang et al., 2010), resulting in chains along the c-axis direction. The planes of the coordinated DMF molecules are parallel to each other, the distance between them being 3.33 (1) Å. The three-dimensional structure of (I) is assembled from these chains by further weak C—H⋯O interactions (H⋯A distances of 2.63–2.70 Å; Table 2) and intermolecular π⋯π interactions (Fig. 3).
of (I)4. Database survey
There are a number of Cu paddle-wheel structures [Cu2(OOCR)4L2] in the crystallographic literature with benzene carboxylates derivatives (Cambridge Structural Database, Version 5.39, updated in November 2017; Groom et al., 2016). In most cases, both copper centers in these complexes feature a coordinated water molecule in the axial position, which can be replaced by small solvent molecules to generate potential binding sites; for example, L = Cl− (Silva et al., 2001), urea, ethanol, benzoic acid (Kato et al., 1964), N,N-dimethylformamide, 3-bromopyridine, quinoline, pyridine, isonicotinamide, nicotinamide, 3-phenylpyridine (Ma & Moulton, 2007), acetonitrile (Liu et al., 2017, Wang et al., 2013), methanol (Liu et al., 2008), 2-picoline (Del Sesto et al., 2000). Various polycarboxylic benzene derivatives have been synthesized to obtain porous coordination polymers (Guillerm et al., 2014), which exhibit different properties owing to different substituent groups in the axial sites.
5. Synthesis and crystallization
The title complex was synthesized according to a literature procedure (Wang et al., 2013). 2-(Methoxycarbonyl)benzoic acid (180.0 mg, 1.0 mmol) and NaOH (40.0 mg, 1.0 mmol) were dissolved in a methanol solution (20 mL) while stirring at room temperature for 20 min. Then, 15 mL of a methanol solution containing Cu(NO3)2·3H2O (121 mg, 0.5 mmol) was added to the mixture, and the mixture was further stirred at room temperature for 90 min. The blue precipitate obtained was separated by filtration, washed with methanol and dried. The powder was dissolved in N,N-dimethylformamide, and blue single crystals were collected after slow evaporation at room temperature for several weeks.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were positioned geometrically with C—H = 0.93–0.96 Å and refined using the riding model with fixed displacement parameters [Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for the other groups]. One of the methyl ester groups is disordered over two sets of sties with an occupancy ratio of 0.751 (12):0.249 (12). The displacement parameters of the O4/O4A and C9/C9A atoms of the disordered fragment were restrained to be similar (Sheldrick, 2015).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1837401
https://doi.org/10.1107/S2056989018005893/kq2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005893/kq2019Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Cu2(C9H7O4)4(C3H7NO)2]·2C3H7NO | F(000) = 1180 |
Mr = 1136.07 | Dx = 1.447 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7775 (12) Å | Cell parameters from 2608 reflections |
b = 19.746 (2) Å | θ = 2.2–21.7° |
c = 10.7957 (11) Å | µ = 0.90 mm−1 |
β = 106.870 (2)° | T = 296 K |
V = 2606.6 (4) Å3 | Block, blue |
Z = 2 | 0.45 × 0.34 × 0.21 mm |
Bruker Photon 100 diffractometer | 2522 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.101 |
φ and ω scans | θmax = 25.1°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −12→15 |
Tmin = 0.689, Tmax = 0.834 | k = −23→17 |
12822 measured reflections | l = −12→12 |
4610 independent reflections |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.221 | w = 1/[σ2(Fo2) + (0.1098P)2 + 2.5593P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
4610 reflections | Δρmax = 0.91 e Å−3 |
373 parameters | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.51748 (6) | 0.48436 (4) | 0.62288 (7) | 0.0317 (3) | |
N1 | 0.4576 (5) | 0.4167 (3) | 0.9654 (5) | 0.0451 (14) | |
N2 | 0.0957 (5) | 0.9334 (4) | 0.6092 (6) | 0.0641 (19) | |
O1 | 0.4075 (4) | 0.4160 (2) | 0.5502 (4) | 0.0439 (12) | |
O2 | 0.3789 (3) | 0.4416 (2) | 0.3420 (4) | 0.0447 (12) | |
O5 | 0.4004 (3) | 0.5502 (2) | 0.6162 (4) | 0.0413 (11) | |
O6 | 0.3716 (3) | 0.5759 (2) | 0.4083 (4) | 0.0431 (12) | |
O7 | 0.1773 (7) | 0.5501 (4) | 0.7540 (7) | 0.116 (3) | |
O8 | 0.1653 (4) | 0.5121 (3) | 0.5590 (6) | 0.0668 (16) | |
O9 | 0.5355 (3) | 0.4523 (2) | 0.8165 (4) | 0.0409 (11) | |
O10 | −0.0745 (6) | 0.8955 (4) | 0.5178 (7) | 0.110 (3) | |
C1 | 0.3623 (5) | 0.4065 (3) | 0.4326 (7) | 0.0363 (16) | |
C2 | 0.2811 (5) | 0.3508 (3) | 0.3972 (6) | 0.0341 (15) | |
C3 | 0.2052 (5) | 0.3496 (4) | 0.2792 (7) | 0.0472 (18) | |
H3 | 0.206712 | 0.382714 | 0.218399 | 0.057* | |
C4 | 0.1263 (6) | 0.3001 (4) | 0.2487 (7) | 0.053 (2) | |
H4 | 0.074745 | 0.300086 | 0.167725 | 0.064* | |
C5 | 0.1230 (6) | 0.2512 (4) | 0.3359 (8) | 0.056 (2) | |
H5 | 0.069538 | 0.217744 | 0.314463 | 0.067* | |
C6 | 0.1986 (6) | 0.2512 (4) | 0.4554 (8) | 0.0530 (19) | |
H6 | 0.196603 | 0.217854 | 0.515469 | 0.064* | |
C7 | 0.2772 (6) | 0.3005 (4) | 0.4863 (7) | 0.0476 (18) | |
C8 | 0.3466 (11) | 0.3011 (6) | 0.6261 (14) | 0.048 (3) | 0.751 (12) |
O3 | 0.3230 (6) | 0.3196 (4) | 0.7184 (7) | 0.064 (3) | 0.751 (12) |
O4 | 0.4429 (10) | 0.2714 (6) | 0.6315 (11) | 0.060 (3) | 0.751 (12) |
C9 | 0.5209 (13) | 0.2647 (9) | 0.7578 (13) | 0.097 (6) | 0.751 (12) |
H9A | 0.535773 | 0.308469 | 0.797628 | 0.145* | 0.751 (12) |
H9B | 0.587480 | 0.245487 | 0.749156 | 0.145* | 0.751 (12) |
H9C | 0.491382 | 0.235598 | 0.810555 | 0.145* | 0.751 (12) |
C8A | 0.391 (4) | 0.283 (2) | 0.580 (5) | 0.052 (12) | 0.249 (12) |
O3A | 0.4754 (18) | 0.2744 (13) | 0.561 (3) | 0.064 (8) | 0.249 (12) |
O4A | 0.370 (2) | 0.2762 (16) | 0.688 (3) | 0.060 (4) | 0.249 (12) |
C9A | 0.470 (4) | 0.259 (3) | 0.798 (5) | 0.096 (6) | 0.249 (12) |
H9A1 | 0.480823 | 0.211297 | 0.802431 | 0.144* | 0.249 (12) |
H9A2 | 0.459759 | 0.275219 | 0.877950 | 0.144* | 0.249 (12) |
H9A3 | 0.532924 | 0.281117 | 0.784324 | 0.144* | 0.249 (12) |
C10 | 0.3532 (5) | 0.5818 (3) | 0.5149 (6) | 0.0356 (15) | |
C11 | 0.2753 (5) | 0.6360 (4) | 0.5253 (7) | 0.0441 (17) | |
C12 | 0.2796 (7) | 0.6975 (4) | 0.4697 (8) | 0.064 (2) | |
H12 | 0.328128 | 0.704014 | 0.421111 | 0.077* | |
C13 | 0.2133 (8) | 0.7503 (5) | 0.4842 (10) | 0.085 (3) | |
H13 | 0.217287 | 0.792384 | 0.447102 | 0.102* | |
C14 | 0.1418 (9) | 0.7390 (6) | 0.5547 (11) | 0.094 (3) | |
H14 | 0.095559 | 0.773774 | 0.564212 | 0.113* | |
C15 | 0.1368 (7) | 0.6792 (6) | 0.6101 (9) | 0.079 (3) | |
H15 | 0.088721 | 0.673494 | 0.659549 | 0.095* | |
C16 | 0.2008 (6) | 0.6260 (4) | 0.5959 (7) | 0.052 (2) | |
C17 | 0.1818 (6) | 0.5593 (5) | 0.6481 (9) | 0.064 (2) | |
C18 | 0.1415 (8) | 0.4457 (5) | 0.5937 (11) | 0.095 (3) | |
H18A | 0.131302 | 0.416073 | 0.520669 | 0.143* | |
H18B | 0.201215 | 0.429533 | 0.663889 | 0.143* | |
H18C | 0.076007 | 0.446603 | 0.620192 | 0.143* | |
C19 | 0.4544 (6) | 0.4433 (4) | 0.8545 (6) | 0.0433 (17) | |
H19 | 0.386642 | 0.456500 | 0.800306 | 0.052* | |
C20 | 0.5587 (7) | 0.3926 (4) | 1.0530 (8) | 0.072 (3) | |
H20A | 0.544984 | 0.374755 | 1.129558 | 0.107* | |
H20B | 0.588580 | 0.357686 | 1.011590 | 0.107* | |
H20C | 0.609754 | 0.429424 | 1.076264 | 0.107* | |
C21 | 0.3581 (7) | 0.4049 (5) | 1.0006 (9) | 0.078 (3) | |
H21A | 0.375788 | 0.385056 | 1.085330 | 0.117* | |
H21B | 0.320836 | 0.447112 | 1.000652 | 0.117* | |
H21C | 0.311570 | 0.374657 | 0.939037 | 0.117* | |
C22 | 0.0126 (9) | 0.9123 (5) | 0.5152 (10) | 0.089 (3) | |
H22 | 0.024510 | 0.910232 | 0.434322 | 0.107* | |
C23 | 0.1986 (7) | 0.9484 (6) | 0.5900 (10) | 0.105 (4) | |
H23A | 0.248667 | 0.963075 | 0.670171 | 0.157* | |
H23B | 0.226912 | 0.908478 | 0.560193 | 0.157* | |
H23C | 0.189853 | 0.983615 | 0.526528 | 0.157* | |
C24 | 0.0870 (9) | 0.9415 (9) | 0.7348 (11) | 0.149 (6) | |
H24A | 0.155395 | 0.957274 | 0.790841 | 0.223* | |
H24B | 0.030640 | 0.973821 | 0.733691 | 0.223* | |
H24C | 0.068855 | 0.898752 | 0.765799 | 0.223* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0357 (4) | 0.0410 (5) | 0.0215 (4) | 0.0001 (4) | 0.0133 (3) | 0.0025 (4) |
N1 | 0.069 (4) | 0.044 (4) | 0.030 (3) | −0.013 (3) | 0.027 (3) | −0.006 (3) |
N2 | 0.051 (4) | 0.086 (5) | 0.050 (4) | −0.012 (4) | 0.007 (3) | 0.002 (4) |
O1 | 0.050 (3) | 0.054 (3) | 0.028 (3) | −0.010 (2) | 0.012 (2) | 0.000 (2) |
O2 | 0.047 (3) | 0.056 (3) | 0.031 (3) | −0.012 (2) | 0.013 (2) | 0.005 (2) |
O5 | 0.045 (3) | 0.054 (3) | 0.028 (3) | 0.009 (2) | 0.016 (2) | 0.003 (2) |
O6 | 0.046 (3) | 0.055 (3) | 0.032 (3) | 0.011 (2) | 0.017 (2) | 0.002 (2) |
O7 | 0.155 (7) | 0.145 (7) | 0.075 (5) | 0.000 (6) | 0.077 (5) | 0.017 (5) |
O8 | 0.067 (4) | 0.069 (4) | 0.075 (4) | −0.006 (3) | 0.038 (3) | 0.003 (3) |
O9 | 0.041 (2) | 0.059 (3) | 0.026 (2) | 0.001 (2) | 0.015 (2) | 0.005 (2) |
O10 | 0.072 (4) | 0.133 (7) | 0.115 (6) | −0.044 (5) | 0.013 (4) | 0.008 (5) |
C1 | 0.031 (3) | 0.039 (4) | 0.040 (4) | −0.001 (3) | 0.012 (3) | −0.002 (3) |
C2 | 0.036 (3) | 0.037 (4) | 0.034 (4) | −0.007 (3) | 0.016 (3) | 0.000 (3) |
C3 | 0.045 (4) | 0.056 (5) | 0.041 (5) | −0.007 (4) | 0.014 (3) | 0.005 (4) |
C4 | 0.049 (4) | 0.064 (5) | 0.044 (5) | −0.012 (4) | 0.008 (4) | −0.005 (4) |
C5 | 0.045 (4) | 0.064 (6) | 0.064 (6) | −0.016 (4) | 0.024 (4) | −0.013 (4) |
C6 | 0.055 (5) | 0.054 (5) | 0.053 (5) | −0.007 (4) | 0.020 (4) | 0.004 (4) |
C7 | 0.046 (4) | 0.049 (5) | 0.047 (5) | −0.009 (4) | 0.011 (3) | −0.002 (4) |
C8 | 0.058 (8) | 0.038 (7) | 0.050 (9) | −0.008 (5) | 0.019 (7) | 0.006 (6) |
O3 | 0.088 (6) | 0.070 (6) | 0.048 (5) | −0.007 (4) | 0.040 (4) | −0.008 (4) |
O4 | 0.072 (7) | 0.065 (6) | 0.036 (6) | 0.017 (5) | 0.001 (5) | −0.004 (5) |
C9 | 0.101 (13) | 0.122 (11) | 0.049 (9) | 0.060 (11) | −0.008 (7) | −0.016 (8) |
C8A | 0.08 (4) | 0.03 (2) | 0.05 (3) | 0.02 (2) | 0.03 (3) | 0.00 (2) |
O3A | 0.043 (15) | 0.10 (2) | 0.045 (17) | 0.011 (12) | 0.013 (12) | −0.008 (14) |
O4A | 0.070 (9) | 0.064 (7) | 0.035 (7) | 0.010 (7) | 0.000 (6) | −0.001 (6) |
C9A | 0.101 (13) | 0.122 (11) | 0.048 (9) | 0.060 (11) | −0.007 (7) | −0.016 (8) |
C10 | 0.028 (3) | 0.048 (4) | 0.031 (4) | −0.001 (3) | 0.008 (3) | −0.003 (3) |
C11 | 0.044 (4) | 0.054 (5) | 0.034 (4) | 0.009 (3) | 0.012 (3) | −0.004 (3) |
C12 | 0.064 (5) | 0.071 (6) | 0.064 (6) | 0.008 (5) | 0.030 (4) | 0.008 (5) |
C13 | 0.097 (7) | 0.059 (6) | 0.103 (8) | 0.028 (6) | 0.034 (7) | 0.008 (6) |
C14 | 0.101 (8) | 0.098 (9) | 0.092 (8) | 0.050 (7) | 0.040 (7) | 0.001 (7) |
C15 | 0.073 (6) | 0.104 (8) | 0.073 (7) | 0.032 (6) | 0.043 (5) | 0.008 (6) |
C16 | 0.046 (4) | 0.073 (6) | 0.040 (4) | 0.019 (4) | 0.018 (4) | −0.001 (4) |
C17 | 0.044 (4) | 0.105 (8) | 0.052 (5) | 0.012 (5) | 0.028 (4) | 0.007 (5) |
C18 | 0.080 (7) | 0.088 (8) | 0.139 (10) | 0.001 (6) | 0.067 (7) | 0.012 (7) |
C19 | 0.047 (4) | 0.053 (5) | 0.033 (4) | 0.000 (3) | 0.016 (3) | −0.004 (3) |
C20 | 0.096 (6) | 0.086 (7) | 0.040 (5) | 0.016 (5) | 0.030 (5) | 0.025 (5) |
C21 | 0.103 (7) | 0.079 (6) | 0.077 (6) | −0.021 (5) | 0.065 (6) | −0.008 (5) |
C22 | 0.091 (8) | 0.075 (7) | 0.085 (8) | −0.003 (6) | 0.000 (7) | −0.004 (6) |
C23 | 0.066 (6) | 0.158 (11) | 0.100 (8) | −0.007 (7) | 0.039 (6) | −0.022 (8) |
C24 | 0.097 (8) | 0.29 (2) | 0.067 (8) | −0.016 (10) | 0.040 (7) | −0.015 (10) |
Cu1—Cu1i | 2.6329 (14) | C9—H9B | 0.9600 |
Cu1—O1 | 1.943 (4) | C9—H9C | 0.9600 |
Cu1—O2i | 1.934 (4) | C8A—O3A | 1.17 (5) |
Cu1—O5 | 1.968 (4) | C8A—O4A | 1.28 (6) |
Cu1—O6i | 1.953 (4) | O4A—C9A | 1.50 (5) |
Cu1—O9 | 2.132 (4) | C9A—H9A1 | 0.9600 |
N1—C19 | 1.297 (8) | C9A—H9A2 | 0.9600 |
N1—C20 | 1.442 (10) | C9A—H9A3 | 0.9600 |
N1—C21 | 1.448 (9) | C10—C11 | 1.488 (9) |
N2—C22 | 1.306 (10) | C11—C12 | 1.363 (10) |
N2—C24 | 1.401 (11) | C11—C16 | 1.395 (9) |
N2—C23 | 1.421 (10) | C12—C13 | 1.381 (11) |
O1—C1 | 1.247 (7) | C12—H12 | 0.9300 |
O2—C1 | 1.266 (7) | C13—C14 | 1.367 (13) |
O5—C10 | 1.251 (7) | C13—H13 | 0.9300 |
O6—C10 | 1.245 (7) | C14—C15 | 1.335 (13) |
O7—C17 | 1.176 (9) | C14—H14 | 0.9300 |
O8—C17 | 1.313 (10) | C15—C16 | 1.366 (11) |
O8—C18 | 1.420 (10) | C15—H15 | 0.9300 |
O9—C19 | 1.234 (7) | C16—C17 | 1.480 (12) |
O10—C22 | 1.169 (11) | C18—H18A | 0.9600 |
C1—C2 | 1.485 (9) | C18—H18B | 0.9600 |
C2—C3 | 1.359 (9) | C18—H18C | 0.9600 |
C2—C7 | 1.393 (9) | C19—H19 | 0.9300 |
C3—C4 | 1.374 (9) | C20—H20A | 0.9600 |
C3—H3 | 0.9300 | C20—H20B | 0.9600 |
C4—C5 | 1.357 (10) | C20—H20C | 0.9600 |
C4—H4 | 0.9300 | C21—H21A | 0.9600 |
C5—C6 | 1.370 (10) | C21—H21B | 0.9600 |
C5—H5 | 0.9300 | C21—H21C | 0.9600 |
C6—C7 | 1.367 (9) | C22—H22 | 0.9300 |
C6—H6 | 0.9300 | C23—H23A | 0.9600 |
C7—C8 | 1.513 (16) | C23—H23B | 0.9600 |
C7—C8A | 1.55 (5) | C23—H23C | 0.9600 |
C8—O3 | 1.179 (15) | C24—H24A | 0.9600 |
C8—O4 | 1.349 (19) | C24—H24B | 0.9600 |
O4—C9 | 1.442 (16) | C24—H24C | 0.9600 |
C9—H9A | 0.9600 | ||
O2i—Cu1—O1 | 168.03 (18) | O4A—C9A—H9A2 | 109.5 |
O2i—Cu1—O6i | 90.25 (19) | H9A1—C9A—H9A2 | 109.5 |
O1—Cu1—O6i | 89.05 (19) | O4A—C9A—H9A3 | 109.5 |
O2i—Cu1—O5 | 88.7 (2) | H9A1—C9A—H9A3 | 109.5 |
O1—Cu1—O5 | 89.48 (19) | H9A2—C9A—H9A3 | 109.5 |
O6i—Cu1—O5 | 168.06 (18) | O6—C10—O5 | 126.1 (6) |
O2i—Cu1—O9 | 99.14 (18) | O6—C10—C11 | 116.6 (6) |
O1—Cu1—O9 | 92.82 (18) | O5—C10—C11 | 117.1 (6) |
O6i—Cu1—O9 | 96.36 (17) | C12—C11—C16 | 119.2 (7) |
O5—Cu1—O9 | 95.55 (17) | C12—C11—C10 | 119.6 (6) |
O2i—Cu1—Cu1i | 85.81 (13) | C16—C11—C10 | 121.2 (7) |
O1—Cu1—Cu1i | 82.24 (13) | C11—C12—C13 | 121.2 (8) |
O6i—Cu1—Cu1i | 83.61 (13) | C11—C12—H12 | 119.4 |
O5—Cu1—Cu1i | 84.46 (13) | C13—C12—H12 | 119.4 |
O9—Cu1—Cu1i | 175.05 (13) | C14—C13—C12 | 118.1 (9) |
C19—N1—C20 | 121.4 (6) | C14—C13—H13 | 120.9 |
C19—N1—C21 | 120.8 (7) | C12—C13—H13 | 120.9 |
C20—N1—C21 | 117.6 (6) | C15—C14—C13 | 121.4 (9) |
C22—N2—C24 | 120.9 (9) | C15—C14—H14 | 119.3 |
C22—N2—C23 | 122.1 (9) | C13—C14—H14 | 119.3 |
C24—N2—C23 | 117.1 (8) | C14—C15—C16 | 121.5 (8) |
C1—O1—Cu1 | 125.6 (4) | C14—C15—H15 | 119.3 |
C1—O2—Cu1i | 121.4 (4) | C16—C15—H15 | 119.3 |
C10—O5—Cu1 | 122.0 (4) | C15—C16—C11 | 118.6 (8) |
C10—O6—Cu1i | 123.9 (4) | C15—C16—C17 | 118.1 (7) |
C17—O8—C18 | 117.6 (7) | C11—C16—C17 | 123.1 (7) |
C19—O9—Cu1 | 120.4 (4) | O7—C17—O8 | 124.0 (10) |
O1—C1—O2 | 125.0 (6) | O7—C17—C16 | 124.6 (10) |
O1—C1—C2 | 117.1 (6) | O8—C17—C16 | 111.3 (7) |
O2—C1—C2 | 118.0 (6) | O8—C18—H18A | 109.5 |
C3—C2—C7 | 118.5 (6) | O8—C18—H18B | 109.5 |
C3—C2—C1 | 120.5 (6) | H18A—C18—H18B | 109.5 |
C7—C2—C1 | 120.9 (6) | O8—C18—H18C | 109.5 |
C2—C3—C4 | 120.6 (7) | H18A—C18—H18C | 109.5 |
C2—C3—H3 | 119.7 | H18B—C18—H18C | 109.5 |
C4—C3—H3 | 119.7 | O9—C19—N1 | 124.1 (7) |
C5—C4—C3 | 120.6 (7) | O9—C19—H19 | 118.0 |
C5—C4—H4 | 119.7 | N1—C19—H19 | 118.0 |
C3—C4—H4 | 119.7 | N1—C20—H20A | 109.5 |
C4—C5—C6 | 119.8 (7) | N1—C20—H20B | 109.5 |
C4—C5—H5 | 120.1 | H20A—C20—H20B | 109.5 |
C6—C5—H5 | 120.1 | N1—C20—H20C | 109.5 |
C7—C6—C5 | 119.8 (7) | H20A—C20—H20C | 109.5 |
C7—C6—H6 | 120.1 | H20B—C20—H20C | 109.5 |
C5—C6—H6 | 120.1 | N1—C21—H21A | 109.5 |
C6—C7—C2 | 120.6 (7) | N1—C21—H21B | 109.5 |
C6—C7—C8 | 115.1 (7) | H21A—C21—H21B | 109.5 |
C2—C7—C8 | 123.7 (7) | N1—C21—H21C | 109.5 |
C6—C7—C8A | 119.2 (17) | H21A—C21—H21C | 109.5 |
C2—C7—C8A | 113.0 (18) | H21B—C21—H21C | 109.5 |
O3—C8—O4 | 123.5 (13) | O10—C22—N2 | 129.6 (11) |
O3—C8—C7 | 128.7 (13) | O10—C22—H22 | 115.2 |
O4—C8—C7 | 107.7 (12) | N2—C22—H22 | 115.2 |
C8—O4—C9 | 116.9 (13) | N2—C23—H23A | 109.5 |
O4—C9—H9A | 109.5 | N2—C23—H23B | 109.5 |
O4—C9—H9B | 109.5 | H23A—C23—H23B | 109.5 |
H9A—C9—H9B | 109.5 | N2—C23—H23C | 109.5 |
O4—C9—H9C | 109.5 | H23A—C23—H23C | 109.5 |
H9A—C9—H9C | 109.5 | H23B—C23—H23C | 109.5 |
H9B—C9—H9C | 109.5 | N2—C24—H24A | 109.5 |
O3A—C8A—O4A | 126 (5) | N2—C24—H24B | 109.5 |
O3A—C8A—C7 | 131 (5) | H24A—C24—H24B | 109.5 |
O4A—C8A—C7 | 102 (4) | N2—C24—H24C | 109.5 |
C8A—O4A—C9A | 113 (4) | H24A—C24—H24C | 109.5 |
O4A—C9A—H9A1 | 109.5 | H24B—C24—H24C | 109.5 |
Cu1—O1—C1—O2 | −2.2 (9) | O3A—C8A—O4A—C9A | 5 (6) |
Cu1—O1—C1—C2 | 179.2 (4) | C7—C8A—O4A—C9A | −180 (3) |
Cu1i—O2—C1—O1 | 1.3 (9) | Cu1i—O6—C10—O5 | −1.1 (9) |
Cu1i—O2—C1—C2 | 179.8 (4) | Cu1i—O6—C10—C11 | 172.8 (4) |
O1—C1—C2—C3 | 159.7 (6) | Cu1—O5—C10—O6 | 0.9 (9) |
O2—C1—C2—C3 | −18.9 (9) | Cu1—O5—C10—C11 | −173.0 (4) |
O1—C1—C2—C7 | −16.9 (9) | O6—C10—C11—C12 | −41.0 (9) |
O2—C1—C2—C7 | 164.5 (6) | O5—C10—C11—C12 | 133.5 (7) |
C7—C2—C3—C4 | 0.2 (10) | O6—C10—C11—C16 | 141.9 (7) |
C1—C2—C3—C4 | −176.5 (6) | O5—C10—C11—C16 | −43.6 (9) |
C2—C3—C4—C5 | −0.3 (11) | C16—C11—C12—C13 | 1.3 (12) |
C3—C4—C5—C6 | 0.2 (11) | C10—C11—C12—C13 | −175.9 (8) |
C4—C5—C6—C7 | −0.1 (11) | C11—C12—C13—C14 | −0.9 (14) |
C5—C6—C7—C2 | 0.0 (11) | C12—C13—C14—C15 | 1.1 (17) |
C5—C6—C7—C8 | 172.2 (9) | C13—C14—C15—C16 | −1.9 (17) |
C5—C6—C7—C8A | −148 (2) | C14—C15—C16—C11 | 2.2 (14) |
C3—C2—C7—C6 | −0.1 (10) | C14—C15—C16—C17 | −173.3 (9) |
C1—C2—C7—C6 | 176.6 (6) | C12—C11—C16—C15 | −1.9 (11) |
C3—C2—C7—C8 | −171.6 (9) | C10—C11—C16—C15 | 175.2 (7) |
C1—C2—C7—C8 | 5.1 (12) | C12—C11—C16—C17 | 173.4 (8) |
C3—C2—C7—C8A | 150.1 (19) | C10—C11—C16—C17 | −9.5 (11) |
C1—C2—C7—C8A | −33 (2) | C18—O8—C17—O7 | −0.5 (12) |
C6—C7—C8—O3 | −74.5 (14) | C18—O8—C17—C16 | −177.6 (6) |
C2—C7—C8—O3 | 97.4 (13) | C15—C16—C17—O7 | −51.0 (12) |
C6—C7—C8—O4 | 101.3 (10) | C11—C16—C17—O7 | 133.7 (9) |
C2—C7—C8—O4 | −86.8 (12) | C15—C16—C17—O8 | 126.0 (8) |
O3—C8—O4—C9 | −2 (2) | C11—C16—C17—O8 | −49.3 (10) |
C7—C8—O4—C9 | −178.1 (12) | Cu1—O9—C19—N1 | 171.9 (5) |
C6—C7—C8A—O3A | 106 (4) | C20—N1—C19—O9 | −2.4 (11) |
C2—C7—C8A—O3A | −45 (5) | C21—N1—C19—O9 | −177.0 (7) |
C6—C7—C8A—O4A | −70 (3) | C24—N2—C22—O10 | −2.6 (18) |
C2—C7—C8A—O4A | 139 (2) | C23—N2—C22—O10 | 176.5 (12) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O3Ai | 0.93 | 2.50 | 3.29 (3) | 143 |
C23—H23A···O6ii | 0.96 | 2.70 | 3.538 (11) | 145 |
C3—H3···O10iii | 0.93 | 2.63 | 3.284 (10) | 128 |
C6—H6···O10iv | 0.93 | 2.69 | 3.355 (11) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1. |
Funding information
The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21602016) and the Scientific Research Foundation for PhDs of Changzhi University.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Del Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894–4902. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farraj, Y., Smooha, A., Kamyshny, A. & Magdassi, S. (2017). Appl. Mater. Interfaces, 9, 8766–8773. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X. F., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141–6172. CrossRef CAS Google Scholar
Hou, H., Xie, L., Li, G., Ge, T., Fan, Y. & Zhu, Y. (2004). New J. Chem. 28, 191–199. CSD CrossRef CAS Google Scholar
Jones, P. L., Jeffery, J. C., Maher, J. P., McCleverty, J. A., Rieger, P. H. & Ward, M. D. (1997). Inorg. Chem. 36, 3088–3095. CSD CrossRef PubMed CAS Web of Science Google Scholar
Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99–128. CrossRef CAS Web of Science Google Scholar
Kitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. (2017). Chem. Soc. Rev. 46, 3108–3133. CrossRef CAS Google Scholar
Liu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303–x304. Google Scholar
Liu, P., Wang, Y.-Y., Li, D.-S., Luan, X.-J., Gao, S. & Shi, Q.-Z. (2005). Chin. J. Chem. 23, 204–210. CAS Google Scholar
Liu, Y., Wang, C., Xue, D., Xiao, M., Liu, J., Li, C. & Xiao, J. (2017). Chem. Eur. J. 23, 3062–3066. CSD CrossRef CAS Google Scholar
Ma, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196–198. Web of Science CSD CrossRef CAS Google Scholar
Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883, 1–5. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, M. R., Paixão, J. A., Beja, A. M., da Veiga, L. A. & Martín-Gil, J. (2001). J. Chem. Crystallogr. 31, 167–171. CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213–7222. Web of Science CSD CrossRef CAS PubMed Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Wang, J., Liu, B. & Yang, B. (2010). Acta Cryst. C66, m280–m282. CSD CrossRef IUCr Journals Google Scholar
Wang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.