research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(2,4-di­chloro­benz­yl)-5-methyl-N-(thio­phene-2-sulfon­yl)-1H-pyrazole-3-carboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Mathematics and Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 18 April 2018; accepted 24 April 2018; online 27 April 2018)

In the title compound, C16H13Cl2N3O3S2, the thio­phene ring is disordered in a 0.762 (3):0.238 (3) ratio by an approximate 180° rotation of the ring around the S—C bond linking the ring to the sulfonyl unit. The di­chloro­benzene group is also disordered over two sets of sites with the same occupancy ratio. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl and C—H⋯N hydrogen bonds, forming rings with graph-set notation S(5). In the crystal, pairs of mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming inversion dimers with graph-set notation R22(8) and R12(11), which are connected by C—H⋯O hydrogen-bonding inter­actions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H⋯π inter­actions and ππ stacking inter­actions between benzene and thio­phene rings, with centroid-to-centroid distances of 3.865 (2), 3.867 (7) and 3.853 (2) Å. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

1. Chemical context

The pyrazole core structure has been widely used as a common heterocyclic scaffold in medicinal chemistry to produce novel drug candidates with a great variety of pharmacological activities including anti-inflammatory, anti­platelet, anti­cancer, anti­mycobacterial, anti­depressant and anti­convulsant properties (Küçükgüzel & Şenkardeş, 2015[Küçükgüzel, Ş. G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786-815.]; Çalışkan et al., 2013[Çalışkan, B., Yılmaz, A., Evren, İ., Menevşe, S., Uludag, O. & Banoğlu, E. (2013). Med. Chem. Res. 22, 782-793.]; Ding et al., 2009[Ding, X. L., Zhang, H. Y., Qi, L., Zhao, B. X., Lian, S., Lv, H. S. & Miao, J. Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325-5328.]; Baraldi et al., 2004[Baraldi, P. G., Beria, I., Cozzi, P., Geroni, C., Espinosa, A., Gallo, M. A., Entrena, A., Bingham, J. P., Hartley, J. A. & Romagnoli, R. (2004). Bioorg. Med. Chem. 12, 3911-3921.]; Palaska et al., 2008[Palaska, E., Aydin, F., Uçar, G. & Erol, D. (2008). Arch. Pharm. Chem. Life Sci. 341, 209-215.]). Among them, pyrazole-carboxamide derivatives have been shown to exhibit anti­mycobacterial, anti­fungal and anti­viral activities (Sun & Zhou, 2015[Sun, J. & Zhou, Y. (2015). Molecules, 20, 4383-4394.]; Yan et al., 2018[Yan, Z., Liu, A., Huang, M., Liu, M., Pei, H., Huang, L., Yi, H., Liu, W. & Hu, A. (2018). Eur. J. Med. Chem. 149, 170-181.]; Comber et al., 1992[Comber, R. N., Gray, R. J. & Secrist, J. A. (1992). Carbohydr. Res. 216, 441-452.]). In the course of our ongoing research into bioactive pyrazole derivatives (Banoğlu et al., 2005[Banoğlu, E., Akoğlu, Ç., Ünlü, S., Ergün, B., Küpeli, E., Yeşilada, E. & Şahin, M. (2005). Arzneimittelforschung, 55, 520-527.]; Şüküroğlu et al., 2005[Şüküroğlu, M., Ergün, B. Ç., Ünlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoğlu, E. (2005). Arch. Pharm. Res. 28, 509-517.]; Ergün et al., 2010[Ergün, B. C., Nuñez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoğlu, E. (2010). Arzneimittelforschung, 60, 497-505.]; Çalışkan et al., 2011[Çalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoğlu, E. (2011). Eur. J. Med. Chem. 46, 5021-5033.]; Levent et al., 2013[Levent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, İ., Ünver, H. & Banoğlu, E. (2013). Eur. J. Med. Chem. 64, 42-53.]; Cankara Pirol et al., 2014[Cankara Pirol, Ş., Çalışkan, B., Durmaz, İ., Atalay, R. & Banoğlu, E. (2014). Eur. J. Med. Chem. 87, 140-149.]), we have relied on the aforementioned biological properties of pyrazole-carboxamides and designed novel pyrazole-3-carboxamide derivatives for their potential anti­microbial activity. In this work, we report the crystallographic characterization and Hirshfeld surface analysis of one of these compounds bearing the 2,4-di­chloro­benzyl substituent at one of the pyrazole nitro­gen atoms.

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the dihedral angles between the planes of the pyrazole ring A (N2/N3/C6–C8), the major and minor components B (S1/C1–C4) and B′ (S1A/C1/C2/C3A/C4) of the disordered thio­phene ring, and the disordered benzene ring C (C11–C16) and C′ (C11A–C16A) are A/B = 67.62 (16)°, A/B′ = 68.1 (5)°, B/B′ = 3.3 (5)°, A/C = 70.09 (16)°, B/C = 83.06 (19)° and B′/C = 80.2 (5)°, A/C′ = 78.4 (4)°, B/C′ = 77.3 (4)° and B′/C′ = 74.2 (6)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl and C—H⋯N hydrogen bonds (Table 1[link]), forming rings with graph-set notation S(5).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the major component (S1/C1–C4) of the disordered thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (3) 2.27 (3) 3.029 (3) 150 (3)
C7—H7⋯O3ii 0.93 2.59 3.437 (3) 152
C10—H10B⋯O1iii 0.97 2.52 3.141 (3) 122
C12—H12⋯N3 0.93 2.61 3.224 (3) 124
C12—H12⋯O2i 0.93 2.51 3.348 (3) 150
C15—H15⋯Cg1iv 0.93 2.97 3.893 (3) 174
C15A—H15ACg1iv 0.93 2.95 3.836 (8) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) x, y, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level. The minor components of the disordered thio­phene and di­chloro­benzene groups have been omitted.

3. Supra­molecular features

In the crystal, pairs of mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]; Figs. 2[link] and 3[link]), forming inversion dimers with graph-set notation [R_{2}^{2}](8) and [R_{1}^{2}](11), which are connected by C—H⋯O hydrogen-bonding inter­actions into ribbons parallel to (100). The ribbons are further connected into a three-dimensional network by C—H⋯π inter­actions (Table 1[link]) and ππ stacking inter­actions between the benzene and thio­phene rings, with centroid-to-centroid distances of 3.865 (2) Å for Cg1⋯Cg1v, 3.867 (7) Å for Cg2⋯Cg2v and 3.853 (2) Å for Cg4⋯Cg4vi where Cg1, Cg2 and Cg4 are the centroids of the thio­phene ring B, the thio­phene ring B′ and the benzene ring C [symmetry codes: (v) 2 − x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, −z].

[Figure 2]
Figure 2
Crystal structure of the title compound viewed along the a axis. Dashed lines show hydrogen-bonding inter­actions. The minor components of the disordered groups have been omitted.
[Figure 3]
Figure 3
Crystal structure of the title compound viewed along the b axis. Dashed lines show hydrogen-bonding inter­actions. The minor components of the disordered groups have been omitted.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title compound was carried out to investigate the location of atoms with potential to form hydrogen bonds and the qu­anti­tative ratio of these inter­actions. CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]) was used to generate the Hirshfeld surface and two-dimensional fingerprint plots (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]; Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]), using the atomic coordinates of the major disorder component of the disordered atoms (Figs. 4[link] and 5[link]). The electrostatic potentials were calculated using TONTO (Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) integrated into CrystalExplorer, wherein the respective experimental structure was used as the input to TONTO. Further, the electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at the Hartree–Fock level of theory.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H, (d) Cl⋯H, (e) Cl⋯Cl and (f) C⋯C inter­actions. The outline of the full fingerprint plots is shown in grey. di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

The inter­molecular distance information on the surface can be condensed into a two-dimensional histogram of de and di, which is a unique identifier for mol­ecules in a crystal structure, and is known as a fingerprint plot. Instead of plotting de and di on the Hirshfeld surface, contact distances are normalized in CrystalExplorer using the van der Waals radius of the appropriate inter­nal (rivdw) and external (revdw) atom of the surface:

dnorm= (dirivdw)/rivdw + (derevdw)/revdw.

The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimentional dnorm surfaces mapped over a fixed colour scale of −1.9033 (red) to 1.1934 (blue). In the fingerprint plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]), shown in Fig. 5[link], the points indicated by b, c, d and e correspond to H⋯H, C⋯H, Cl⋯H, Cl⋯Cl and C⋯C inter­actions with relative contributions of 28.4, 7.0, 6.8, 6.5 and 5.7%, respectively. These types of inter­actions add up to 54.4% of the inter­molecular contacts of the Hirshfeld surface area. The remaining contributions (8.3%) correspond to C⋯Cl (1.3%), N⋯C (1.3%) and other less important inter­actions (<1%). C⋯C contacts correspond to inter­molecular ππ inter­actions. The occurrence of non-high inter­action rates can be attributed to the fact that the small disordered portion of the mol­ecule is not considered.

5. Database survey

All bond lengths and angles are within normal ranges and are similar to those reported for related mol­ecules such as trans-rac-[1-oxo-2-phenethyl-3-(2-thien­yl)-1,2,3,4-tetra­hydro­iso­quin­olin-4-yl]methyl 4-methyl­benzene­sulfonate (Akkurt et al., 2008[Akkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955-o1956.]), 2-benzene­sulfonamido­benzoic acid (Asiri et al., 2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]), propyl 2-(4-methyl­benzene­sulfonamido)­benzoate (Mustafa, Khan et al., 2012[Mustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305.]), 2-{4-[acet­yl(eth­yl)amino]­benzene­sulfon­am­ido}­benzoic acid (Mustafa, Muhmood et al., 2012[Mustafa, G., Muhmood, T., Khan, I. U. & Akkurt, M. (2012). Acta Cryst. E68, o1388.]), 2-(5-bromo­pyridin-3-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole (Fun et al., 2011a[Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011a). Acta Cryst. E67, o2743-o2744.]) and 2-(biphenyl-4-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl) thio­phen-2-yl]-1,3,4-oxa­diazole (Fun et al., 2011b[Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011b). Acta Cryst. E67, o2781-o2782.]).

6. Synthesis and crystallization

To a solution of methyl 1-(2,4-di­chloro­benz­yl)-5-methyl-1H-pyrazole-3-carboxyl­ate (200 mg, 0.70 mmol, 1 equiv.) in di­chloro­methane (DCM) were added 2-thio­phene­sulfonamide (126 mg, 0. 77 mmol, 1.1 equiv.), 1-ethyl-3-(3-di­methyl­amino-prop­yl)carbodi­imide (EDC; 148 mg, 0.77 mmol, 1.1 equiv.) and 4-dimethyl-amino­pyridine (DMAP; 17.8 mg, 0.14 mmol, 0.2 equiv.), and the resulting mixture was stirred overnight at room temperature. Upon completion of the reaction, the reaction mixture was partitioned between DCM and water. The collected organic layer was dried over anhydrous Na2SO4, filtered and evaporated to give the crude compound, which was purified with automated-flash chromatography (120.6 mg, 39.95%). The obtained product was recrystallized from hexane and ethyl acetate (4:1), m.p. 464.8–465.3 K. 1H NMR (CDCl3): δ 2.24 (3H, s), 5.33 (2H, s), 6.64 (2H, m), 7.12 (1H, m), 7.21 (1H, dd, J = 8.4, 2.1 Hz), 7.45 (1H, d, J = 2.1 Hz), 7.69 (1H, dd, J = 5.1, 1.2 Hz), 7.97 (1H, dd, J = 3.9, 1.2 Hz), 9.29 (1H, bs); 13C NMR (CDCl3): 11.2, 50.5, 107.6, 127.3, 127.9, 129.1, 129.6, 131.7, 132.9, 133.8, 134.8, 135.1, 139.2, 142.0, 143.5, 158.4. HRMS m/z calculated for C16H13Cl2N3O3S2 [M + H]+ 429.9854; found: 429.9857.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms bound to carbon atoms were positioned geometrically and treated as riding with C—H = 0.93-0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl group. The nitro­gen-bound H atom (H1N) was located in a difference-Fourier map and refined with the constraint N1—H1N = 0.84 (3) Å and Uiso(H) = 1.2Ueq(N). The thio­phene ring is rotationally disordered by approximately 180° over two positions, the ratio of refined occupancies being 0.762 (3):0.238 (3). The di­chloro­benzene group of the title compound is also disordered over two sets of sites with the same occupancy ratio. The disordered dicholoro­benzene groups (C: C11–C16 and C′: C11A–C16A) were refined as rigid hexa­gons with bond lengths of 1.39 Å. The displacement ellipsoids for the corresponding carbon atoms in the disordered dicholoro­benzene groups were constrained by using the EADP command. Six outliers (633, [\overline{5}]30, [\overline{1}]30, 515, 5[\overline{6}]1, 520) were omitted in the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C16H13Cl2N3O3S2
Mr 430.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.2706 (4), 8.7726 (4), 13.6433 (7)
α, β, γ (°) 76.091 (2), 74.610 (2), 87.970 (2)
V3) 925.98 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.60
Crystal size (mm) 0.99 × 0.68 × 0.52
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.60, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 19595, 4598, 4134
Rint 0.024
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.155, 1.03
No. of reflections 4598
No. of parameters 216
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.20, −0.82
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

1-(2,4-Dichlorobenzyl)-5-methyl-N-(thiophene-2-sulfonyl)-1H-pyrazole-3-carboxamide top
Crystal data top
C16H13Cl2N3O3S2Z = 2
Mr = 430.31F(000) = 440
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2706 (4) ÅCell parameters from 9888 reflections
b = 8.7726 (4) Åθ = 2.4–28.3°
c = 13.6433 (7) ŵ = 0.60 mm1
α = 76.091 (2)°T = 296 K
β = 74.610 (2)°Prism, translucent light white
γ = 87.970 (2)°0.99 × 0.68 × 0.52 mm
V = 925.98 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4598 independent reflections
Radiation source: sealed tube4134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1011
Tmin = 0.60, Tmax = 0.75k = 1111
19595 measured reflectionsl = 1718
Refinement top
Refinement on F214 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.082P)2 + 0.8819P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4598 reflectionsΔρmax = 1.20 e Å3
216 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0018 (3)0.5302 (5)0.6433 (2)0.0643 (8)
H11.1095940.5401420.6501870.077*
C20.9085 (4)0.6538 (4)0.6217 (3)0.0615 (8)
H20.9438990.7577610.6094740.074*
C30.7555 (6)0.6082 (6)0.6199 (4)0.0426 (11)0.762 (3)
H30.6706250.6780610.6101530.051*0.762 (3)
S10.91332 (19)0.35743 (15)0.65722 (17)0.0492 (3)0.762 (3)
C3A0.901 (2)0.382 (2)0.655 (2)0.0426 (11)0.238 (3)
H3A0.9339070.2788930.6708580.051*0.238 (3)
S1A0.7356 (7)0.6272 (6)0.6034 (4)0.0492 (3)0.238 (3)
C40.7359 (3)0.4413 (3)0.63434 (16)0.0334 (4)
C50.7050 (3)0.1354 (2)0.52207 (17)0.0330 (4)
C60.7152 (3)0.0968 (2)0.42142 (16)0.0313 (4)
C70.8307 (3)0.0022 (3)0.37032 (19)0.0375 (5)
H70.9166550.0534270.3935640.045*
C80.7892 (3)0.0094 (3)0.27811 (18)0.0361 (4)
C90.8648 (4)0.0637 (4)0.1890 (2)0.0529 (6)
H9A0.7945880.1507510.1924090.079*
H9B0.9741500.1002420.1930740.079*
H9C0.8742500.0126860.1240420.079*
C100.5646 (3)0.1512 (3)0.19870 (18)0.0397 (5)
H10A0.4487900.1692200.2318410.048*
H10B0.5650680.0661450.1644930.048*
C110.6400 (5)0.2998 (3)0.1159 (2)0.0466 (3)0.762 (3)
C120.6577 (4)0.4311 (3)0.15290 (16)0.0466 (3)0.762 (3)
H120.6295820.4238130.2245780.056*0.762 (3)
C130.7173 (4)0.5732 (3)0.08277 (18)0.0466 (3)0.762 (3)
H130.7291250.6609620.1075320.056*0.762 (3)
C140.7593 (4)0.5840 (2)0.02436 (17)0.0466 (3)0.762 (3)
C150.7416 (5)0.4528 (3)0.06137 (17)0.0466 (3)0.762 (3)
H150.7696640.4600610.1330460.056*0.762 (3)
C160.6819 (6)0.3107 (3)0.0088 (3)0.0466 (3)0.762 (3)
Cl10.8269 (3)0.7564 (2)0.11887 (17)0.0835 (5)0.762 (3)
Cl20.6424 (5)0.1501 (4)0.0388 (2)0.0805 (7)0.762 (3)
C11A0.6465 (15)0.3022 (11)0.1193 (7)0.0466 (3)0.238 (3)
C12A0.7063 (12)0.4320 (11)0.1423 (5)0.0466 (3)0.238 (3)
H12A0.6967700.4335930.2115010.056*0.238 (3)
C13A0.7802 (12)0.5595 (9)0.0618 (6)0.0466 (3)0.238 (3)
H13A0.8202020.6463240.0771360.056*0.238 (3)
C14A0.7945 (12)0.5571 (9)0.0417 (5)0.0466 (3)0.238 (3)
C15A0.7347 (15)0.4273 (11)0.0646 (6)0.0466 (3)0.238 (3)
H15A0.7442290.4257670.1338380.056*0.238 (3)
C16A0.6608 (17)0.2999 (11)0.0159 (9)0.0466 (3)0.238 (3)
Cl1A0.8896 (10)0.7355 (9)0.1136 (7)0.0835 (5)0.238 (3)
Cl2A0.6826 (18)0.1514 (15)0.0300 (9)0.0805 (7)0.238 (3)
N10.6005 (2)0.2605 (2)0.53833 (15)0.0363 (4)
H1N0.571 (4)0.317 (3)0.4869 (18)0.044*
N20.6550 (2)0.1036 (2)0.27928 (14)0.0340 (4)
N30.6080 (2)0.1593 (2)0.36579 (14)0.0334 (4)
O10.5273 (2)0.2101 (2)0.73271 (13)0.0479 (4)
O20.4310 (2)0.4460 (2)0.62514 (13)0.0412 (4)
O30.7814 (2)0.0698 (2)0.58384 (14)0.0473 (4)
S20.55880 (6)0.33499 (6)0.64141 (4)0.03159 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1094 (16)0.0562 (7)0.0754 (7)0.0290 (10)0.0317 (10)0.0150 (5)
Cl1A0.1094 (16)0.0562 (7)0.0754 (7)0.0290 (10)0.0317 (10)0.0150 (5)
Cl20.144 (2)0.0649 (5)0.0438 (7)0.0339 (10)0.0276 (8)0.0255 (5)
Cl2A0.144 (2)0.0649 (5)0.0438 (7)0.0339 (10)0.0276 (8)0.0255 (5)
S10.0461 (5)0.0507 (7)0.0605 (6)0.0166 (4)0.0260 (4)0.0205 (6)
S1A0.0461 (5)0.0507 (7)0.0605 (6)0.0166 (4)0.0260 (4)0.0205 (6)
S20.0325 (3)0.0336 (3)0.0302 (3)0.0020 (2)0.0086 (2)0.0102 (2)
O10.0609 (11)0.0441 (9)0.0348 (8)0.0091 (8)0.0098 (7)0.0038 (7)
O20.0342 (8)0.0474 (9)0.0468 (9)0.0105 (7)0.0122 (7)0.0204 (7)
O30.0556 (10)0.0487 (10)0.0485 (10)0.0187 (8)0.0304 (8)0.0160 (8)
N10.0458 (10)0.0360 (9)0.0336 (9)0.0126 (8)0.0186 (8)0.0135 (7)
N20.0386 (9)0.0332 (8)0.0323 (9)0.0031 (7)0.0116 (7)0.0099 (7)
N30.0366 (9)0.0338 (8)0.0330 (9)0.0061 (7)0.0125 (7)0.0108 (7)
C10.0361 (12)0.105 (3)0.0567 (17)0.0026 (14)0.0139 (11)0.0267 (17)
C20.0577 (16)0.0581 (17)0.0667 (19)0.0200 (14)0.0091 (14)0.0164 (14)
C30.0345 (19)0.0394 (19)0.051 (2)0.0035 (14)0.0204 (15)0.0060 (15)
C3A0.0345 (19)0.0394 (19)0.051 (2)0.0035 (14)0.0204 (15)0.0060 (15)
C40.0306 (9)0.0381 (10)0.0336 (10)0.0034 (8)0.0096 (7)0.0122 (8)
C50.0344 (10)0.0310 (9)0.0369 (10)0.0036 (7)0.0137 (8)0.0103 (8)
C60.0332 (9)0.0285 (9)0.0344 (10)0.0027 (7)0.0119 (8)0.0088 (8)
C70.0361 (10)0.0351 (10)0.0468 (12)0.0078 (8)0.0157 (9)0.0158 (9)
C80.0372 (10)0.0317 (10)0.0411 (11)0.0031 (8)0.0091 (8)0.0139 (8)
C90.0538 (14)0.0576 (15)0.0525 (15)0.0090 (12)0.0087 (12)0.0298 (13)
C100.0471 (12)0.0413 (11)0.0348 (11)0.0009 (9)0.0173 (9)0.0094 (9)
C110.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C11A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C120.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C12A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C130.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C13A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C140.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C14A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C150.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C15A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C160.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
C16A0.0639 (8)0.0396 (6)0.0367 (6)0.0054 (6)0.0098 (5)0.0130 (5)
Geometric parameters (Å, º) top
Cl1—C141.733 (3)C10—C111.530 (4)
Cl1A—C14A1.723 (12)C11—C121.391 (4)
Cl2—C161.760 (5)C11—C161.390 (5)
Cl2A—C16A1.561 (17)C11A—C16A1.389 (15)
S1—C41.688 (3)C11A—C12A1.391 (14)
S1—C11.654 (4)C12—C131.390 (4)
S1A—C41.583 (6)C12A—C13A1.390 (11)
S1A—C21.550 (7)C13—C141.390 (3)
S2—O21.4362 (18)C13A—C14A1.391 (10)
S2—N11.641 (2)C14—C151.390 (3)
S2—C41.733 (3)C14A—C15A1.390 (13)
S2—O11.4184 (18)C15—C161.390 (4)
O3—C51.210 (3)C15A—C16A1.390 (14)
N1—C51.396 (3)C1—H10.9300
N2—N31.343 (3)C2—H20.9300
N2—C81.359 (3)C3—H30.9300
N2—C101.461 (3)C3A—H3A0.9300
N3—C61.336 (3)C7—H70.9300
C1—C21.329 (5)C9—H9A0.9600
C1—C3A1.522 (19)C9—H9C0.9600
N1—H1N0.84 (3)C9—H9B0.9600
C2—C31.349 (6)C10—H10A0.9700
C3—C41.439 (6)C10—H10B0.9700
C3A—C41.516 (19)C12—H120.9300
C5—C61.472 (3)C12A—H12A0.9300
C6—C71.399 (3)C13—H130.9300
C7—C81.376 (3)C13A—H13A0.9300
C8—C91.491 (4)C15—H150.9300
C10—C11A1.540 (10)C15A—H15A0.9300
C1—S1—C491.91 (16)Cl1—C14—C15115.95 (18)
C2—S1A—C496.3 (4)C13—C14—C15120.0 (2)
O1—S2—N1108.73 (10)Cl1A—C14A—C13A104.5 (7)
O1—S2—C4108.83 (11)Cl1A—C14A—C15A135.5 (6)
O1—S2—O2120.05 (10)C13A—C14A—C15A120.0 (7)
O2—S2—C4107.17 (12)C14—C15—C16120.0 (2)
N1—S2—C4107.33 (10)C14A—C15A—C16A120.0 (8)
O2—S2—N1104.06 (10)Cl2—C16—C11120.2 (3)
S2—N1—C5126.32 (16)Cl2—C16—C15119.6 (3)
N3—N2—C8112.91 (18)C11—C16—C15120.0 (3)
N3—N2—C10119.06 (18)C11A—C16A—C15A120.0 (10)
C8—N2—C10128.01 (19)Cl2A—C16A—C11A126.3 (10)
N2—N3—C6104.17 (16)Cl2A—C16A—C15A107.6 (9)
S1—C1—C2115.5 (2)S1—C1—H1122.00
C2—C1—C3A108.6 (7)C2—C1—H1122.00
S2—N1—H1N113.9 (18)C3A—C1—H1129.00
C5—N1—H1N118.5 (18)S1A—C2—H2116.00
C1—C2—C3110.9 (4)C1—C2—H2125.00
S1A—C2—C1118.7 (4)C3—C2—H2125.00
C2—C3—C4113.7 (4)C2—C3—H3123.00
C1—C3A—C4104.5 (12)C4—C3—H3123.00
S1—C4—C3107.9 (3)C4—C3A—H3A128.00
S2—C4—C3A129.1 (7)C1—C3A—H3A128.00
S1A—C4—S2119.4 (3)C8—C7—H7128.00
S2—C4—C3128.3 (3)C6—C7—H7128.00
S1—C4—S2123.50 (17)C8—C9—H9A109.00
S1A—C4—C3A111.6 (8)H9A—C9—H9B109.00
O3—C5—C6124.5 (2)C8—C9—H9B110.00
O3—C5—N1122.7 (2)C8—C9—H9C110.00
N1—C5—C6112.78 (19)H9B—C9—H9C109.00
C5—C6—C7128.2 (2)H9A—C9—H9C109.00
N3—C6—C7111.90 (19)N2—C10—H10B109.00
N3—C6—C5119.91 (19)C11—C10—H10A109.00
C6—C7—C8104.9 (2)C11A—C10—H10A110.00
C7—C8—C9131.6 (3)C11A—C10—H10B111.00
N2—C8—C9122.3 (2)C11—C10—H10B109.00
N2—C8—C7106.1 (2)N2—C10—H10A109.00
N2—C10—C11A110.0 (5)H10A—C10—H10B108.00
N2—C10—C11113.2 (2)C13—C12—H12120.00
C10—C11—C12116.2 (2)C11—C12—H12120.00
C10—C11—C16123.7 (3)C13A—C12A—H12A120.00
C12—C11—C16120.0 (2)C11A—C12A—H12A120.00
C10—C11A—C12A126.4 (7)C14—C13—H13120.00
C10—C11A—C16A113.6 (8)C12—C13—H13120.00
C12A—C11A—C16A120.0 (9)C14A—C13A—H13A120.00
C11—C12—C13120.0 (2)C12A—C13A—H13A120.00
C11A—C12A—C13A120.0 (7)C16—C15—H15120.00
C12—C13—C14120.0 (2)C14—C15—H15120.00
C12A—C13A—C14A120.0 (8)C14A—C15A—H15A120.00
Cl1—C14—C13123.98 (18)C16A—C15A—H15A120.00
C1—S1—C4—S2176.25 (16)C2—C3—C4—S13.8 (5)
C1—S1—C4—C32.0 (3)C2—C3—C4—S2177.7 (3)
C4—S1—C1—C20.1 (3)O3—C5—C6—C712.2 (4)
O1—S2—N1—C544.1 (2)N1—C5—C6—N311.7 (3)
O2—S2—N1—C5173.15 (18)N1—C5—C6—C7166.0 (2)
C4—S2—N1—C573.5 (2)O3—C5—C6—N3170.1 (2)
O2—S2—C4—S1175.63 (16)N3—C6—C7—C80.1 (3)
N1—S2—C4—S173.11 (18)C5—C6—C7—C8177.8 (2)
O1—S2—C4—C3128.6 (3)C6—C7—C8—C9179.3 (3)
O2—S2—C4—C32.6 (3)C6—C7—C8—N20.5 (3)
N1—S2—C4—C3113.9 (3)N2—C10—C11—C1255.0 (4)
O1—S2—C4—S144.39 (19)N2—C10—C11—C16128.4 (4)
S2—N1—C5—C6179.75 (16)C10—C11—C12—C13176.8 (3)
S2—N1—C5—O32.0 (3)C16—C11—C12—C130.0 (6)
C8—N2—C10—C1188.0 (3)C10—C11—C16—Cl22.2 (6)
C8—N2—N3—C60.6 (2)C10—C11—C16—C15176.6 (4)
N3—N2—C8—C70.7 (3)C12—C11—C16—Cl2174.4 (3)
N3—N2—C10—C1190.2 (2)C12—C11—C16—C150.0 (7)
C10—N2—C8—C7178.9 (2)C11—C12—C13—C140.0 (5)
C10—N2—N3—C6179.01 (19)C12—C13—C14—Cl1177.4 (3)
C10—N2—C8—C90.8 (4)C12—C13—C14—C150.0 (5)
N3—N2—C8—C9179.1 (2)Cl1—C14—C15—C16177.6 (3)
N2—N3—C6—C5178.40 (18)C13—C14—C15—C160.0 (6)
N2—N3—C6—C70.3 (2)C14—C15—C16—Cl2174.4 (3)
S1—C1—C2—C32.4 (4)C14—C15—C16—C110.0 (7)
C1—C2—C3—C44.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the major component (S1/C1–C4) of the disordered thiophene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.84 (3)2.35 (3)2.694 (3)105 (2)
N1—H1N···O2i0.84 (3)2.27 (3)3.029 (3)150 (3)
C7—H7···O3ii0.932.593.437 (3)152
C10—H10B···Cl20.972.603.134 (4)115
C10—H10B···Cl2A0.972.503.012 (12)112
C10—H10B···O1iii0.972.523.141 (3)122
C12—H12···N30.932.613.224 (3)124
C12—H12···O2i0.932.513.348 (3)150
C15—H15···Cg1iv0.932.973.893 (3)174
C15A—H15A···Cg1iv0.932.953.836 (8)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x, y, z1.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization)

References

First citationAkkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955–o1956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanoğlu, E., Akoğlu, Ç., Ünlü, S., Ergün, B., Küpeli, E., Yeşilada, E. & Şahin, M. (2005). Arzneimittelforschung, 55, 520–527.  Google Scholar
First citationBaraldi, P. G., Beria, I., Cozzi, P., Geroni, C., Espinosa, A., Gallo, M. A., Entrena, A., Bingham, J. P., Hartley, J. A. & Romagnoli, R. (2004). Bioorg. Med. Chem. 12, 3911–3921.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoğlu, E. (2011). Eur. J. Med. Chem. 46, 5021–5033.  Google Scholar
First citationÇalışkan, B., Yılmaz, A., Evren, İ., Menevşe, S., Uludag, O. & Banoğlu, E. (2013). Med. Chem. Res. 22, 782–793.  Google Scholar
First citationCankara Pirol, Ş., Çalışkan, B., Durmaz, İ., Atalay, R. & Banoğlu, E. (2014). Eur. J. Med. Chem. 87, 140–149.  CrossRef CAS Google Scholar
First citationComber, R. N., Gray, R. J. & Secrist, J. A. (1992). Carbohydr. Res. 216, 441–452.  CrossRef Google Scholar
First citationDing, X. L., Zhang, H. Y., Qi, L., Zhao, B. X., Lian, S., Lv, H. S. & Miao, J. Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325–5328.  CrossRef CAS Google Scholar
First citationErgün, B. C., Nuñez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoğlu, E. (2010). Arzneimittelforschung, 60, 497–505.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011a). Acta Cryst. E67, o2743–o2744.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011b). Acta Cryst. E67, o2781–o2782.  CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKüçükgüzel, Ş. G. & Şenkardeş, S. (2015). Eur. J. Med. Chem. 97, 786–815.  Google Scholar
First citationLevent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, İ., Ünver, H. & Banoğlu, E. (2013). Eur. J. Med. Chem. 64, 42–53.  CrossRef CAS Google Scholar
First citationMustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305.  CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Muhmood, T., Khan, I. U. & Akkurt, M. (2012). Acta Cryst. E68, o1388.  CrossRef IUCr Journals Google Scholar
First citationPalaska, E., Aydin, F., Uçar, G. & Erol, D. (2008). Arch. Pharm. Chem. Life Sci. 341, 209–215.  CrossRef CAS Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŞüküroğlu, M., Ergün, B. Ç., Ünlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoğlu, E. (2005). Arch. Pharm. Res. 28, 509–517.  Google Scholar
First citationSun, J. & Zhou, Y. (2015). Molecules, 20, 4383–4394.  CrossRef CAS Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationYan, Z., Liu, A., Huang, M., Liu, M., Pei, H., Huang, L., Yi, H., Liu, W. & Hu, A. (2018). Eur. J. Med. Chem. 149, 170–181.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds