research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxo-2H-chromen-7-yl 4-fluoro­benzoate

CROSSMARK_Color_square_no_text.svg

aUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliqueés (UMRI EEA), Equipe de Recherche: Instrumentation Image et Spectroscopie (L2IS), DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, and cCNRS, Aix-Marseille Université, UMR 7345, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Centre St Jérôme, 13397 Marseille Cedex 20, France
*Correspondence e-mail: abouakoun@gmail.com

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 11 April 2018; accepted 22 April 2018; online 27 April 2018)

In the title compound, C16H9FO4, (I), the benzene ring is oriented at an acute angle of 59.03 (15)° relative to the coumarin plane (r.m.s deviation = 0.009 Å). This conformation of (I) is stabilized by an intra­molecular C—H⋯O hydrogen bond, which closes a five-membering ring. In the crystal, mol­ecules of (I) form infinite zigzag chains along the b-axis direction, linked by C—H⋯O hydrogen bonds. Furthermore, the crystal structure is supported by ππ stacking inter­actions between neighbouring pyrone and benzene or coumarin rings [centroid–centroid distances in the range 3.5758 (18)–3.6115 (16) Å], as well as C=O⋯π inter­actions [O⋯centroid distances in the range 3.266 (3)–3.567 (3) Å]. The theoretical data for (I) obtained from quantum chemical calculations are in good agreement with the observed structure, although the calculated C—O—C—C torsion angle between the coumarin fragment and the benzene ring (73.7°) is somewhat larger than the experimental value [63.4 (4)°]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

1. Chemical context

Coumarins and their derivatives constitute one of the major classes of naturally occurring compounds and inter­est in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several mol­ecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]), anti-oxidant (Vuković et al., 2010[Vuković, N., Sukdolak, S., Solujić, S. & Niciforović, N. (2010). Arch. Pharm. Res. 33, 5-15.]) and anti-inflammatory agents (Emmanuel-Giota et al., 2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717-722.]). In view of their importance and as a continuation of our work on the crystal structure analysis of coumarin derivatives (Abou et al., 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]; Ouédraogo et al., 2018[Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530-534.]), we report herein the synthesis, crystal structure, geometry optimization and Hirshfeld surface analysis of the title coumarin derivative (I)[link].

2. Structural commentary

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link]. In the structure, an S(5) ring motif arises from the intra­molecular C16—H16⋯O3 hydrogen bond (Table 1[link]), and generates a pseudo bicyclic ring system (Fig. 1[link]). The coumarin fragment is planar (r.m.s deviation = 0.009 Å) and oriented at an acute angle of 59.03 (15)° with respect to the C11–C16 benzene ring, while the hydrogen-bonded five-membered ring [r.m.s deviation = 0.007 Å] forms dihedral angles of 59.23 (13) and 0.59 (18)°, respectively, with the coumarin ring system and the benzene ring. These dihedral angles suggest that the five-membered hydrogen-bonded and C11–C16 benzene rings are coplanar. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring: the C2—C3 [1.332 (5) Å] and C1—C2 [1.451 (5) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C3—C2 bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3 0.93 2.37 2.693 (4) 100
C2—H2⋯O2i 0.93 2.51 3.412 (4) 163
C1—O2⋯Cg2ii 1.20 (1) 3.27 (1) 3.403 (3) 86 (1)
C1—O2⋯Cg4ii 1.20 (1) 3.57 (1) 3.368 (3) 71 (1)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+2]; (ii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I), along with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The intra­molecular hydrogen bond is indicated by a dashed line.

3. Supra­molecular features

In the crystal, the C2—H2⋯O2 hydrogen bond links mol­ecules into infinite zigzag C(4) chains along the [010] direction (Fig. 2[link]). In addition, a close contact with a distance shorter than the sum of the van der Waals radii [C1⋯C4 (−1 + x, y, z) = 3.336 (5) Å] and C1=O2⋯π inter­actions are present [O2⋯Cg1 (−1 + x, y, z) = 3.266 (3) and O2⋯Cg4 (−1 + x, y, z) = 3.567 (3) Å, where Cg1 and Cg4 are the centroids of the pyrone ring and the coumarin ring system, respectively]. The resulting supra­molecular aggregation is completed by the presence of ππ stacking between the pyrone and C4–C9 benzene rings or coumarin ring systems (Fig. 3[link]). The centroid–centroid distances [Cg1⋯Cg2 (−1 + x, y, z) = 3.5758 (18), Cg1⋯Cg4 (−1 + x, y, z) = 3.6116 (16), Cg2⋯Cg4 (1 + x, y, z) = 3.6047 (16) Å, where Cg2 is the centroid of the C4–C9 benzene ring] are less than 3.8 Å, the maximum regarded as suitable for an effective ππ inter­action (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2[link].

Table 2
Analysis of short ring inter­actions (Å)

Cg(I) Cg(J) Symmetry Cg(J) Cg(I)⋯Cg(J) CgI_Perp CgJ_Perp Slippage
Cg1 Cg2 −1 + x, y, z 3.5758 (18) 3.3139 (13) −3.3124 (13) 1.347
Cg1 Cg4 −1 + x, y, z 3.6116 (16) 3.3133 (13) −3.3044 (10) 1.458
Cg2 Cg1 1 + x, y, z 3.5758 (18) −3.3123 (13) 3.3140 (13) 1.343
Cg2 Cg4 1 + x, y, z 3.6047 (16) −3.3109 (13) 3.3195 (10) 1.405
Cg4 Cg1 1 + x, y, z 3.6115 (16) −3.3043 (10) 3.3134(13 1.437
Cg4 Cg2 −1 + x, y, z 3.6049 (16) 3.3196 (10) −3.3110 (13) 1.426
Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.
[Figure 2]
Figure 2
Part of the crystal packing of (I)[link] showing the formation of an infinite C(4) chain along the b-axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A view of the crystal packing showing C1=O2⋯π and ππ stacking inter­actions (dashed lines). The yellow dots are ring centroids.

4. Database survey

A CSD search (Web CSD version 5.39; March 9, 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982[Ramasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159-2161.]; Gnanaguru et al., 1985[Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337-2346.]; Parveen et al., 2011[Parveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22-30.]; Ji et al., 2014[Ji, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545-15548.], 2017[Ji, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790-7795.]). In these structures and those of meta-substituted coumarin esters (Abou et al., 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]; Bibila Mayaya Bisseyou et al., 2013[Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125-o1126.]; Yu et al., 2014[Yu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369-m370.]; Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.], 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]), the pyrone rings show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated for (I)[link] with C2—C3 = 1.332 (5) Å, while C1—C2 = 1.451 (5), C3—C4 = 1.434 (4) and C4—C5 = 1.399 (4) Å.

5. Hirshfeld surface analysis

Mol­ecular Hirshfeld surfaces and the associated two-dimensional fingerprint plots of (I)[link] were calculated using a standard (high) surface resolution with the the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue) with the program CrystalExplorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The analysis of inter­molecular inter­actions through the mapping of three-dimensional dnorm surfaces is permitted by the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In (I)[link], the surface mapped over dnorm highlights several red spots showing distances shorter than the sum of the van der Waals radii. These dominant inter­actions correspond to inter­molecular C—H⋯O hydrogen bonds, C8⋯C5 (1 + x, y, z), O⋯π and ππ stacking inter­actions between the surface and the neighbouring environment. The mapping also shows white or pale-red spots with distances almost equal to the sum of the van der Waals radii and blue regions with distances longer than the sum of the van der Waals radii. The surfaces are shown as transparent to allow visualization of the mol­ecule (Fig. 4[link]). In the shape-index map (−0.99 to 1 Å) (Fig. 5[link]), the adjacent red and blue triangle-like patches show concave regions that indicate ππ stacking inter­actions (Bitzer et al., 2017[Bitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165-173.]). Furthermore, the 2D fingerprint plots (FP), decomposed to highlight particular close contacts of atom pairs and the contributions from different contacts, are provided in Fig. 6[link]. The red spots in the middle of the surface appearing near de = di = 1.8-2.0 Å correspond to close C⋯C inter­planar contacts. These contacts, which comprise 10.1% of the total Hirshfeld surface area, are related to ππ inter­actions (Fig. 6[link]a) as predicted by the X-ray study. The most significant contrib­ution to the Hirshfeld surface (27.7%) is from H⋯O/O⋯H contacts, which appear on the left-side as blue spikes with the tip at de + di = 2.4 Å, top and bottom (Fig. 6[link]b). As expected in organic compounds, the H⋯H contacts are important with a 24.5% contribution to Hirshfeld surface; these appear in the central region of the FP with a central blue tip spike at de = di = 1.10 Å (Fig. 6[link]c) whereas the F⋯H/H⋯F contacts with a contribution to the Hirshfeld surface of 11.4% are indicated by the distribution of points around a pair of wings at de + di [\simeq] 2.6 Å (Fig. 6[link]d). The C⋯H/H⋯C plot (16.2%) reveals information on the inter­molecular hydrogen bonds (Fig. 6[link]e). Other visible spots in the Hirshfeld surfaces indicate the C⋯O/O⋯C, O⋯O, F⋯F and C⋯F/F⋯C contacts, which contribute only 6.6, 1.3, 1.2 and 1.1%, respectively (Fig. 6[link]f–6i).

[Figure 4]
Figure 4
A view of the Hirshfeld surface for (I)[link] with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.26 (red) to 1.20 Å (blue).
[Figure 5]
Figure 5
Hirshfeld surface mapped over shape-index highlighting the regions involved in ππ stacking inter­actions.
[Figure 6]
Figure 6
Decomposed two-dimensional fingerprint plots for (I)[link]. Various short contacts and their relative contributions are indicated.

6. Theoretical calculations

The geometry optimization of (I)[link] was performed using the density functional theory (DFT) method with a 6-311++G(d,p) basis set. The crystal structure in the solid state was used as the starting structure for the calculations. The DFT calculations were performed with the GAUSSIAN09 program package (Frisch et al., 2013[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]). The resulting geometrical parameters are compared with those obtained from the X-ray crystallographic study, showing a good agreement for the bond lengths and bond angles with r.m.s. deviations of 0.017 Å and 1.06°, respectively (see Supplementary Tables S1 and S2). In addition, an inspection of the calculated torsion angles shows that the coumarin fragment and the C11–C16 benzene ring are co-planar (see Supplementary Table S3), which is in good agreement with the experimental results, although the calculated C10—O3—C7—C8 torsion angle between them (73.7°) is somewhat larger than the observed value [63.4 (4)°].

7. Synthesis and crystallization

To a solution of 4-fluoro­benzoyl chloride (6.17 mmol; 0.98 g) in dried tetra­hydro­furan (40 mL) was added dried tri­ethyl­amine (3 molar equivalents; 2.6 mL) and 7-hy­droxy­coumarin (6.17 mmol; 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 mL of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from acetone. Pale-yellow crystals of (I)[link] were obtained in a good yield (85.1%; m.p. 467–468 K).

8. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C16H9FO4
Mr 284.23
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 4.0181 (2), 5.7296 (3), 27.5566 (14)
β (°) 91.660 (4)
V3) 634.14 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.40 × 0.12 × 0.05
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.683, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8239, 2228, 2149
Rint 0.026
(sin θ/λ)max−1) 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.13
No. of reflections 2228
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.16
Absolute structure Flack x determined using 875 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2-Oxo-2H-chromen-7-yl 4-fluorobenzoate top
Crystal data top
C16H9FO4F(000) = 292
Mr = 284.23Dx = 1.489 Mg m3
Monoclinic, P21Melting point = 467–468 K
Hall symbol: P2ybCu Kα radiation, λ = 1.54184 Å
a = 4.0181 (2) ÅCell parameters from 4751 reflections
b = 5.7296 (3) Åθ = 4.8–67.5°
c = 27.5566 (14) ŵ = 1.00 mm1
β = 91.660 (4)°T = 298 K
V = 634.14 (6) Å3Prism, pale yellow
Z = 20.40 × 0.12 × 0.05 mm
Data collection top
Rigaku SuperNova, Dual, Cu at zero, Atlas S2
diffractometer
2228 independent reflections
Radiation source: micro-focus sealed X-ray tube2149 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 5.3048 pixels mm-1θmax = 67.9°, θmin = 4.8°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 66
Tmin = 0.683, Tmax = 1.000l = 3232
8239 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1688P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2228 reflectionsΔρmax = 0.13 e Å3
190 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 875 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
36 constraintsAbsolute structure parameter: 0.03 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6427 (6)0.3343 (4)0.88096 (8)0.0524 (6)
O30.0412 (6)0.4724 (4)0.73539 (8)0.0615 (6)
C70.1548 (8)0.5614 (6)0.78012 (11)0.0497 (7)
C100.1085 (8)0.5845 (6)0.69372 (12)0.0530 (8)
C50.4431 (7)0.4840 (5)0.85424 (11)0.0441 (6)
O20.9356 (7)0.2473 (5)0.94698 (9)0.0754 (8)
C60.3531 (8)0.4146 (6)0.80778 (11)0.0478 (7)
H60.42460.27260.79550.057*
C90.1406 (8)0.8388 (6)0.84388 (12)0.0521 (7)
H90.06670.98060.85600.062*
C40.3401 (8)0.6973 (5)0.87346 (11)0.0460 (7)
C110.0314 (8)0.4585 (6)0.65121 (11)0.0503 (7)
C160.1991 (9)0.2483 (7)0.65592 (12)0.0573 (8)
H160.22890.18530.68660.069*
F10.3952 (7)0.1157 (6)0.53091 (9)0.1069 (10)
O40.2703 (7)0.7609 (5)0.69274 (9)0.0745 (8)
C30.4468 (8)0.7532 (6)0.92219 (11)0.0535 (8)
H30.37840.89230.93610.064*
C120.0095 (8)0.5513 (7)0.60524 (13)0.0613 (9)
H120.12100.69230.60180.074*
C10.7538 (8)0.3880 (6)0.92768 (12)0.0536 (8)
C80.0489 (8)0.7757 (6)0.79730 (12)0.0546 (8)
H80.08100.87430.77780.066*
C140.2763 (10)0.2274 (9)0.57115 (14)0.0705 (11)
C20.6429 (9)0.6080 (7)0.94771 (12)0.0570 (8)
H20.71030.64860.97920.068*
C150.3218 (10)0.1325 (7)0.61538 (14)0.0679 (10)
H150.43390.00850.61840.081*
C130.1144 (10)0.4358 (9)0.56453 (13)0.0735 (11)
H130.08890.49720.53360.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0609 (13)0.0430 (13)0.0528 (12)0.0028 (10)0.0050 (10)0.0037 (10)
O30.0801 (15)0.0560 (15)0.0479 (12)0.0166 (13)0.0091 (10)0.0029 (11)
C70.0542 (16)0.0476 (19)0.0470 (16)0.0114 (15)0.0026 (13)0.0003 (14)
C100.0528 (17)0.052 (2)0.0542 (18)0.0026 (16)0.0010 (13)0.0049 (15)
C50.0439 (14)0.0383 (16)0.0501 (15)0.0058 (12)0.0007 (11)0.0008 (12)
O20.0877 (19)0.0643 (18)0.0726 (16)0.0051 (16)0.0235 (14)0.0052 (14)
C60.0553 (16)0.0396 (17)0.0486 (16)0.0033 (13)0.0039 (12)0.0033 (13)
C90.0527 (17)0.0378 (17)0.0660 (19)0.0015 (13)0.0063 (14)0.0016 (14)
C40.0484 (16)0.0366 (17)0.0532 (16)0.0052 (13)0.0058 (12)0.0037 (12)
C110.0503 (16)0.0493 (19)0.0511 (16)0.0079 (14)0.0034 (12)0.0015 (14)
C160.0611 (19)0.054 (2)0.0567 (18)0.0012 (17)0.0044 (14)0.0021 (16)
F10.116 (2)0.129 (3)0.0749 (15)0.0067 (19)0.0203 (14)0.0386 (16)
O40.097 (2)0.0636 (17)0.0629 (15)0.0291 (16)0.0016 (13)0.0011 (13)
C30.0615 (19)0.0438 (18)0.0556 (18)0.0076 (16)0.0066 (14)0.0096 (15)
C120.0592 (19)0.064 (2)0.060 (2)0.0040 (18)0.0001 (15)0.0055 (17)
C10.0577 (18)0.050 (2)0.0527 (17)0.0078 (16)0.0050 (14)0.0021 (15)
C80.0580 (19)0.0442 (18)0.0613 (19)0.0014 (15)0.0029 (14)0.0062 (14)
C140.067 (2)0.081 (3)0.063 (2)0.004 (2)0.0124 (17)0.022 (2)
C20.065 (2)0.056 (2)0.0498 (17)0.0123 (16)0.0016 (14)0.0059 (15)
C150.070 (2)0.061 (2)0.072 (2)0.0016 (19)0.0067 (17)0.0090 (18)
C130.077 (2)0.095 (3)0.0480 (18)0.011 (2)0.0041 (16)0.002 (2)
Geometric parameters (Å, º) top
O1—C51.374 (3)C11—C161.388 (5)
O1—C11.385 (4)C11—C121.388 (5)
O3—C101.350 (4)C16—C151.378 (5)
O3—C71.398 (4)C16—H160.9300
C7—C61.374 (4)F1—C141.355 (4)
C7—C81.387 (5)C3—C21.332 (5)
C10—O41.202 (4)C3—H30.9300
C10—C111.473 (4)C12—C131.383 (5)
C5—C61.379 (4)C12—H120.9300
C5—C41.399 (4)C1—C21.451 (5)
O2—C11.202 (4)C8—H80.9300
C6—H60.9300C14—C151.352 (6)
C9—C81.373 (5)C14—C131.374 (7)
C9—C41.388 (4)C2—H20.9300
C9—H90.9300C15—H150.9300
C4—C31.434 (4)C13—H130.9300
C5—O1—C1121.8 (2)C11—C16—H16119.8
C10—O3—C7120.5 (3)C2—C3—C4120.7 (3)
C6—C7—C8122.1 (3)C2—C3—H3119.6
C6—C7—O3115.8 (3)C4—C3—H3119.6
C8—C7—O3121.9 (3)C13—C12—C11120.5 (4)
O4—C10—O3122.7 (3)C13—C12—H12119.7
O4—C10—C11126.0 (3)C11—C12—H12119.7
O3—C10—C11111.2 (3)O2—C1—O1116.0 (3)
O1—C5—C6116.8 (3)O2—C1—C2127.1 (3)
O1—C5—C4121.1 (3)O1—C1—C2116.9 (3)
C6—C5—C4122.1 (3)C9—C8—C7118.4 (3)
C7—C6—C5118.1 (3)C9—C8—H8120.8
C7—C6—H6121.0C7—C8—H8120.8
C5—C6—H6121.0C15—C14—F1119.6 (4)
C8—C9—C4122.0 (3)C15—C14—C13123.1 (4)
C8—C9—H9119.0F1—C14—C13117.3 (4)
C4—C9—H9119.0C3—C2—C1121.7 (3)
C9—C4—C5117.4 (3)C3—C2—H2119.2
C9—C4—C3124.9 (3)C1—C2—H2119.2
C5—C4—C3117.8 (3)C14—C15—C16118.9 (4)
C16—C11—C12119.2 (3)C14—C15—H15120.6
C16—C11—C10121.7 (3)C16—C15—H15120.6
C12—C11—C10119.0 (3)C14—C13—C12118.0 (4)
C15—C16—C11120.4 (3)C14—C13—H13121.0
C15—C16—H16119.8C12—C13—H13121.0
C10—O3—C7—C6122.3 (3)C12—C11—C16—C150.4 (5)
C10—O3—C7—C863.4 (4)C10—C11—C16—C15178.8 (3)
C7—O3—C10—O41.1 (5)C9—C4—C3—C2179.0 (3)
C7—O3—C10—C11179.3 (3)C5—C4—C3—C21.3 (5)
C1—O1—C5—C6178.7 (3)C16—C11—C12—C130.2 (5)
C1—O1—C5—C40.7 (4)C10—C11—C12—C13179.0 (3)
C8—C7—C6—C51.0 (4)C5—O1—C1—O2177.7 (3)
O3—C7—C6—C5173.3 (3)C5—O1—C1—C21.5 (4)
O1—C5—C6—C7179.7 (3)C4—C9—C8—C71.4 (5)
C4—C5—C6—C70.3 (4)C6—C7—C8—C91.5 (5)
C8—C9—C4—C50.8 (5)O3—C7—C8—C9172.5 (3)
C8—C9—C4—C3179.5 (3)C4—C3—C2—C10.5 (5)
O1—C5—C4—C9179.6 (3)O2—C1—C2—C3178.2 (4)
C6—C5—C4—C90.2 (4)O1—C1—C2—C30.9 (5)
O1—C5—C4—C30.7 (4)F1—C14—C15—C16180.0 (3)
C6—C5—C4—C3179.9 (3)C13—C14—C15—C160.4 (6)
O4—C10—C11—C16176.2 (3)C11—C16—C15—C140.1 (5)
O3—C10—C11—C161.9 (4)C15—C14—C13—C120.6 (6)
O4—C10—C11—C123.0 (5)F1—C14—C13—C12179.7 (3)
O3—C10—C11—C12178.9 (3)C11—C12—C13—C140.3 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C4–C9 benzene ring and the coumarin ring system, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16···O30.932.372.693 (4)100
C2—H2···O2i0.932.513.412 (4)163
C1—O2···Cg2ii1.20 (1)3.27 (1)3.403 (3)86 (1)
C1—O2···Cg4ii1.20 (1)3.57 (1)3.368 (3)71 (1)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x1, y, z.
Analysis of short ring interactions (Å) top
Cg(I)Cg(J)Symmetry Cg(J)Cg(I)···Cg(J)CgI_PerpCgJ_PerpSlippage
Cg1Cg2-1 + x, y, z3.5758 (18)3.3139 (13)-3.3124 (13)1.347
Cg1Cg4-1 + x, y, z3.6116 (16)3.3133 (13)-3.3044 (10)1.458
Cg2Cg11 + x, y, z3.5758 (18)-3.3123 (13)3.3140 (13)1.343
Cg2Cg41 + x, y, z3.6047 (16)-3.3109 (13)3.3195 (10)1.405
Cg4Cg11 + x, y, z3.6115 (16)-3.3043 (10)3.3134(131.437
Cg4Cg2-1 + x, y, z3.6049 (16)3.3196 (10)-3.3110 (13)1.426
Cg(I) and Cg(J) are centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.
Table S1 top
Experimental and calculated bond lengths (Å)
BondX-ray6-311++G(d,p)
O1—C51.374 (3)1.348
O1—C11.385 (4)1.354
O3—C101.350 (4)1.342
O3—C71.398 (4)1.375
C7—C61.374 (4)1.373
C7—C81.387 (5)1.3889
C10—O41.202 (4)1.180
C10—C111.473 (4)1.486
C5—C61.379 (4)1.385
C5—C41.399 (4)1.385
O2—C11.202 (4)1.178
C9—C81.373 (5)1.374
C9—C41.388 (4)1.395
C4—C31.434 (4)1.452
C11—C161.388 (5)1.390
C11—C121.388 (5)1.391
C16—C151.378 (5)1.383
F1—C141.355 (4)1.321
C3—C21.332 (5)1.329
C12—C131.383 (5)1.380
C1—C21.451 (5)1.468
C14—C151.352 (6)1.378
C14—C131.374 (7)1.379
Table S2 top
Experimental and calculated bond angles (°)
Bond angleX-ray6-311++G(d,p)
C5—O1—C1121.8 (2)123.7
C10—O3—C7120.5 (3)119.9
C6—C7—C8122.1 (3)122.0
C6—C7—O3115.8 (3)117.7
C8—C7—O3121.9 (3)120.1
O4—C10—O3122.7 (3)123.1
O4—C10—C11126.0 (3)124.8
O3—C10—C11111.2 (3)112.1
O1—C5—C6116.8 (3)117.1
O1—C5—C4121.1 (3)121.4
C6—C5—C4122.1 (3)121.5
C7—C6—C5118.1 (3)118.2
C8—C9—C4122.0 (3)121.0
C9—C4—C5117.4 (3)118.6
C9—C4—C3124.9 (3)124.2
C5—C4—C3117.8 (3)117.2
C16—C11—C12119.2 (3)119.7
C16—C11—C10121.7 (3)122.4
C12—C11—C10119.0 (3)117.8
C15—C16—C11120.4 (3)120.3
C2—C3—C4120.7 (3)120.5
C13—C12—C11120.5 (4)120.5
O2—C1—O1116.0 (3)118.7
O2—C1—C2127.1 (3)124.9
O1—C1—C2116.9 (3)116.3
C9—C8—C7118.4 (3)118.7
C15—C14—F1119.6 (4)118.7
C15—C14—C13123.1 (4)122.6
F1—C14—C13117.3 (4)118.7
C3—C2—C1121.7 (3)121.0
C14—C15—C16118.9 (4)118.5
C14—C13—C12118.0 (4)118.3
Table S3 top
Experimental and calculated torsion angles (°)
Torsion angleX-ray6-311++G(d,p)
C10—O3—C7—C6-122.3 (3)-109.7
C10—O3—C7—C863.4 (4)73.7
C7—O3—C10—O41.1 (5)-0.1
C7—O3—C10—C11179.3 (3)179.9
C1—O1—C5—C6178.7 (3)-180.0
C1—O1—C5—C4-0.7 (4)-0.1
C8—C7—C6—C51.0 (4)-0.2
O3—C7—C6—C5-173.3 (3)-176.7
O1—C5—C6—C7-179.7 (3)179.9
C4—C5—C6—C7-0.3 (4)-0.0
C8—C9—C4—C5-0.8 (5)0.0
C8—C9—C4—C3179.5 (3)-179.9
O1—C5—C4—C9179.6 (3)-179.7
C6—C5—C4—C90.2 (4)0.1
O1—C5—C4—C3-0.7 (4)0.2
C6—C5—C4—C3179.9 (3)-179.9
O4—C10—C11—C16176.2 (3)-179.7
O3—C10—C11—C16-1.9 (4)0.3
O4—C10—C11—C12-3.0 (5)0.4
O3—C10—C11—C12178.9 (3)-179.6
C12—C11—C16—C150.4 (5)-0.1
C10—C11—C16—C15-178.8 (3)179.9
C9—C4—C3—C2-179.0 (3)179.8
C5—C4—C3—C21.3 (5)-0.2
C16—C11—C12—C13-0.2 (5)0.0
C10—C11—C12—C13179.0 (3)-180.0
C5—O1—C1—O2-177.7 (3)180.0
C5—O1—C1—C21.5 (4)-0.1
C4—C9—C8—C71.4 (5)-0.3
C6—C7—C8—C9-1.5 (5)0.4
O3—C7—C8—C9172.5 (3)176.8
C4—C3—C2—C1-0.5 (5)-0.0
O2—C1—C2—C3178.2 (4)-179.8
O1—C1—C2—C3-0.9 (5)0.1
F1—C14—C15—C16180.0 (3)180.0
C13—C14—C15—C16-0.4 (6)-0.0
C11—C16—C15—C14-0.1 (5)0.1
C15—C14—C13—C120.6 (6)-0.0
F1—C14—C13—C12-179.7 (3)180.0
C11—C12—C13—C14-0.3 (6)0.0

Acknowledgements

The authors are grateful to Mr Michel GIORGI (Spectropôle Service of the Faculty of Sciences and Technique, Saint Jérôme center, Aix-Marseille University, France) for his help with the X-ray diffraction study.

References

First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CSD CrossRef IUCr Journals Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126.  CSD CrossRef IUCr Journals Google Scholar
First citationBitzer, S. R., Visentin, C. L., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). Heterocycl. Chem. 38, 717–722.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.  CSD CrossRef CAS Web of Science Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJi, W., Li, L., Eniola-Adefeso, O., Wang, Y., Liu, C. & Feng, C. (2017). J. Mater. Chem. B, 5, 7790–7795.  Web of Science CSD CrossRef CAS Google Scholar
First citationJi, W., Liu, G., Xu, M., Dou, X. & Feng, C. (2014). Chem. Commun. 50, 15545–15548.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOuédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParveen, M., Mehdi, S. H., Ghalib, R. M., Alam, M. & Pallepogu, R. (2011). Pharma Chemica, 3, 22–30.  CAS Google Scholar
First citationRamasubbu, N., Gnanaguru, K., Venkatesan, K. & Ramamurthy, V. (1982). Can. J. Chem. 60, 2159–2161.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVuković, N., Sukdolak, S., Solujić, S. & Niciforović, N. (2010). Arch. Pharm. Res. 33, 5–15.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYu, J., Gao, L.-L., Huang, P. & Wang, D.-L. (2014). Acta Cryst. E70, m369–m370.  CSD CrossRef IUCr Journals Google Scholar
First citationZiki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds