research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1,2-diferrocenyl-1,2-bis­(furan-2-yl)ethene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and bDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
*Correspondence e-mail: anthony.linden@chem.uzh.ch

Edited by J. Simpson, University of Otago, New Zealand (Received 26 March 2018; accepted 29 March 2018; online 6 April 2018)

The title compound, [Fe2(C5H5)2(C20H14O2)], is the product of a new synthetic route towards tetra­aryl/hetaryl-substituted ethenes that reduces the occurrence of side-products. In the crystal, the mol­ecule is centrosymmetric and the cyclo­penta­dienyl (Cp) rings are nearly coplanar and aligned slightly closer to a staggered conformation than to an eclipsed one. The ethene plane is tilted by 32.40 (18)° with respect to that of the substituted Cp ring and by 63.19 (19)° with respect to that of the furan ring. C—H⋯π inter­actions link the mol­ecules into a three-dimensional supramolecular framework.

1. Chemical context

Tetra­substituted ethenes bearing aryl, hetaryl or ferrocenyl groups are of current inter­est, as many of them find applications as novel materials for photooptics, electronics, crystal engineering and as new medications (Astruc, 2017[Astruc, D. (2017). Eur. J. Inorg. Chem. pp. 6-29.]). Ethene derivatives with a ferrocenyl unit on one or both C atoms of the alkene deserve special attention. Prominent representatives of the first type are ferrocifene {1-[4-(2-di­methyl­amino­eth­oxy)phen­yl]-1-phenyl-2-ferrocenylbut-1-ene} and its di-OH analogue, which are known as potent, organometallic anti­tumor drugs (Jaouen et al., 2015[Jaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802-8817.]; Resnier et al., 2017[Resnier, R., Galopin, N., Sibiril, Y., Clavreul, A., Cayon, J., Briganti, A., Legras, P., Vessières, A., Montier, T., Jaouen, G., Benoit, J.-P. & Passirani, C. (2017). Pharmacol. Res. 126, 54-65.]). On the other hand, dimethyl (Z)-2,3-diferrocenylbut-2-enedioate displays inter­esting redox and solvatochromic properties (Solntsev et al., 2011[Solntsev, P. V., Dudkin, S. V., Sabin, J. R. & Nemykin, V. N. (2011). Organometallics, 30, 3037-3046.]). As typical procedures for the preparation of tetra­substituted ethenes containing a ferrocenyl substituent, conversions of the corresponding ketones under the McMurry reaction conditions (Top et al., 1997[Top, S., Dauer, B., Vaissermann, J. & Jaouen, G. (1997). J. Organomet. Chem. 541, 355-361.]) or reductive coupling using low-valent titanium agents are recommended (Dang et al., 1990[Dang, Y., Geise, H., Dommisse, R. & Esmans, E. (1990). Inorg. Chim. Acta, 175, 115-120.]). In both cases, the reported yields are satisfactory to good, but a serious disadvantage is the formation of side-products. Recently, we reported a new approach to tetra­aryl/hetaryl-substituted ethenes via desilyl­ation of 2-(tri­methyl­sil­yl)-4,4,5,5-tetra­aryl/hetaryl-1,3-di­thiol­anes, obtained from diar­yl/hetaryl ­thio­ketones by treatment with (tri­methyl­sil­yl)diazo­methane (TMS-CHN2) at low temperature (Mlostoń et al., 2017[Mlostoń, G., Pipiak, P., Hamera-Fałdyga, R. & Heimgartner, H. (2017). Beilstein J. Org. Chem. 13, 1900-1906.]). The mechanism of this unusual conversion was explained by the assumption that the in situ-generated 1,3-di­thiol­ane anion undergoes a spontaneous cyclo­elimination ([3 + 2]-cyclo­reversion) to give the di­thio­formate anion and the corresponding tetra­substituted ethene derivative. The same method was applied for the preparation of some ferrocen­yl/hetaryl-substituted eth­enes (Mlostoń et al., 2018[Mlostoń, G., Hamera-Fałdyga, R. & Heimgartner, H. (2018). J. Sulfur Chem. 39, doi: 10.1080/17415993.2017.1415339]).

Here we report the analogous synthesis and crystal structure of the known title compound, (E)-1[link], with m.p. 485–487 K. For the previously described synthesis of this product (Dang et al., 1990[Dang, Y., Geise, H., Dommisse, R. & Esmans, E. (1990). Inorg. Chim. Acta, 175, 115-120.]), a m.p. of 489–491 K and a yield of 17% were reported and the authors tentatively assigned the (E)-configuration to the obtained compound. In our case, single crystals of (E)-1 were grown from hexa­ne/CH2Cl2 and used for an X-ray diffraction analysis, from which the previous tentatively postulated structure of the obtained isomer could be confirmed.

[Scheme 1]

2. Structural commentary

The mol­ecule of (E)-1[link] sits across a crystallographic centre of inversion and is shown in Fig. 1[link]. Within the asymmetric unit, the Fe atom sits very well centred between the cyclo­penta­dienyl (Cp) rings with all Fe—C distances in the range 2.0352 (17)–2.0712 (16) Å. The Cp C—C bond lengths [mean 1.435 (2) Å] involving the substituted C atom, C6, are very slightly elongated compared with the other C—C distances [mean 1.418 (3) Å]. Other bond lengths and angles are unremarkable. The two Cp rings are aligned slightly closer to a staggered conformation than to an eclipsed one, with the ring rotation from perfectly eclipsed being 20.6 (2)° (18° is the half-way point between eclipsed and staggered). The dihedral angle between the planes of the two Cp rings in the ferrocenyl entity is only 4.08 (11)° and ethene atom C1 is coplanar with the Cp ring to which it is bonded. However, the ferrocenyl entity is tilted with respect to the ethene plane, with a dihedral angle between the plane of the substituted Cp ring and that of the ethene plane of 32.40 (18)°. The dihedral angle between the substituted Cp ring and the adjacent furan ring is 53.46 (11)°, while that between the plane of the furan ring and the ethene plane is 63.19 (19)°. The planes of the two furan rings are necessarily parallel because of the centre of inversion.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, (E)-1, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

3. Supra­molecular features

There are no significant C—H⋯O or ππ inter­actions, but some weak C—H⋯π inter­actions are present (Table 1[link]). C8—H of the substituted Cp ring has an edge-on intermolecular inter­action with the unsubstituted Cp ring at x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]. The extension of this inter­action through the mol­ecular centre of inversion leads to sheets of mol­ecules, which lie parallel to the (101) plane (Fig. 2[link]). The furan ring, via C3—H, has an edge-on intermolecular C—H⋯π inter­action with the substituted Cp ring at x, y, z + 1. This inter­action leads to double-stranded chains or ladders, in which the mol­ecule acts as the ladder rungs; the chains run parallel to the [001] direction (Fig. 3[link]). Finally, C10—H of the substituted Cp ring inter­acts intra­molecularly with the π-system of the furan ring at −x + 1, −y + 1, −z + 1 on the opposite side of the mol­ecule. This latter inter­action is quite short, but has a sharp angle at the H atom (Table 1[link]), so the arrangement might just be a consequence of the mol­ecular conformation. The mol­ecular inversion symmetry, in combination with the two types of inter­molecular inter­actions, links the mol­ecules into a three-dimensional supramolecular framework.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C6–C10, C11–C15 and C2/O1/C3–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.95 2.81 3.686 (3) 153
C8—H8⋯Cg2ii 0.95 2.85 3.764 (2) 161
C10—H10⋯Cg3iii 0.95 2.68 3.2097 (18) 116
Symmetry codes: (i) x, y, z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The sheets of mol­ecules lying parallel to the (101) plane formed by the C8—H⋯π inter­actions.
[Figure 3]
Figure 3
The ladder motif running parallel to [001] formed by the C3—H⋯π inter­actions.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.39 with February 2018 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains one entry for a 1,1-diferrocenylethene [1,1-bis­(1′′,2′′,3′′,4′′,5′′-penta­methyl­ferrocen-1′-yl)ethene, CSD refcode CIJQAN, Heigl et al., 1999[Heigl, O. M., Herker, M. A., Hiller, W., Köhler, F. H. & Schell, A. (1999). J. Organomet. Chem. 574, 94-98.]] and 24 entries involving related 1,2-diferrocenyl­ethenes, 10 of which are (E)-isomers. The archetypal structure is (E)-1,2-diferrocenylethene (REBDAD, Denifl et al., 1996[Denifl, P., Hradsky, A., Bildstein, B. & Wurst, K. (1996). J. Organomet. Chem. 523, 79-91.]), in which the Cp rings of the ferrocenyl entities adopt an almost perfectly eclipsed arrangement. With the exception of 1-(1′-benzoyl­ferrocen­yl)-2-ferrocenylethene and 1-(1′-(4-meth­oxy­benzo­yl)ferrocen­yl)-2-ferrocenylethene (OJUWUN and OJUXAU, Roemer et al., 2016[Roemer, M., Donnadieu, B. & Nijhuis, C. A. (2016). Eur. J. Inorg. Chem. pp. 1314-1318.]), in which the ferrocenyl Cp rings lie close to a staggered arrangement, all of the other structures of mol­ecules with the (E)-configuration display Cp arrangements that are much closer to eclipsed than observed for (E)-1 (ACUVAV, Mata & Peris, 2001[Mata, J. A. & Peris, E. (2001). J. Chem. Soc. Dalton Trans. pp. 3634-3640.]; IBAXAM, DeHope et al., 2011[DeHope, A., Mendoza-Espinosa, D., Donnadieu, B. & Bertrand, G. (2011). New J. Chem. 35, 2037-2042.]; IVOSER, Skibar et al., 2004[Skibar, W., Kopacka, H., Wurst, K., Salzmann, C., Ongania, K.-H., de Biani, F. F., Zanello, P. & Bildstein, B. (2004). Organometallics, 23, 1024-1041.]; JANJAJ, Dong et al., 1989[Dong, T.-Y., Ke, T.-J., Peng, S.-M. & Yeh, S.-K. (1989). Inorg. Chem. 28, 2103-2106.]; OJUXEY, Roemer et al., 2016[Roemer, M., Donnadieu, B. & Nijhuis, C. A. (2016). Eur. J. Inorg. Chem. pp. 1314-1318.]; QICKIW, Chen et al., 2000[Chen, Y. J., Pan, D.-S., Chiu, C.-F., Su, J.-X., Lin, S. J. & Kwan, K. S. (2000). Inorg. Chem. 39, 953-958.]; REBDAD; WIMYOH, Nagahora et al., 2007[Nagahora, N., Yuasa, A., Sasamori, T. & Tokitoh, N. (2007). Acta Cryst. E63, m2702.], Roemer & Lentz, 2008[Roemer, M. & Lentz, D. (2008). Eur. J. Inorg. Chem. pp. 4875-4878.], Farrugia et al., 2009[Farrugia, L. J., Evans, C., Lentz, D. & Roemer, M. (2009). J. Am. Chem. Soc. 131, 1251-1268.]). The 1,1-diferrocenylethene structure also has eclipsed Cp rings. The two staggered (E)-configured examples have a bulky substituent on one of the distal Cp rings; those with a less bulky Cp substituent have the eclipsed arrangement. Inter­estingly, (E)-1 has no Cp substit­uents yet the Cp ring arrangement deviates significantly from eclipsed. The degree of eclipsing of the Cp conformations found among the mol­ecules with the (Z)-configuration, two of which have a cyclo­propene ring as the ethene bridge (AMODIP, Klimova, Berestneva, Ramirez et al., 2003[Klimova, E. I., Berestneva, T. K., Ramirez, L. R., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, S. & García, M. M. (2003). Eur. J. Org. Chem. pp. 4265-4272.]; EQOMIG, Klimova, Berestneva, Cinqu­antini et al., 2003[Klimova, E. I., Berestneva, T. K., Cinquantini, A., Corsini, M., Zanello, P., Tuscano, R. A., Hernández-Ortega, S. & Martínez-García, M. (2003). Org. Biomol. Chem. 1, 4458-4464.]), is more varied (AMODOV and AMODUB, Klimova, Berestneva, Ramirez et al., 2003[Klimova, E. I., Berestneva, T. K., Ramirez, L. R., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, S. & García, M. M. (2003). Eur. J. Org. Chem. pp. 4265-4272.]; BADDAM, Beletskaya et al., 2001[Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637, 653-663.], Solntsev et al., 2011[Solntsev, P. V., Dudkin, S. V., Sabin, J. R. & Nemykin, V. N. (2011). Organometallics, 30, 3037-3046.]; JAJYIF and JAJYOL, García, Flores-Alamo, Flores & Klimova, 2017[García, J. J. S., Flores-Alamo, M., Flores, D. E. C. & Klimova, E. I. (2017). Mendeleev Commun. 27, 26-28.]; KIGQUO, Klimova et al., 2013[Klimova, E. I., Flores-Alamo, M., Maya, S. C., García-Ramos, J. C., Ortiz-Frade, L. & Stivalet, J. M. M. (2013). J. Organomet. Chem. 743, 24-30.]; LUFCEW, García et al., 2014[García, J. J. S., Ortiz-Frade, L., Martínez-Klimova, E., García-Ramos, J. C., Flores-Alamo, M., Apan, T. R. & Klimova, E. I. (2014). Open J. Synth. Theory Appl. 3, 44-56.]; QASPEI, QATDAT and QATDEX, García, Flores-Alamo, Ortiz-Frade & Klimova, 2017[García, J. J. S., Flores-Alamo, M., Ortiz-Frade, L. & Klimova, E. I. (2017). J. Organomet. Chem. 842, 21-31.]; QICKOC, Chen et al., 2000[Chen, Y. J., Pan, D.-S., Chiu, C.-F., Su, J.-X., Lin, S. J. & Kwan, K. S. (2000). Inorg. Chem. 39, 953-958.]; TUJDEI, Klimova et al., 2009[Klimova, E. I., Klimova, T., Flores-Alamo, M., Backinowsky, L. V. & García, M. M. (2009). Molecules, 14, 3161-3175.]).

5. Synthesis and crystallization

The title compound was prepared according to the reaction sequence presented in the scheme below[link]. A solution of thio­ketone 2 (297 mg, 1 mmol; prepared according to Mlostoń et al., 2015[Mlostoń, G., Hamera, R. & Heimgartner, H. (2015). Phosphorus Sulfur Silicon Relat. Elem. 190, 2125-2133.]) in THF (3 ml) was cooled to 198 K (acetone/dry ice). Then, TMS-CHN2 was added portion-wise to the mixture until the green colour of the starting thio­ketone disappeared. The magnetically stirred reaction mixture was allowed to warm slowly to ca 268 to 273 K and at this temperature a commercially available solution of tetra­butyl­ammonium fluoride (TBAF, 1 ml, 1 M) was added in small portions. Stirring was continued for 20 min, and after warming to room temperature, the solvent was evaporated under vacuum. The crude product was analyzed by 1H NMR spectroscopy, which revealed the presence of two isomeric ethenes in a ratio of ca 10:1. After column chromatography (SiO2, CH2Cl2/hexane 3:7), the major product was isolated, contaminated with a small admixture of the minor one, as an analytically pure sample (78% yield). After additional crystallization from a hexa­ne/CH2Cl2 mixture, 285 mg (54%) of pure (E)-1 were isolated as orange crystals with m.p. 485–487 K. From this material, crystals suitable for the X-ray diffraction measurements were separated without additional recrystallization.

[Scheme 2]

1H NMR [600 MHz, CDCl3, δ (ppm), J (Hz)]: 3.63–3.65 [m, 4CH(Fc)], 4.13–4.15 [m, 4CH(Fc)], 4.16 [s, 10CH(Fc)], 6.40 [d, 3JH,H = 3.0, 2CH(Fur)], 6.54 [dd, 4JH,H = 1.8, 3JH,H = 3.0, 2CH(Fur)], 7.58 [brs, 2CH(Fur)]. 13C NMR [150 MHz, CDCl3, δ (ppm)]: 68.5, 68.9 [2 signals for 8CH(Fc)], 69.6 [10CH(Fc)], 85.4 [2C(Fc)], 109.1, 111.1, 140.8 [3 signals for 6CH(Fur)], 129.1 (C=C), 153.3 [2C(Fur)]. ESI–MS (mixture of isomers): 528 (100, [M]+), 529 (50, [M + 1]+). Elemental analysis calculated for C30H24Fe2O2 (528.20): C 68.22, H 4.58%; found: C 68.38, H 4.61%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically calculated positions and were constrained to ride on their parent atom with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C20H14O2)]
Mr 528.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 160
a, b, c (Å) 5.81006 (13), 22.7138 (5), 8.38031 (18)
β (°) 91.785 (2)
V3) 1105.40 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.20 × 0.16 × 0.08
 
Data collection
Diffractometer Oxford Diffraction SuperNova, dual-radiation diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, England.])
Tmin, Tmax 0.895, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13881, 3021, 2612
Rint 0.026
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.04
No. of reflections 3021
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2015) and publCIF (Westrip, 2010).

(E)-1,2-Diferrocenyl-1,2-bis(furan-2-yl)ethene top
Crystal data top
[Fe2(C5H5)2(C20H14O2)]F(000) = 544
Mr = 528.19Dx = 1.587 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.81006 (13) ÅCell parameters from 7365 reflections
b = 22.7138 (5) Åθ = 3.0–29.9°
c = 8.38031 (18) ŵ = 1.34 mm1
β = 91.785 (2)°T = 160 K
V = 1105.40 (4) Å3Tablet, orange
Z = 20.20 × 0.16 × 0.08 mm
Data collection top
Oxford Diffraction SuperNova, dual radiation
diffractometer
3021 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2612 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.3801 pixels mm-1θmax = 30.2°, θmin = 2.6°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 3131
Tmin = 0.895, Tmax = 1.000l = 1111
13881 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9916P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3021 reflectionsΔρmax = 0.49 e Å3
154 parametersΔρmin = 0.36 e Å3
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: hexane / dichloromethane Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 1290 Seconds exposure per frame: 10.0 Degrees rotation per frame: 1602.0 Crystal-detector distance (mm): 55.0

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.46176 (4)0.65950 (2)0.41357 (3)0.01767 (8)
O10.5980 (2)0.54191 (6)0.79034 (16)0.0295 (3)
C10.5597 (3)0.52572 (7)0.5053 (2)0.0159 (3)
C20.7063 (3)0.53842 (7)0.6485 (2)0.0187 (3)
C30.7668 (5)0.55207 (10)0.9050 (3)0.0408 (6)
H30.74080.55621.01580.049*
C40.9717 (4)0.55529 (10)0.8395 (3)0.0418 (6)
H41.11500.56240.89380.050*
C50.9354 (3)0.54589 (8)0.6699 (2)0.0256 (4)
H51.04870.54510.59060.031*
C60.5501 (3)0.57204 (7)0.38168 (19)0.0168 (3)
C70.7351 (3)0.61094 (7)0.3435 (2)0.0212 (3)
H70.88410.61110.39370.025*
C80.6590 (4)0.64909 (8)0.2187 (2)0.0264 (4)
H80.74830.67880.17010.032*
C90.4265 (4)0.63519 (8)0.1791 (2)0.0262 (4)
H90.33240.65410.09980.031*
C100.3583 (3)0.58793 (7)0.2787 (2)0.0200 (3)
H100.21060.57000.27720.024*
C110.4528 (4)0.68024 (9)0.6520 (2)0.0295 (4)
H110.50750.65630.73820.035*
C120.5838 (3)0.72260 (9)0.5685 (2)0.0310 (4)
H120.74120.73200.58910.037*
C130.4377 (4)0.74812 (8)0.4493 (2)0.0286 (4)
H130.47980.77780.37580.034*
C140.2176 (3)0.72175 (8)0.4587 (2)0.0267 (4)
H140.08660.73050.39220.032*
C150.2268 (3)0.68009 (8)0.5840 (2)0.0268 (4)
H150.10280.65620.61690.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02204 (13)0.01261 (12)0.01843 (13)0.00067 (9)0.00192 (9)0.00138 (9)
O10.0359 (8)0.0287 (7)0.0239 (7)0.0074 (6)0.0035 (6)0.0018 (6)
C10.0146 (7)0.0145 (7)0.0186 (8)0.0026 (6)0.0019 (6)0.0016 (6)
C20.0225 (8)0.0125 (7)0.0211 (8)0.0001 (6)0.0004 (6)0.0008 (6)
C30.0646 (16)0.0329 (11)0.0242 (10)0.0080 (11)0.0104 (10)0.0070 (9)
C40.0466 (13)0.0289 (11)0.0480 (13)0.0068 (10)0.0295 (11)0.0027 (10)
C50.0207 (8)0.0236 (9)0.0324 (10)0.0016 (7)0.0022 (7)0.0050 (8)
C60.0192 (8)0.0130 (7)0.0184 (8)0.0008 (6)0.0028 (6)0.0025 (6)
C70.0214 (8)0.0167 (8)0.0260 (9)0.0003 (6)0.0064 (7)0.0014 (7)
C80.0377 (10)0.0189 (8)0.0233 (9)0.0002 (7)0.0127 (8)0.0012 (7)
C90.0414 (11)0.0192 (8)0.0179 (8)0.0057 (8)0.0011 (7)0.0012 (7)
C100.0242 (8)0.0153 (8)0.0204 (8)0.0020 (6)0.0022 (7)0.0037 (6)
C110.0464 (12)0.0227 (9)0.0193 (8)0.0082 (8)0.0015 (8)0.0057 (7)
C120.0278 (10)0.0274 (10)0.0378 (11)0.0027 (8)0.0019 (8)0.0172 (8)
C130.0407 (11)0.0133 (8)0.0324 (10)0.0001 (7)0.0121 (8)0.0032 (7)
C140.0282 (9)0.0233 (9)0.0285 (9)0.0079 (7)0.0006 (8)0.0050 (7)
C150.0326 (10)0.0219 (9)0.0267 (9)0.0035 (7)0.0116 (8)0.0063 (7)
Geometric parameters (Å, º) top
Fe1—C72.0352 (17)C5—H50.9500
Fe1—C82.0380 (18)C6—C101.434 (2)
Fe1—C132.0404 (18)C6—C71.435 (2)
Fe1—C92.0456 (18)C7—C81.419 (3)
Fe1—C122.0457 (19)C7—H70.9500
Fe1—C142.0465 (18)C8—C91.417 (3)
Fe1—C112.0555 (19)C8—H80.9500
Fe1—C102.0591 (17)C9—C101.424 (3)
Fe1—C152.0605 (18)C9—H90.9500
Fe1—C62.0712 (16)C10—H100.9500
O1—C21.365 (2)C11—C151.415 (3)
O1—C31.371 (3)C11—C121.424 (3)
C1—C1i1.360 (3)C11—H110.9500
C1—C61.476 (2)C12—C131.415 (3)
C1—C21.478 (2)C12—H120.9500
C2—C51.349 (2)C13—C141.416 (3)
C3—C41.329 (4)C13—H130.9500
C3—H30.9500C14—C151.414 (3)
C4—C51.446 (3)C14—H140.9500
C4—H40.9500C15—H150.9500
C7—Fe1—C840.77 (7)C10—C6—C7106.52 (15)
C7—Fe1—C13129.40 (8)C10—C6—C1127.83 (15)
C8—Fe1—C13105.96 (8)C7—C6—C1125.64 (15)
C7—Fe1—C968.43 (8)C10—C6—Fe169.23 (9)
C8—Fe1—C940.59 (8)C7—C6—Fe168.20 (9)
C13—Fe1—C9113.70 (8)C1—C6—Fe1126.65 (11)
C7—Fe1—C12107.73 (8)C8—C7—C6108.76 (16)
C8—Fe1—C12113.42 (8)C8—C7—Fe169.73 (10)
C13—Fe1—C1240.51 (8)C6—C7—Fe170.89 (9)
C9—Fe1—C12145.21 (8)C8—C7—H7125.6
C7—Fe1—C14168.36 (8)C6—C7—H7125.6
C8—Fe1—C14129.68 (8)Fe1—C7—H7125.3
C13—Fe1—C1440.56 (8)C9—C8—C7108.05 (16)
C9—Fe1—C14108.34 (8)C9—C8—Fe169.99 (11)
C12—Fe1—C1468.12 (8)C7—C8—Fe169.51 (10)
C7—Fe1—C11116.63 (8)C9—C8—H8126.0
C8—Fe1—C11146.90 (9)C7—C8—H8126.0
C13—Fe1—C1168.12 (8)Fe1—C8—H8126.1
C9—Fe1—C11172.39 (9)C8—C9—C10108.15 (16)
C12—Fe1—C1140.64 (8)C8—C9—Fe169.42 (10)
C14—Fe1—C1167.88 (8)C10—C9—Fe170.22 (10)
C7—Fe1—C1068.35 (7)C8—C9—H9125.9
C8—Fe1—C1068.30 (7)C10—C9—H9125.9
C13—Fe1—C10147.05 (8)Fe1—C9—H9126.0
C9—Fe1—C1040.58 (7)C9—C10—C6108.50 (16)
C12—Fe1—C10172.33 (8)C9—C10—Fe169.20 (10)
C14—Fe1—C10117.03 (7)C6—C10—Fe170.13 (9)
C11—Fe1—C10134.35 (8)C9—C10—H10125.8
C7—Fe1—C15149.65 (8)C6—C10—H10125.8
C8—Fe1—C15169.52 (8)Fe1—C10—H10126.5
C13—Fe1—C1567.94 (8)C15—C11—C12107.88 (18)
C9—Fe1—C15132.74 (8)C15—C11—Fe170.08 (11)
C12—Fe1—C1567.98 (8)C12—C11—Fe169.31 (11)
C14—Fe1—C1540.27 (8)C15—C11—H11126.1
C11—Fe1—C1540.22 (8)C12—C11—H11126.1
C10—Fe1—C15111.80 (8)Fe1—C11—H11126.1
C7—Fe1—C640.91 (7)C13—C12—C11107.82 (18)
C8—Fe1—C668.75 (7)C13—C12—Fe169.54 (11)
C13—Fe1—C6169.58 (8)C11—C12—Fe170.05 (11)
C9—Fe1—C668.58 (7)C13—C12—H12126.1
C12—Fe1—C6132.19 (8)C11—C12—H12126.1
C14—Fe1—C6149.60 (7)Fe1—C12—H12125.9
C11—Fe1—C6111.05 (7)C12—C13—C14108.09 (17)
C10—Fe1—C640.64 (6)C12—C13—Fe169.94 (11)
C15—Fe1—C6118.64 (7)C14—C13—Fe169.95 (11)
C2—O1—C3106.35 (17)C12—C13—H13126.0
C1i—C1—C6123.93 (19)C14—C13—H13126.0
C1i—C1—C2120.04 (19)Fe1—C13—H13125.7
C6—C1—C2116.02 (14)C15—C14—C13108.12 (17)
C5—C2—O1110.90 (16)C15—C14—Fe170.40 (11)
C5—C2—C1132.40 (16)C13—C14—Fe169.49 (11)
O1—C2—C1116.67 (15)C15—C14—H14125.9
C4—C3—O1110.49 (19)C13—C14—H14125.9
C4—C3—H3124.8Fe1—C14—H14125.7
O1—C3—H3124.8C14—C15—C11108.10 (17)
C3—C4—C5107.03 (18)C14—C15—Fe169.33 (10)
C3—C4—H4126.5C11—C15—Fe169.70 (11)
C5—C4—H4126.5C14—C15—H15126.0
C2—C5—C4105.22 (18)C11—C15—H15126.0
C2—C5—H5127.4Fe1—C15—H15126.6
C4—C5—H5127.4
C3—O1—C2—C50.1 (2)Fe1—C8—C9—C1059.76 (12)
C3—O1—C2—C1178.20 (15)C7—C8—C9—Fe159.30 (12)
C1i—C1—C2—C5115.8 (2)C8—C9—C10—C60.0 (2)
C6—C1—C2—C565.4 (2)Fe1—C9—C10—C659.30 (12)
C1i—C1—C2—O161.8 (2)C8—C9—C10—Fe159.26 (13)
C6—C1—C2—O1117.02 (16)C7—C6—C10—C90.52 (19)
C2—O1—C3—C40.4 (2)C1—C6—C10—C9179.64 (16)
O1—C3—C4—C50.7 (3)Fe1—C6—C10—C958.72 (12)
O1—C2—C5—C40.5 (2)C7—C6—C10—Fe158.21 (11)
C1—C2—C5—C4178.21 (18)C1—C6—C10—Fe1120.92 (17)
C3—C4—C5—C20.7 (2)C15—C11—C12—C130.2 (2)
C1i—C1—C6—C1032.9 (3)Fe1—C11—C12—C1359.52 (13)
C2—C1—C6—C10145.89 (16)C15—C11—C12—Fe159.70 (13)
C1i—C1—C6—C7148.2 (2)C11—C12—C13—C140.1 (2)
C2—C1—C6—C733.1 (2)Fe1—C12—C13—C1459.79 (13)
C1i—C1—C6—Fe1123.9 (2)C11—C12—C13—Fe159.84 (13)
C2—C1—C6—Fe154.85 (19)C12—C13—C14—C150.3 (2)
C10—C6—C7—C80.81 (19)Fe1—C13—C14—C1560.05 (13)
C1—C6—C7—C8179.96 (15)C12—C13—C14—Fe159.78 (13)
Fe1—C6—C7—C859.67 (12)C13—C14—C15—C110.4 (2)
C10—C6—C7—Fe158.86 (11)Fe1—C14—C15—C1159.11 (13)
C1—C6—C7—Fe1120.29 (16)C13—C14—C15—Fe159.48 (13)
C6—C7—C8—C90.8 (2)C12—C11—C15—C140.3 (2)
Fe1—C7—C8—C959.60 (13)Fe1—C11—C15—C1458.88 (13)
C6—C7—C8—Fe160.40 (12)C12—C11—C15—Fe159.22 (13)
C7—C8—C9—C100.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C6–C10, C11–C15 and C2/O1/C3–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.952.813.686 (3)153
C8—H8···Cg2iii0.952.853.764 (2)161
C10—H10···Cg3i0.952.683.2097 (18)116
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

GM thanks Professor Wolfgang Weigand (Jena) for stimulating discussions on the chemistry of ferrocene thio­ketones.

Funding information

Funding for this research was provided by: Maestro-3 (grant No. Dec-2012/06/A/ST5/00219 to R. Hamera-Fałdyga, G. Mlostoń); Institutspartnerschaft, Alexander von Humboldt Foundation, Bonn (grant to R. Hamera-Fałdyga, G. Mlostoń).

References

First citationAstruc, D. (2017). Eur. J. Inorg. Chem. pp. 6–29.  Web of Science CrossRef Google Scholar
First citationBeletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637, 653–663.  Web of Science CSD CrossRef Google Scholar
First citationChen, Y. J., Pan, D.-S., Chiu, C.-F., Su, J.-X., Lin, S. J. & Kwan, K. S. (2000). Inorg. Chem. 39, 953–958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDang, Y., Geise, H., Dommisse, R. & Esmans, E. (1990). Inorg. Chim. Acta, 175, 115–120.  CrossRef CAS Google Scholar
First citationDeHope, A., Mendoza-Espinosa, D., Donnadieu, B. & Bertrand, G. (2011). New J. Chem. 35, 2037–2042.  Web of Science CSD CrossRef CAS Google Scholar
First citationDenifl, P., Hradsky, A., Bildstein, B. & Wurst, K. (1996). J. Organomet. Chem. 523, 79–91.  CSD CrossRef CAS Web of Science Google Scholar
First citationDong, T.-Y., Ke, T.-J., Peng, S.-M. & Yeh, S.-K. (1989). Inorg. Chem. 28, 2103–2106.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J., Evans, C., Lentz, D. & Roemer, M. (2009). J. Am. Chem. Soc. 131, 1251–1268.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGarcía, J. J. S., Flores-Alamo, M., Flores, D. E. C. & Klimova, E. I. (2017). Mendeleev Commun. 27, 26–28.  Google Scholar
First citationGarcía, J. J. S., Flores-Alamo, M., Ortiz-Frade, L. & Klimova, E. I. (2017). J. Organomet. Chem. 842, 21–31.  Google Scholar
First citationGarcía, J. J. S., Ortiz-Frade, L., Martínez-Klimova, E., García-Ramos, J. C., Flores-Alamo, M., Apan, T. R. & Klimova, E. I. (2014). Open J. Synth. Theory Appl. 3, 44–56.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeigl, O. M., Herker, M. A., Hiller, W., Köhler, F. H. & Schell, A. (1999). J. Organomet. Chem. 574, 94–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKlimova, E. I., Berestneva, T. K., Cinquantini, A., Corsini, M., Zanello, P., Tuscano, R. A., Hernández-Ortega, S. & Martínez-García, M. (2003). Org. Biomol. Chem. 1, 4458–4464.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlimova, E. I., Berestneva, T. K., Ramirez, L. R., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, S. & García, M. M. (2003). Eur. J. Org. Chem. pp. 4265–4272.  Web of Science CSD CrossRef Google Scholar
First citationKlimova, E. I., Flores-Alamo, M., Maya, S. C., García-Ramos, J. C., Ortiz-Frade, L. & Stivalet, J. M. M. (2013). J. Organomet. Chem. 743, 24–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlimova, E. I., Klimova, T., Flores-Alamo, M., Backinowsky, L. V. & García, M. M. (2009). Molecules, 14, 3161–3175.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMata, J. A. & Peris, E. (2001). J. Chem. Soc. Dalton Trans. pp. 3634–3640.  Web of Science CSD CrossRef Google Scholar
First citationMlostoń, G., Hamera, R. & Heimgartner, H. (2015). Phosphorus Sulfur Silicon Relat. Elem. 190, 2125–2133.  Google Scholar
First citationMlostoń, G., Hamera-Fałdyga, R. & Heimgartner, H. (2018). J. Sulfur Chem. 39, doi: 10.1080/17415993.2017.1415339  Google Scholar
First citationMlostoń, G., Pipiak, P., Hamera-Fałdyga, R. & Heimgartner, H. (2017). Beilstein J. Org. Chem. 13, 1900–1906.  Google Scholar
First citationNagahora, N., Yuasa, A., Sasamori, T. & Tokitoh, N. (2007). Acta Cryst. E63, m2702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationResnier, R., Galopin, N., Sibiril, Y., Clavreul, A., Cayon, J., Briganti, A., Legras, P., Vessières, A., Montier, T., Jaouen, G., Benoit, J.-P. & Passirani, C. (2017). Pharmacol. Res. 126, 54–65.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, England.  Google Scholar
First citationRoemer, M., Donnadieu, B. & Nijhuis, C. A. (2016). Eur. J. Inorg. Chem. pp. 1314–1318.  Web of Science CSD CrossRef Google Scholar
First citationRoemer, M. & Lentz, D. (2008). Eur. J. Inorg. Chem. pp. 4875–4878.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkibar, W., Kopacka, H., Wurst, K., Salzmann, C., Ongania, K.-H., de Biani, F. F., Zanello, P. & Bildstein, B. (2004). Organometallics, 23, 1024–1041.  Web of Science CSD CrossRef CAS Google Scholar
First citationSolntsev, P. V., Dudkin, S. V., Sabin, J. R. & Nemykin, V. N. (2011). Organometallics, 30, 3037–3046.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTop, S., Dauer, B., Vaissermann, J. & Jaouen, G. (1997). J. Organomet. Chem. 541, 355–361.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds