research communications
H-chromen-7-yl 4-fluorobenzoate
of 2-oxo-2aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliqueés (UMRI EEA), Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, and cCNRS, Aix-Marseille Université, UMR 7345, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Centre St Jérôme, 13397 Marseille Cedex 20, France
*Correspondence e-mail: abouakoun@gmail.com
In the title compound, C16H9FO4, (I), the benzene ring is oriented at an acute angle of 59.03 (15)° relative to the coumarin plane (r.m.s deviation = 0.009 Å). This conformation of (I) is stabilized by an intramolecular C—H⋯O hydrogen bond, which closes a five-membering ring. In the crystal, molecules of (I) form infinite zigzag chains along the b-axis direction, linked by C—H⋯O hydrogen bonds. Furthermore, the is supported by π–π stacking interactions between neighbouring pyrone and benzene or coumarin rings [centroid–centroid distances in the range 3.5758 (18)–3.6115 (16) Å], as well as C=O⋯π interactions [O⋯centroid distances in the range 3.266 (3)–3.567 (3) Å]. The theoretical data for (I) obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin fragment and the benzene ring (73.7°) is somewhat larger than the experimental value [63.4 (4)°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.
Keywords: coumarin ester; C—H⋯O hydrogen bonds; π–π stacking interactions; Hirshfeld surface analysis; quantum chemical calculations; crystal structure.
CCDC reference: 1834035
1. Chemical context
et al., 2009), anti-oxidant (Vuković et al., 2010) and anti-inflammatory agents (Emmanuel-Giota et al., 2001). In view of their importance and as a continuation of our work on the analysis of coumarin derivatives (Abou et al., 2013; Ouédraogo et al., 2018), we report herein the synthesis, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative (I).
and their derivatives constitute one of the major classes of naturally occurring compounds and interest in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda2. Structural commentary
The molecular structure of (I) is illustrated in Fig. 1. In the structure, an S(5) ring motif arises from the intramolecular C16—H16⋯O3 hydrogen bond (Table 1), and generates a pseudo bicyclic ring system (Fig. 1). The coumarin fragment is planar (r.m.s deviation = 0.009 Å) and oriented at an acute angle of 59.03 (15)° with respect to the C11–C16 benzene ring, while the hydrogen-bonded five-membered ring [r.m.s deviation = 0.007 Å] forms dihedral angles of 59.23 (13) and 0.59 (18)°, respectively, with the coumarin ring system and the benzene ring. These dihedral angles suggest that the five-membered hydrogen-bonded and C11–C16 benzene rings are coplanar. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C2—C3 [1.332 (5) Å] and C1—C2 [1.451 (5) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C3—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2016).
3. Supramolecular features
In the crystal, the C2—H2⋯O2 hydrogen bond links molecules into infinite zigzag C(4) chains along the [010] direction (Fig. 2). In addition, a close contact with a distance shorter than the sum of the van der Waals radii [C1⋯C4 (−1 + x, y, z) = 3.336 (5) Å] and C1=O2⋯π interactions are present [O2⋯Cg1 (−1 + x, y, z) = 3.266 (3) and O2⋯Cg4 (−1 + x, y, z) = 3.567 (3) Å, where Cg1 and Cg4 are the centroids of the pyrone ring and the coumarin ring system, respectively]. The resulting supramolecular aggregation is completed by the presence of π–π stacking between the pyrone and C4–C9 benzene rings or coumarin ring systems (Fig. 3). The centroid–centroid distances [Cg1⋯Cg2 (−1 + x, y, z) = 3.5758 (18), Cg1⋯Cg4 (−1 + x, y, z) = 3.6116 (16), Cg2⋯Cg4 (1 + x, y, z) = 3.6047 (16) Å, where Cg2 is the centroid of the C4–C9 benzene ring] are less than 3.8 Å, the maximum regarded as suitable for an effective π–π interaction (Janiak, 2000). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2.
|
4. Database survey
A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016) found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982; Gnanaguru et al., 1985; Parveen et al., 2011; Ji et al., 2014, 2017). In these structures and those of meta-substituted coumarin (Abou et al., 2013; Bibila Mayaya Bisseyou et al., 2013; Yu et al., 2014; Gomes et al., 2016; Ziki et al., 2016, 2017), the pyrone rings show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated for (I) with C2—C3 = 1.332 (5) Å, while C1—C2 = 1.451 (5), C3—C4 = 1.434 (4) and C4—C5 = 1.399 (4) Å.
5. Hirshfeld surface analysis
Molecular Hirshfeld surfaces and the associated two-dimensional fingerprint plots of (I) were calculated using a standard (high) surface resolution with the the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012). The analysis of intermolecular interactions through the mapping of three-dimensional dnorm surfaces is permitted by the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I), the surface mapped over dnorm highlights several red spots showing distances shorter than the sum of the van der Waals radii. These dominant interactions correspond to intermolecular C—H⋯O hydrogen bonds, C8⋯C5 (1 + x, y, z), O⋯π and π–π stacking interactions between the surface and the neighbouring environment. The mapping also shows white or pale-red spots with distances almost equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are shown as transparent to allow visualization of the molecule (Fig. 4). In the shape-index map (−0.99 to 1 Å) (Fig. 5), the adjacent red and blue triangle-like patches show concave regions that indicate π–π stacking interactions (Bitzer et al., 2017). Furthermore, the 2D fingerprint plots (FP), decomposed to highlight particular close contacts of atom pairs and the contributions from different contacts, are provided in Fig. 6. The red spots in the middle of the surface appearing near de = di = 1.8-2.0 Å correspond to close C⋯C interplanar contacts. These contacts, which comprise 10.1% of the total Hirshfeld surface area, are related to π–π interactions (Fig. 6a) as predicted by the X-ray study. The most significant contribution to the Hirshfeld surface (27.7%) is from H⋯O/O⋯H contacts, which appear on the left-side as blue spikes with the tip at de + di = 2.4 Å, top and bottom (Fig. 6b). As expected in organic compounds, the H⋯H contacts are important with a 24.5% contribution to Hirshfeld surface; these appear in the central region of the FP with a central blue tip spike at de = di = 1.10 Å (Fig. 6c) whereas the F⋯H/H⋯F contacts with a contribution to the Hirshfeld surface of 11.4% are indicated by the distribution of points around a pair of wings at de + di 2.6 Å (Fig. 6d). The C⋯H/H⋯C plot (16.2%) reveals information on the intermolecular hydrogen bonds (Fig. 6e). Other visible spots in the Hirshfeld surfaces indicate the C⋯O/O⋯C, O⋯O, F⋯F and C⋯F/F⋯C contacts, which contribute only 6.6, 1.3, 1.2 and 1.1%, respectively (Fig. 6f–6i).
6. Theoretical calculations
The geometry optimization of (I) was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The in the solid state was used as the starting structure for the calculations. The DFT calculations were performed with the GAUSSIAN09 program package (Frisch et al., 2013). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study, showing a good agreement for the bond lengths and bond angles with r.m.s. deviations of 0.017 Å and 1.06°, respectively (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin fragment and the C11–C16 benzene ring are co-planar (see Supplementary Table S3), which is in good agreement with the experimental results, although the calculated C10—O3—C7—C8 torsion angle between them (73.7°) is somewhat larger than the observed value [63.4 (4)°].
7. Synthesis and crystallization
To a solution of 4-fluorobenzoyl chloride (6.17 mmol; 0.98 g) in dried tetrahydrofuran (40 mL) was added dried triethylamine (3 molar equivalents; 2.6 mL) and 7-hydroxycoumarin (6.17 mmol; 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 mL of chloroform. The solution was acidified with diluted hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from acetone. Pale-yellow crystals of (I) were obtained in a good yield (85.1%; m.p. 467–468 K).
8. details
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1834035
https://doi.org/10.1107/S205698901800614X/kq2021sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901800614X/kq2021Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901800614X/kq2021Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C16H9FO4 | F(000) = 292 |
Mr = 284.23 | Dx = 1.489 Mg m−3 |
Monoclinic, P21 | Melting point = 467–468 K |
Hall symbol: P2yb | Cu Kα radiation, λ = 1.54184 Å |
a = 4.0181 (2) Å | Cell parameters from 4751 reflections |
b = 5.7296 (3) Å | θ = 4.8–67.5° |
c = 27.5566 (14) Å | µ = 1.00 mm−1 |
β = 91.660 (4)° | T = 298 K |
V = 634.14 (6) Å3 | Prism, pale yellow |
Z = 2 | 0.40 × 0.12 × 0.05 mm |
Rigaku SuperNova, Dual, Cu at zero, Atlas S2 diffractometer | 2228 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2149 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 67.9°, θmin = 4.8° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −6→6 |
Tmin = 0.683, Tmax = 1.000 | l = −32→32 |
8239 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1688P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2228 reflections | Δρmax = 0.13 e Å−3 |
190 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
36 constraints | Absolute structure parameter: −0.03 (8) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6427 (6) | 0.3343 (4) | 0.88096 (8) | 0.0524 (6) | |
O3 | 0.0412 (6) | 0.4724 (4) | 0.73539 (8) | 0.0615 (6) | |
C7 | 0.1548 (8) | 0.5614 (6) | 0.78012 (11) | 0.0497 (7) | |
C10 | 0.1085 (8) | 0.5845 (6) | 0.69372 (12) | 0.0530 (8) | |
C5 | 0.4431 (7) | 0.4840 (5) | 0.85424 (11) | 0.0441 (6) | |
O2 | 0.9356 (7) | 0.2473 (5) | 0.94698 (9) | 0.0754 (8) | |
C6 | 0.3531 (8) | 0.4146 (6) | 0.80778 (11) | 0.0478 (7) | |
H6 | 0.4246 | 0.2726 | 0.7955 | 0.057* | |
C9 | 0.1406 (8) | 0.8388 (6) | 0.84388 (12) | 0.0521 (7) | |
H9 | 0.0667 | 0.9806 | 0.8560 | 0.062* | |
C4 | 0.3401 (8) | 0.6973 (5) | 0.87346 (11) | 0.0460 (7) | |
C11 | −0.0314 (8) | 0.4585 (6) | 0.65121 (11) | 0.0503 (7) | |
C16 | −0.1991 (9) | 0.2483 (7) | 0.65592 (12) | 0.0573 (8) | |
H16 | −0.2289 | 0.1853 | 0.6866 | 0.069* | |
F1 | −0.3952 (7) | 0.1157 (6) | 0.53091 (9) | 0.1069 (10) | |
O4 | 0.2703 (7) | 0.7609 (5) | 0.69274 (9) | 0.0745 (8) | |
C3 | 0.4468 (8) | 0.7532 (6) | 0.92219 (11) | 0.0535 (8) | |
H3 | 0.3784 | 0.8923 | 0.9361 | 0.064* | |
C12 | 0.0095 (8) | 0.5513 (7) | 0.60524 (13) | 0.0613 (9) | |
H12 | 0.1210 | 0.6923 | 0.6018 | 0.074* | |
C1 | 0.7538 (8) | 0.3880 (6) | 0.92768 (12) | 0.0536 (8) | |
C8 | 0.0489 (8) | 0.7757 (6) | 0.79730 (12) | 0.0546 (8) | |
H8 | −0.0810 | 0.8743 | 0.7778 | 0.066* | |
C14 | −0.2763 (10) | 0.2274 (9) | 0.57115 (14) | 0.0705 (11) | |
C2 | 0.6429 (9) | 0.6080 (7) | 0.94771 (12) | 0.0570 (8) | |
H2 | 0.7103 | 0.6486 | 0.9792 | 0.068* | |
C15 | −0.3218 (10) | 0.1325 (7) | 0.61538 (14) | 0.0679 (10) | |
H15 | −0.4339 | −0.0085 | 0.6184 | 0.081* | |
C13 | −0.1144 (10) | 0.4358 (9) | 0.56453 (13) | 0.0735 (11) | |
H13 | −0.0889 | 0.4972 | 0.5336 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0609 (13) | 0.0430 (13) | 0.0528 (12) | 0.0028 (10) | −0.0050 (10) | −0.0037 (10) |
O3 | 0.0801 (15) | 0.0560 (15) | 0.0479 (12) | −0.0166 (13) | −0.0091 (10) | 0.0029 (11) |
C7 | 0.0542 (16) | 0.0476 (19) | 0.0470 (16) | −0.0114 (15) | −0.0026 (13) | 0.0003 (14) |
C10 | 0.0528 (17) | 0.052 (2) | 0.0542 (18) | 0.0026 (16) | −0.0010 (13) | 0.0049 (15) |
C5 | 0.0439 (14) | 0.0383 (16) | 0.0501 (15) | −0.0058 (12) | 0.0007 (11) | 0.0008 (12) |
O2 | 0.0877 (19) | 0.0643 (18) | 0.0726 (16) | 0.0051 (16) | −0.0235 (14) | 0.0052 (14) |
C6 | 0.0553 (16) | 0.0396 (17) | 0.0486 (16) | −0.0033 (13) | 0.0039 (12) | −0.0033 (13) |
C9 | 0.0527 (17) | 0.0378 (17) | 0.0660 (19) | 0.0015 (13) | 0.0063 (14) | −0.0016 (14) |
C4 | 0.0484 (16) | 0.0366 (17) | 0.0532 (16) | −0.0052 (13) | 0.0058 (12) | −0.0037 (12) |
C11 | 0.0503 (16) | 0.0493 (19) | 0.0511 (16) | 0.0079 (14) | −0.0034 (12) | 0.0015 (14) |
C16 | 0.0611 (19) | 0.054 (2) | 0.0567 (18) | 0.0012 (17) | −0.0044 (14) | 0.0021 (16) |
F1 | 0.116 (2) | 0.129 (3) | 0.0749 (15) | −0.0067 (19) | −0.0203 (14) | −0.0386 (16) |
O4 | 0.097 (2) | 0.0636 (17) | 0.0629 (15) | −0.0291 (16) | 0.0016 (13) | 0.0011 (13) |
C3 | 0.0615 (19) | 0.0438 (18) | 0.0556 (18) | −0.0076 (16) | 0.0066 (14) | −0.0096 (15) |
C12 | 0.0592 (19) | 0.064 (2) | 0.060 (2) | −0.0040 (18) | −0.0001 (15) | 0.0055 (17) |
C1 | 0.0577 (18) | 0.050 (2) | 0.0527 (17) | −0.0078 (16) | −0.0050 (14) | 0.0021 (15) |
C8 | 0.0580 (19) | 0.0442 (18) | 0.0613 (19) | 0.0014 (15) | −0.0029 (14) | 0.0062 (14) |
C14 | 0.067 (2) | 0.081 (3) | 0.063 (2) | 0.004 (2) | −0.0124 (17) | −0.022 (2) |
C2 | 0.065 (2) | 0.056 (2) | 0.0498 (17) | −0.0123 (16) | −0.0016 (14) | −0.0059 (15) |
C15 | 0.070 (2) | 0.061 (2) | 0.072 (2) | −0.0016 (19) | −0.0067 (17) | −0.0090 (18) |
C13 | 0.077 (2) | 0.095 (3) | 0.0480 (18) | 0.011 (2) | −0.0041 (16) | 0.002 (2) |
O1—C5 | 1.374 (3) | C11—C16 | 1.388 (5) |
O1—C1 | 1.385 (4) | C11—C12 | 1.388 (5) |
O3—C10 | 1.350 (4) | C16—C15 | 1.378 (5) |
O3—C7 | 1.398 (4) | C16—H16 | 0.9300 |
C7—C6 | 1.374 (4) | F1—C14 | 1.355 (4) |
C7—C8 | 1.387 (5) | C3—C2 | 1.332 (5) |
C10—O4 | 1.202 (4) | C3—H3 | 0.9300 |
C10—C11 | 1.473 (4) | C12—C13 | 1.383 (5) |
C5—C6 | 1.379 (4) | C12—H12 | 0.9300 |
C5—C4 | 1.399 (4) | C1—C2 | 1.451 (5) |
O2—C1 | 1.202 (4) | C8—H8 | 0.9300 |
C6—H6 | 0.9300 | C14—C15 | 1.352 (6) |
C9—C8 | 1.373 (5) | C14—C13 | 1.374 (7) |
C9—C4 | 1.388 (4) | C2—H2 | 0.9300 |
C9—H9 | 0.9300 | C15—H15 | 0.9300 |
C4—C3 | 1.434 (4) | C13—H13 | 0.9300 |
C5—O1—C1 | 121.8 (2) | C11—C16—H16 | 119.8 |
C10—O3—C7 | 120.5 (3) | C2—C3—C4 | 120.7 (3) |
C6—C7—C8 | 122.1 (3) | C2—C3—H3 | 119.6 |
C6—C7—O3 | 115.8 (3) | C4—C3—H3 | 119.6 |
C8—C7—O3 | 121.9 (3) | C13—C12—C11 | 120.5 (4) |
O4—C10—O3 | 122.7 (3) | C13—C12—H12 | 119.7 |
O4—C10—C11 | 126.0 (3) | C11—C12—H12 | 119.7 |
O3—C10—C11 | 111.2 (3) | O2—C1—O1 | 116.0 (3) |
O1—C5—C6 | 116.8 (3) | O2—C1—C2 | 127.1 (3) |
O1—C5—C4 | 121.1 (3) | O1—C1—C2 | 116.9 (3) |
C6—C5—C4 | 122.1 (3) | C9—C8—C7 | 118.4 (3) |
C7—C6—C5 | 118.1 (3) | C9—C8—H8 | 120.8 |
C7—C6—H6 | 121.0 | C7—C8—H8 | 120.8 |
C5—C6—H6 | 121.0 | C15—C14—F1 | 119.6 (4) |
C8—C9—C4 | 122.0 (3) | C15—C14—C13 | 123.1 (4) |
C8—C9—H9 | 119.0 | F1—C14—C13 | 117.3 (4) |
C4—C9—H9 | 119.0 | C3—C2—C1 | 121.7 (3) |
C9—C4—C5 | 117.4 (3) | C3—C2—H2 | 119.2 |
C9—C4—C3 | 124.9 (3) | C1—C2—H2 | 119.2 |
C5—C4—C3 | 117.8 (3) | C14—C15—C16 | 118.9 (4) |
C16—C11—C12 | 119.2 (3) | C14—C15—H15 | 120.6 |
C16—C11—C10 | 121.7 (3) | C16—C15—H15 | 120.6 |
C12—C11—C10 | 119.0 (3) | C14—C13—C12 | 118.0 (4) |
C15—C16—C11 | 120.4 (3) | C14—C13—H13 | 121.0 |
C15—C16—H16 | 119.8 | C12—C13—H13 | 121.0 |
C10—O3—C7—C6 | −122.3 (3) | C12—C11—C16—C15 | 0.4 (5) |
C10—O3—C7—C8 | 63.4 (4) | C10—C11—C16—C15 | −178.8 (3) |
C7—O3—C10—O4 | 1.1 (5) | C9—C4—C3—C2 | −179.0 (3) |
C7—O3—C10—C11 | 179.3 (3) | C5—C4—C3—C2 | 1.3 (5) |
C1—O1—C5—C6 | 178.7 (3) | C16—C11—C12—C13 | −0.2 (5) |
C1—O1—C5—C4 | −0.7 (4) | C10—C11—C12—C13 | 179.0 (3) |
C8—C7—C6—C5 | 1.0 (4) | C5—O1—C1—O2 | −177.7 (3) |
O3—C7—C6—C5 | −173.3 (3) | C5—O1—C1—C2 | 1.5 (4) |
O1—C5—C6—C7 | −179.7 (3) | C4—C9—C8—C7 | 1.4 (5) |
C4—C5—C6—C7 | −0.3 (4) | C6—C7—C8—C9 | −1.5 (5) |
C8—C9—C4—C5 | −0.8 (5) | O3—C7—C8—C9 | 172.5 (3) |
C8—C9—C4—C3 | 179.5 (3) | C4—C3—C2—C1 | −0.5 (5) |
O1—C5—C4—C9 | 179.6 (3) | O2—C1—C2—C3 | 178.2 (4) |
C6—C5—C4—C9 | 0.2 (4) | O1—C1—C2—C3 | −0.9 (5) |
O1—C5—C4—C3 | −0.7 (4) | F1—C14—C15—C16 | 180.0 (3) |
C6—C5—C4—C3 | 179.9 (3) | C13—C14—C15—C16 | −0.4 (6) |
O4—C10—C11—C16 | 176.2 (3) | C11—C16—C15—C14 | −0.1 (5) |
O3—C10—C11—C16 | −1.9 (4) | C15—C14—C13—C12 | 0.6 (6) |
O4—C10—C11—C12 | −3.0 (5) | F1—C14—C13—C12 | −179.7 (3) |
O3—C10—C11—C12 | 178.9 (3) | C11—C12—C13—C14 | −0.3 (6) |
Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O3 | 0.93 | 2.37 | 2.693 (4) | 100 |
C2—H2···O2i | 0.93 | 2.51 | 3.412 (4) | 163 |
C1—O2···Cg2ii | 1.20 (1) | 3.27 (1) | 3.403 (3) | 86 (1) |
C1—O2···Cg4ii | 1.20 (1) | 3.57 (1) | 3.368 (3) | 71 (1) |
Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) x−1, y, z. |
Cg(I) | Cg(J) | Symmetry Cg(J) | Cg(I)···Cg(J) | CgI_Perp | CgJ_Perp | Slippage |
Cg1 | Cg2 | -1 + x, y, z | 3.5758 (18) | 3.3139 (13) | -3.3124 (13) | 1.347 |
Cg1 | Cg4 | -1 + x, y, z | 3.6116 (16) | 3.3133 (13) | -3.3044 (10) | 1.458 |
Cg2 | Cg1 | 1 + x, y, z | 3.5758 (18) | -3.3123 (13) | 3.3140 (13) | 1.343 |
Cg2 | Cg4 | 1 + x, y, z | 3.6047 (16) | -3.3109 (13) | 3.3195 (10) | 1.405 |
Cg4 | Cg1 | 1 + x, y, z | 3.6115 (16) | -3.3043 (10) | 3.3134(13 | 1.437 |
Cg4 | Cg2 | -1 + x, y, z | 3.6049 (16) | 3.3196 (10) | -3.3110 (13) | 1.426 |
Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. |
Experimental and calculated bond lengths (Å) |
Bond | X-ray | 6-311++G(d,p) |
O1—C5 | 1.374 (3) | 1.348 |
O1—C1 | 1.385 (4) | 1.354 |
O3—C10 | 1.350 (4) | 1.342 |
O3—C7 | 1.398 (4) | 1.375 |
C7—C6 | 1.374 (4) | 1.373 |
C7—C8 | 1.387 (5) | 1.3889 |
C10—O4 | 1.202 (4) | 1.180 |
C10—C11 | 1.473 (4) | 1.486 |
C5—C6 | 1.379 (4) | 1.385 |
C5—C4 | 1.399 (4) | 1.385 |
O2—C1 | 1.202 (4) | 1.178 |
C9—C8 | 1.373 (5) | 1.374 |
C9—C4 | 1.388 (4) | 1.395 |
C4—C3 | 1.434 (4) | 1.452 |
C11—C16 | 1.388 (5) | 1.390 |
C11—C12 | 1.388 (5) | 1.391 |
C16—C15 | 1.378 (5) | 1.383 |
F1—C14 | 1.355 (4) | 1.321 |
C3—C2 | 1.332 (5) | 1.329 |
C12—C13 | 1.383 (5) | 1.380 |
C1—C2 | 1.451 (5) | 1.468 |
C14—C15 | 1.352 (6) | 1.378 |
C14—C13 | 1.374 (7) | 1.379 |
Experimental and calculated bond angles (°) |
Bond angle | X-ray | 6-311++G(d,p) |
C5—O1—C1 | 121.8 (2) | 123.7 |
C10—O3—C7 | 120.5 (3) | 119.9 |
C6—C7—C8 | 122.1 (3) | 122.0 |
C6—C7—O3 | 115.8 (3) | 117.7 |
C8—C7—O3 | 121.9 (3) | 120.1 |
O4—C10—O3 | 122.7 (3) | 123.1 |
O4—C10—C11 | 126.0 (3) | 124.8 |
O3—C10—C11 | 111.2 (3) | 112.1 |
O1—C5—C6 | 116.8 (3) | 117.1 |
O1—C5—C4 | 121.1 (3) | 121.4 |
C6—C5—C4 | 122.1 (3) | 121.5 |
C7—C6—C5 | 118.1 (3) | 118.2 |
C8—C9—C4 | 122.0 (3) | 121.0 |
C9—C4—C5 | 117.4 (3) | 118.6 |
C9—C4—C3 | 124.9 (3) | 124.2 |
C5—C4—C3 | 117.8 (3) | 117.2 |
C16—C11—C12 | 119.2 (3) | 119.7 |
C16—C11—C10 | 121.7 (3) | 122.4 |
C12—C11—C10 | 119.0 (3) | 117.8 |
C15—C16—C11 | 120.4 (3) | 120.3 |
C2—C3—C4 | 120.7 (3) | 120.5 |
C13—C12—C11 | 120.5 (4) | 120.5 |
O2—C1—O1 | 116.0 (3) | 118.7 |
O2—C1—C2 | 127.1 (3) | 124.9 |
O1—C1—C2 | 116.9 (3) | 116.3 |
C9—C8—C7 | 118.4 (3) | 118.7 |
C15—C14—F1 | 119.6 (4) | 118.7 |
C15—C14—C13 | 123.1 (4) | 122.6 |
F1—C14—C13 | 117.3 (4) | 118.7 |
C3—C2—C1 | 121.7 (3) | 121.0 |
C14—C15—C16 | 118.9 (4) | 118.5 |
C14—C13—C12 | 118.0 (4) | 118.3 |
Experimental and calculated torsion angles (°) |
Torsion angle | X-ray | 6-311++G(d,p) |
C10—O3—C7—C6 | -122.3 (3) | -109.7 |
C10—O3—C7—C8 | 63.4 (4) | 73.7 |
C7—O3—C10—O4 | 1.1 (5) | -0.1 |
C7—O3—C10—C11 | 179.3 (3) | 179.9 |
C1—O1—C5—C6 | 178.7 (3) | -180.0 |
C1—O1—C5—C4 | -0.7 (4) | -0.1 |
C8—C7—C6—C5 | 1.0 (4) | -0.2 |
O3—C7—C6—C5 | -173.3 (3) | -176.7 |
O1—C5—C6—C7 | -179.7 (3) | 179.9 |
C4—C5—C6—C7 | -0.3 (4) | -0.0 |
C8—C9—C4—C5 | -0.8 (5) | 0.0 |
C8—C9—C4—C3 | 179.5 (3) | -179.9 |
O1—C5—C4—C9 | 179.6 (3) | -179.7 |
C6—C5—C4—C9 | 0.2 (4) | 0.1 |
O1—C5—C4—C3 | -0.7 (4) | 0.2 |
C6—C5—C4—C3 | 179.9 (3) | -179.9 |
O4—C10—C11—C16 | 176.2 (3) | -179.7 |
O3—C10—C11—C16 | -1.9 (4) | 0.3 |
O4—C10—C11—C12 | -3.0 (5) | 0.4 |
O3—C10—C11—C12 | 178.9 (3) | -179.6 |
C12—C11—C16—C15 | 0.4 (5) | -0.1 |
C10—C11—C16—C15 | -178.8 (3) | 179.9 |
C9—C4—C3—C2 | -179.0 (3) | 179.8 |
C5—C4—C3—C2 | 1.3 (5) | -0.2 |
C16—C11—C12—C13 | -0.2 (5) | 0.0 |
C10—C11—C12—C13 | 179.0 (3) | -180.0 |
C5—O1—C1—O2 | -177.7 (3) | 180.0 |
C5—O1—C1—C2 | 1.5 (4) | -0.1 |
C4—C9—C8—C7 | 1.4 (5) | -0.3 |
C6—C7—C8—C9 | -1.5 (5) | 0.4 |
O3—C7—C8—C9 | 172.5 (3) | 176.8 |
C4—C3—C2—C1 | -0.5 (5) | -0.0 |
O2—C1—C2—C3 | 178.2 (4) | -179.8 |
O1—C1—C2—C3 | -0.9 (5) | 0.1 |
F1—C14—C15—C16 | 180.0 (3) | 180.0 |
C13—C14—C15—C16 | -0.4 (6) | -0.0 |
C11—C16—C15—C14 | -0.1 (5) | 0.1 |
C15—C14—C13—C12 | 0.6 (6) | -0.0 |
F1—C14—C13—C12 | -179.7 (3) | 180.0 |
C11—C12—C13—C14 | -0.3 (6) | 0.0 |
Acknowledgements
The authors are grateful to Mr Michel GIORGI (Spectropôle Service of the Faculty of Sciences and Technique, Saint Jérôme center, Aix-Marseille University, France) for his help with the X-ray diffraction study.
References
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CSD CrossRef IUCr Journals Google Scholar
Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495. Web of Science CSD CrossRef CAS Google Scholar
Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. CSD CrossRef IUCr Journals Google Scholar
Bitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173. Web of Science CSD CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346. CSD CrossRef CAS Web of Science Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795. Web of Science CSD CrossRef CAS Google Scholar
Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30. CAS Google Scholar
Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161. CSD CrossRef CAS Web of Science Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vuković, N., Sukdolak, S., Solujić, S. & Niciforović, N. (2010). Arch. Pharm. Res. 33, 5–15. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia. Google Scholar
Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370. CSD CrossRef IUCr Journals Google Scholar
Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.