research communications
E)-1,2-diferrocenyl-1,2-bis(furan-2-yl)ethene
of (aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and bDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
*Correspondence e-mail: anthony.linden@chem.uzh.ch
The title compound, [Fe2(C5H5)2(C20H14O2)], is the product of a new synthetic route towards tetraaryl/hetaryl-substituted ethenes that reduces the occurrence of side-products. In the crystal, the molecule is centrosymmetric and the cyclopentadienyl (Cp) rings are nearly coplanar and aligned slightly closer to a than to an eclipsed one. The ethene plane is tilted by 32.40 (18)° with respect to that of the substituted Cp ring and by 63.19 (19)° with respect to that of the furan ring. C—H⋯π interactions link the molecules into a three-dimensional supramolecular framework.
Keywords: crystal structure; ethenes; ferrocene.
CCDC reference: 1833400
1. Chemical context
Tetrasubstituted ethenes bearing aryl, hetaryl or ferrocenyl groups are of current interest, as many of them find applications as novel materials for photooptics, electronics, crystal engineering and as new medications (Astruc, 2017). Ethene derivatives with a ferrocenyl unit on one or both C atoms of the alkene deserve special attention. Prominent representatives of the first type are ferrocifene {1-[4-(2-dimethylaminoethoxy)phenyl]-1-phenyl-2-ferrocenylbut-1-ene} and its di-OH analogue, which are known as potent, organometallic antitumor drugs (Jaouen et al., 2015; Resnier et al., 2017). On the other hand, dimethyl (Z)-2,3-diferrocenylbut-2-enedioate displays interesting redox and solvatochromic properties (Solntsev et al., 2011). As typical procedures for the preparation of tetrasubstituted ethenes containing a ferrocenyl substituent, conversions of the corresponding under the McMurry reaction conditions (Top et al., 1997) or reductive coupling using low-valent titanium agents are recommended (Dang et al., 1990). In both cases, the reported yields are satisfactory to good, but a serious disadvantage is the formation of side-products. Recently, we reported a new approach to tetraaryl/hetaryl-substituted ethenes via desilylation of 2-(trimethylsilyl)-4,4,5,5-tetraaryl/hetaryl-1,3-dithiolanes, obtained from diaryl/hetaryl thioketones by treatment with (trimethylsilyl)diazomethane (TMS-CHN2) at low temperature (Mlostoń et al., 2017). The mechanism of this unusual conversion was explained by the assumption that the in situ-generated 1,3-dithiolane anion undergoes a spontaneous cycloelimination ([3 + 2]-cycloreversion) to give the dithioformate anion and the corresponding tetrasubstituted ethene derivative. The same method was applied for the preparation of some ferrocenyl/hetaryl-substituted ethenes (Mlostoń et al., 2018).
Here we report the analogous synthesis and E)-1, with m.p. 485–487 K. For the previously described synthesis of this product (Dang et al., 1990), a m.p. of 489–491 K and a yield of 17% were reported and the authors tentatively assigned the (E)-configuration to the obtained compound. In our case, single crystals of (E)-1 were grown from hexane/CH2Cl2 and used for an X-ray from which the previous tentatively postulated structure of the obtained isomer could be confirmed.
of the known title compound, (2. Structural commentary
The molecule of (E)-1 sits across a crystallographic centre of inversion and is shown in Fig. 1. Within the the Fe atom sits very well centred between the cyclopentadienyl (Cp) rings with all Fe—C distances in the range 2.0352 (17)–2.0712 (16) Å. The Cp C—C bond lengths [mean 1.435 (2) Å] involving the substituted C atom, C6, are very slightly elongated compared with the other C—C distances [mean 1.418 (3) Å]. Other bond lengths and angles are unremarkable. The two Cp rings are aligned slightly closer to a than to an eclipsed one, with the ring rotation from perfectly eclipsed being 20.6 (2)° (18° is the half-way point between eclipsed and staggered). The dihedral angle between the planes of the two Cp rings in the ferrocenyl entity is only 4.08 (11)° and ethene atom C1 is coplanar with the Cp ring to which it is bonded. However, the ferrocenyl entity is tilted with respect to the ethene plane, with a dihedral angle between the plane of the substituted Cp ring and that of the ethene plane of 32.40 (18)°. The dihedral angle between the substituted Cp ring and the adjacent furan ring is 53.46 (11)°, while that between the plane of the furan ring and the ethene plane is 63.19 (19)°. The planes of the two furan rings are necessarily parallel because of the centre of inversion.
3. Supramolecular features
There are no significant C—H⋯O or π–π interactions, but some weak C—H⋯π interactions are present (Table 1). C8—H of the substituted Cp ring has an edge-on intermolecular interaction with the unsubstituted Cp ring at x + , −y + , z − . The extension of this interaction through the molecular centre of inversion leads to sheets of molecules, which lie parallel to the (101) plane (Fig. 2). The furan ring, via C3—H, has an edge-on intermolecular C—H⋯π interaction with the substituted Cp ring at x, y, z + 1. This interaction leads to double-stranded chains or ladders, in which the molecule acts as the ladder rungs; the chains run parallel to the [001] direction (Fig. 3). Finally, C10—H of the substituted Cp ring interacts intramolecularly with the π-system of the furan ring at −x + 1, −y + 1, −z + 1 on the opposite side of the molecule. This latter interaction is quite short, but has a sharp angle at the H atom (Table 1), so the arrangement might just be a consequence of the molecular conformation. The molecular inversion symmetry, in combination with the two types of intermolecular interactions, links the molecules into a three-dimensional supramolecular framework.
4. Database survey
The Cambridge Structural Database (CSD, Version 5.39 with February 2018 updates; Groom et al., 2016) contains one entry for a 1,1-diferrocenylethene [1,1-bis(1′′,2′′,3′′,4′′,5′′-pentamethylferrocen-1′-yl)ethene, CSD refcode CIJQAN, Heigl et al., 1999] and 24 entries involving related 1,2-diferrocenylethenes, 10 of which are (E)-isomers. The archetypal structure is (E)-1,2-diferrocenylethene (REBDAD, Denifl et al., 1996), in which the Cp rings of the ferrocenyl entities adopt an almost perfectly eclipsed arrangement. With the exception of 1-(1′-benzoylferrocenyl)-2-ferrocenylethene and 1-(1′-(4-methoxybenzoyl)ferrocenyl)-2-ferrocenylethene (OJUWUN and OJUXAU, Roemer et al., 2016), in which the ferrocenyl Cp rings lie close to a staggered arrangement, all of the other structures of molecules with the (E)-configuration display Cp arrangements that are much closer to eclipsed than observed for (E)-1 (ACUVAV, Mata & Peris, 2001; IBAXAM, DeHope et al., 2011; IVOSER, Skibar et al., 2004; JANJAJ, Dong et al., 1989; OJUXEY, Roemer et al., 2016; QICKIW, Chen et al., 2000; REBDAD; WIMYOH, Nagahora et al., 2007, Roemer & Lentz, 2008, Farrugia et al., 2009). The 1,1-diferrocenylethene structure also has eclipsed Cp rings. The two staggered (E)-configured examples have a bulky substituent on one of the distal Cp rings; those with a less bulky Cp substituent have the eclipsed arrangement. Interestingly, (E)-1 has no Cp substituents yet the Cp ring arrangement deviates significantly from eclipsed. The degree of eclipsing of the Cp conformations found among the molecules with the (Z)-configuration, two of which have a cyclopropene ring as the ethene bridge (AMODIP, Klimova, Berestneva, Ramirez et al., 2003; EQOMIG, Klimova, Berestneva, Cinquantini et al., 2003), is more varied (AMODOV and AMODUB, Klimova, Berestneva, Ramirez et al., 2003; BADDAM, Beletskaya et al., 2001, Solntsev et al., 2011; JAJYIF and JAJYOL, García, Flores-Alamo, Flores & Klimova, 2017; KIGQUO, Klimova et al., 2013; LUFCEW, García et al., 2014; QASPEI, QATDAT and QATDEX, García, Flores-Alamo, Ortiz-Frade & Klimova, 2017; QICKOC, Chen et al., 2000; TUJDEI, Klimova et al., 2009).
5. Synthesis and crystallization
The title compound was prepared according to the reaction sequence presented in the scheme below. A solution of thioketone 2 (297 mg, 1 mmol; prepared according to Mlostoń et al., 2015) in THF (3 ml) was cooled to 198 K (acetone/dry ice). Then, TMS-CHN2 was added portion-wise to the mixture until the green colour of the starting thioketone disappeared. The magnetically stirred reaction mixture was allowed to warm slowly to ca 268 to 273 K and at this temperature a commercially available solution of tetrabutylammonium fluoride (TBAF, 1 ml, 1 M) was added in small portions. Stirring was continued for 20 min, and after warming to room temperature, the solvent was evaporated under vacuum. The crude product was analyzed by 1H NMR spectroscopy, which revealed the presence of two isomeric ethenes in a ratio of ca 10:1. After (SiO2, CH2Cl2/hexane 3:7), the major product was isolated, contaminated with a small admixture of the minor one, as an analytically pure sample (78% yield). After additional crystallization from a hexane/CH2Cl2 mixture, 285 mg (54%) of pure (E)-1 were isolated as orange crystals with m.p. 485–487 K. From this material, crystals suitable for the X-ray diffraction measurements were separated without additional recrystallization.
1H NMR [600 MHz, CDCl3, δ (ppm), J (Hz)]: 3.63–3.65 [m, 4CH(Fc)], 4.13–4.15 [m, 4CH(Fc)], 4.16 [s, 10CH(Fc)], 6.40 [d, 3JH,H = 3.0, 2CH(Fur)], 6.54 [dd, 4JH,H = 1.8, 3JH,H = 3.0, 2CH(Fur)], 7.58 [brs, 2CH(Fur)]. 13C NMR [150 MHz, CDCl3, δ (ppm)]: 68.5, 68.9 [2 signals for 8CH(Fc)], 69.6 [10CH(Fc)], 85.4 [2C(Fc)], 109.1, 111.1, 140.8 [3 signals for 6CH(Fur)], 129.1 (C=C), 153.3 [2C(Fur)]. ESI–MS (mixture of isomers): 528 (100, [M]+), 529 (50, [M + 1]+). Elemental analysis calculated for C30H24Fe2O2 (528.20): C 68.22, H 4.58%; found: C 68.38, H 4.61%.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically calculated positions and were constrained to ride on their parent atom with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1833400
https://doi.org/10.1107/S2056989018005078/sj5552sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005078/sj5552Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005078/sj5552Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005078/sj5552Isup4.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEPII (Johnson, 1976) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2015) and publCIF (Westrip, 2010).[Fe2(C5H5)2(C20H14O2)] | F(000) = 544 |
Mr = 528.19 | Dx = 1.587 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.81006 (13) Å | Cell parameters from 7365 reflections |
b = 22.7138 (5) Å | θ = 3.0–29.9° |
c = 8.38031 (18) Å | µ = 1.34 mm−1 |
β = 91.785 (2)° | T = 160 K |
V = 1105.40 (4) Å3 | Tablet, orange |
Z = 2 | 0.20 × 0.16 × 0.08 mm |
Oxford Diffraction SuperNova, dual radiation diffractometer | 3021 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2612 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.3801 pixels mm-1 | θmax = 30.2°, θmin = 2.6° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −31→31 |
Tmin = 0.895, Tmax = 1.000 | l = −11→11 |
13881 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9916P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3021 reflections | Δρmax = 0.49 e Å−3 |
154 parameters | Δρmin = −0.36 e Å−3 |
Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch Solvent used: hexane / dichloromethane Cooling Device: Oxford Instruments Cryojet XL Crystal mount: on a glass fibre Frames collected: 1290 Seconds exposure per frame: 10.0 Degrees rotation per frame: 1602.0 Crystal-detector distance (mm): 55.0 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.46176 (4) | 0.65950 (2) | 0.41357 (3) | 0.01767 (8) | |
O1 | 0.5980 (2) | 0.54191 (6) | 0.79034 (16) | 0.0295 (3) | |
C1 | 0.5597 (3) | 0.52572 (7) | 0.5053 (2) | 0.0159 (3) | |
C2 | 0.7063 (3) | 0.53842 (7) | 0.6485 (2) | 0.0187 (3) | |
C3 | 0.7668 (5) | 0.55207 (10) | 0.9050 (3) | 0.0408 (6) | |
H3 | 0.7408 | 0.5562 | 1.0158 | 0.049* | |
C4 | 0.9717 (4) | 0.55529 (10) | 0.8395 (3) | 0.0418 (6) | |
H4 | 1.1150 | 0.5624 | 0.8938 | 0.050* | |
C5 | 0.9354 (3) | 0.54589 (8) | 0.6699 (2) | 0.0256 (4) | |
H5 | 1.0487 | 0.5451 | 0.5906 | 0.031* | |
C6 | 0.5501 (3) | 0.57204 (7) | 0.38168 (19) | 0.0168 (3) | |
C7 | 0.7351 (3) | 0.61094 (7) | 0.3435 (2) | 0.0212 (3) | |
H7 | 0.8841 | 0.6111 | 0.3937 | 0.025* | |
C8 | 0.6590 (4) | 0.64909 (8) | 0.2187 (2) | 0.0264 (4) | |
H8 | 0.7483 | 0.6788 | 0.1701 | 0.032* | |
C9 | 0.4265 (4) | 0.63519 (8) | 0.1791 (2) | 0.0262 (4) | |
H9 | 0.3324 | 0.6541 | 0.0998 | 0.031* | |
C10 | 0.3583 (3) | 0.58793 (7) | 0.2787 (2) | 0.0200 (3) | |
H10 | 0.2106 | 0.5700 | 0.2772 | 0.024* | |
C11 | 0.4528 (4) | 0.68024 (9) | 0.6520 (2) | 0.0295 (4) | |
H11 | 0.5075 | 0.6563 | 0.7382 | 0.035* | |
C12 | 0.5838 (3) | 0.72260 (9) | 0.5685 (2) | 0.0310 (4) | |
H12 | 0.7412 | 0.7320 | 0.5891 | 0.037* | |
C13 | 0.4377 (4) | 0.74812 (8) | 0.4493 (2) | 0.0286 (4) | |
H13 | 0.4798 | 0.7778 | 0.3758 | 0.034* | |
C14 | 0.2176 (3) | 0.72175 (8) | 0.4587 (2) | 0.0267 (4) | |
H14 | 0.0866 | 0.7305 | 0.3922 | 0.032* | |
C15 | 0.2268 (3) | 0.68009 (8) | 0.5840 (2) | 0.0268 (4) | |
H15 | 0.1028 | 0.6562 | 0.6169 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02204 (13) | 0.01261 (12) | 0.01843 (13) | 0.00067 (9) | 0.00192 (9) | −0.00138 (9) |
O1 | 0.0359 (8) | 0.0287 (7) | 0.0239 (7) | 0.0074 (6) | 0.0035 (6) | −0.0018 (6) |
C1 | 0.0146 (7) | 0.0145 (7) | 0.0186 (8) | 0.0026 (6) | 0.0019 (6) | −0.0016 (6) |
C2 | 0.0225 (8) | 0.0125 (7) | 0.0211 (8) | 0.0001 (6) | 0.0004 (6) | −0.0008 (6) |
C3 | 0.0646 (16) | 0.0329 (11) | 0.0242 (10) | 0.0080 (11) | −0.0104 (10) | −0.0070 (9) |
C4 | 0.0466 (13) | 0.0289 (11) | 0.0480 (13) | −0.0068 (10) | −0.0295 (11) | 0.0027 (10) |
C5 | 0.0207 (8) | 0.0236 (9) | 0.0324 (10) | −0.0016 (7) | −0.0022 (7) | 0.0050 (8) |
C6 | 0.0192 (8) | 0.0130 (7) | 0.0184 (8) | 0.0008 (6) | 0.0028 (6) | −0.0025 (6) |
C7 | 0.0214 (8) | 0.0167 (8) | 0.0260 (9) | 0.0003 (6) | 0.0064 (7) | −0.0014 (7) |
C8 | 0.0377 (10) | 0.0189 (8) | 0.0233 (9) | −0.0002 (7) | 0.0127 (8) | 0.0012 (7) |
C9 | 0.0414 (11) | 0.0192 (8) | 0.0179 (8) | 0.0057 (8) | −0.0011 (7) | −0.0012 (7) |
C10 | 0.0242 (8) | 0.0153 (8) | 0.0204 (8) | 0.0020 (6) | −0.0022 (7) | −0.0037 (6) |
C11 | 0.0464 (12) | 0.0227 (9) | 0.0193 (8) | 0.0082 (8) | −0.0015 (8) | −0.0057 (7) |
C12 | 0.0278 (10) | 0.0274 (10) | 0.0378 (11) | −0.0027 (8) | 0.0019 (8) | −0.0172 (8) |
C13 | 0.0407 (11) | 0.0133 (8) | 0.0324 (10) | 0.0001 (7) | 0.0121 (8) | −0.0032 (7) |
C14 | 0.0282 (9) | 0.0233 (9) | 0.0285 (9) | 0.0079 (7) | 0.0006 (8) | −0.0050 (7) |
C15 | 0.0326 (10) | 0.0219 (9) | 0.0267 (9) | −0.0035 (7) | 0.0116 (8) | −0.0063 (7) |
Fe1—C7 | 2.0352 (17) | C5—H5 | 0.9500 |
Fe1—C8 | 2.0380 (18) | C6—C10 | 1.434 (2) |
Fe1—C13 | 2.0404 (18) | C6—C7 | 1.435 (2) |
Fe1—C9 | 2.0456 (18) | C7—C8 | 1.419 (3) |
Fe1—C12 | 2.0457 (19) | C7—H7 | 0.9500 |
Fe1—C14 | 2.0465 (18) | C8—C9 | 1.417 (3) |
Fe1—C11 | 2.0555 (19) | C8—H8 | 0.9500 |
Fe1—C10 | 2.0591 (17) | C9—C10 | 1.424 (3) |
Fe1—C15 | 2.0605 (18) | C9—H9 | 0.9500 |
Fe1—C6 | 2.0712 (16) | C10—H10 | 0.9500 |
O1—C2 | 1.365 (2) | C11—C15 | 1.415 (3) |
O1—C3 | 1.371 (3) | C11—C12 | 1.424 (3) |
C1—C1i | 1.360 (3) | C11—H11 | 0.9500 |
C1—C6 | 1.476 (2) | C12—C13 | 1.415 (3) |
C1—C2 | 1.478 (2) | C12—H12 | 0.9500 |
C2—C5 | 1.349 (2) | C13—C14 | 1.416 (3) |
C3—C4 | 1.329 (4) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.414 (3) |
C4—C5 | 1.446 (3) | C14—H14 | 0.9500 |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C7—Fe1—C8 | 40.77 (7) | C10—C6—C7 | 106.52 (15) |
C7—Fe1—C13 | 129.40 (8) | C10—C6—C1 | 127.83 (15) |
C8—Fe1—C13 | 105.96 (8) | C7—C6—C1 | 125.64 (15) |
C7—Fe1—C9 | 68.43 (8) | C10—C6—Fe1 | 69.23 (9) |
C8—Fe1—C9 | 40.59 (8) | C7—C6—Fe1 | 68.20 (9) |
C13—Fe1—C9 | 113.70 (8) | C1—C6—Fe1 | 126.65 (11) |
C7—Fe1—C12 | 107.73 (8) | C8—C7—C6 | 108.76 (16) |
C8—Fe1—C12 | 113.42 (8) | C8—C7—Fe1 | 69.73 (10) |
C13—Fe1—C12 | 40.51 (8) | C6—C7—Fe1 | 70.89 (9) |
C9—Fe1—C12 | 145.21 (8) | C8—C7—H7 | 125.6 |
C7—Fe1—C14 | 168.36 (8) | C6—C7—H7 | 125.6 |
C8—Fe1—C14 | 129.68 (8) | Fe1—C7—H7 | 125.3 |
C13—Fe1—C14 | 40.56 (8) | C9—C8—C7 | 108.05 (16) |
C9—Fe1—C14 | 108.34 (8) | C9—C8—Fe1 | 69.99 (11) |
C12—Fe1—C14 | 68.12 (8) | C7—C8—Fe1 | 69.51 (10) |
C7—Fe1—C11 | 116.63 (8) | C9—C8—H8 | 126.0 |
C8—Fe1—C11 | 146.90 (9) | C7—C8—H8 | 126.0 |
C13—Fe1—C11 | 68.12 (8) | Fe1—C8—H8 | 126.1 |
C9—Fe1—C11 | 172.39 (9) | C8—C9—C10 | 108.15 (16) |
C12—Fe1—C11 | 40.64 (8) | C8—C9—Fe1 | 69.42 (10) |
C14—Fe1—C11 | 67.88 (8) | C10—C9—Fe1 | 70.22 (10) |
C7—Fe1—C10 | 68.35 (7) | C8—C9—H9 | 125.9 |
C8—Fe1—C10 | 68.30 (7) | C10—C9—H9 | 125.9 |
C13—Fe1—C10 | 147.05 (8) | Fe1—C9—H9 | 126.0 |
C9—Fe1—C10 | 40.58 (7) | C9—C10—C6 | 108.50 (16) |
C12—Fe1—C10 | 172.33 (8) | C9—C10—Fe1 | 69.20 (10) |
C14—Fe1—C10 | 117.03 (7) | C6—C10—Fe1 | 70.13 (9) |
C11—Fe1—C10 | 134.35 (8) | C9—C10—H10 | 125.8 |
C7—Fe1—C15 | 149.65 (8) | C6—C10—H10 | 125.8 |
C8—Fe1—C15 | 169.52 (8) | Fe1—C10—H10 | 126.5 |
C13—Fe1—C15 | 67.94 (8) | C15—C11—C12 | 107.88 (18) |
C9—Fe1—C15 | 132.74 (8) | C15—C11—Fe1 | 70.08 (11) |
C12—Fe1—C15 | 67.98 (8) | C12—C11—Fe1 | 69.31 (11) |
C14—Fe1—C15 | 40.27 (8) | C15—C11—H11 | 126.1 |
C11—Fe1—C15 | 40.22 (8) | C12—C11—H11 | 126.1 |
C10—Fe1—C15 | 111.80 (8) | Fe1—C11—H11 | 126.1 |
C7—Fe1—C6 | 40.91 (7) | C13—C12—C11 | 107.82 (18) |
C8—Fe1—C6 | 68.75 (7) | C13—C12—Fe1 | 69.54 (11) |
C13—Fe1—C6 | 169.58 (8) | C11—C12—Fe1 | 70.05 (11) |
C9—Fe1—C6 | 68.58 (7) | C13—C12—H12 | 126.1 |
C12—Fe1—C6 | 132.19 (8) | C11—C12—H12 | 126.1 |
C14—Fe1—C6 | 149.60 (7) | Fe1—C12—H12 | 125.9 |
C11—Fe1—C6 | 111.05 (7) | C12—C13—C14 | 108.09 (17) |
C10—Fe1—C6 | 40.64 (6) | C12—C13—Fe1 | 69.94 (11) |
C15—Fe1—C6 | 118.64 (7) | C14—C13—Fe1 | 69.95 (11) |
C2—O1—C3 | 106.35 (17) | C12—C13—H13 | 126.0 |
C1i—C1—C6 | 123.93 (19) | C14—C13—H13 | 126.0 |
C1i—C1—C2 | 120.04 (19) | Fe1—C13—H13 | 125.7 |
C6—C1—C2 | 116.02 (14) | C15—C14—C13 | 108.12 (17) |
C5—C2—O1 | 110.90 (16) | C15—C14—Fe1 | 70.40 (11) |
C5—C2—C1 | 132.40 (16) | C13—C14—Fe1 | 69.49 (11) |
O1—C2—C1 | 116.67 (15) | C15—C14—H14 | 125.9 |
C4—C3—O1 | 110.49 (19) | C13—C14—H14 | 125.9 |
C4—C3—H3 | 124.8 | Fe1—C14—H14 | 125.7 |
O1—C3—H3 | 124.8 | C14—C15—C11 | 108.10 (17) |
C3—C4—C5 | 107.03 (18) | C14—C15—Fe1 | 69.33 (10) |
C3—C4—H4 | 126.5 | C11—C15—Fe1 | 69.70 (11) |
C5—C4—H4 | 126.5 | C14—C15—H15 | 126.0 |
C2—C5—C4 | 105.22 (18) | C11—C15—H15 | 126.0 |
C2—C5—H5 | 127.4 | Fe1—C15—H15 | 126.6 |
C4—C5—H5 | 127.4 | ||
C3—O1—C2—C5 | 0.1 (2) | Fe1—C8—C9—C10 | −59.76 (12) |
C3—O1—C2—C1 | 178.20 (15) | C7—C8—C9—Fe1 | 59.30 (12) |
C1i—C1—C2—C5 | 115.8 (2) | C8—C9—C10—C6 | 0.0 (2) |
C6—C1—C2—C5 | −65.4 (2) | Fe1—C9—C10—C6 | −59.30 (12) |
C1i—C1—C2—O1 | −61.8 (2) | C8—C9—C10—Fe1 | 59.26 (13) |
C6—C1—C2—O1 | 117.02 (16) | C7—C6—C10—C9 | 0.52 (19) |
C2—O1—C3—C4 | 0.4 (2) | C1—C6—C10—C9 | 179.64 (16) |
O1—C3—C4—C5 | −0.7 (3) | Fe1—C6—C10—C9 | 58.72 (12) |
O1—C2—C5—C4 | −0.5 (2) | C7—C6—C10—Fe1 | −58.21 (11) |
C1—C2—C5—C4 | −178.21 (18) | C1—C6—C10—Fe1 | 120.92 (17) |
C3—C4—C5—C2 | 0.7 (2) | C15—C11—C12—C13 | −0.2 (2) |
C1i—C1—C6—C10 | 32.9 (3) | Fe1—C11—C12—C13 | 59.52 (13) |
C2—C1—C6—C10 | −145.89 (16) | C15—C11—C12—Fe1 | −59.70 (13) |
C1i—C1—C6—C7 | −148.2 (2) | C11—C12—C13—C14 | −0.1 (2) |
C2—C1—C6—C7 | 33.1 (2) | Fe1—C12—C13—C14 | 59.79 (13) |
C1i—C1—C6—Fe1 | 123.9 (2) | C11—C12—C13—Fe1 | −59.84 (13) |
C2—C1—C6—Fe1 | −54.85 (19) | C12—C13—C14—C15 | 0.3 (2) |
C10—C6—C7—C8 | −0.81 (19) | Fe1—C13—C14—C15 | 60.05 (13) |
C1—C6—C7—C8 | −179.96 (15) | C12—C13—C14—Fe1 | −59.78 (13) |
Fe1—C6—C7—C8 | −59.67 (12) | C13—C14—C15—C11 | −0.4 (2) |
C10—C6—C7—Fe1 | 58.86 (11) | Fe1—C14—C15—C11 | 59.11 (13) |
C1—C6—C7—Fe1 | −120.29 (16) | C13—C14—C15—Fe1 | −59.48 (13) |
C6—C7—C8—C9 | 0.8 (2) | C12—C11—C15—C14 | 0.3 (2) |
Fe1—C7—C8—C9 | −59.60 (13) | Fe1—C11—C15—C14 | −58.88 (13) |
C6—C7—C8—Fe1 | 60.40 (12) | C12—C11—C15—Fe1 | 59.22 (13) |
C7—C8—C9—C10 | −0.5 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1, Cg2 and Cg3 are the centroids of the C6–C10, C11–C15 and C2/O1/C3–C5 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···Cg1ii | 0.95 | 2.81 | 3.686 (3) | 153 |
C8—H8···Cg2iii | 0.95 | 2.85 | 3.764 (2) | 161 |
C10—H10···Cg3i | 0.95 | 2.68 | 3.2097 (18) | 116 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z+1; (iii) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
GM thanks Professor Wolfgang Weigand (Jena) for stimulating discussions on the chemistry of ferrocene thioketones.
Funding information
Funding for this research was provided by: Maestro-3 (grant No. Dec-2012/06/A/ST5/00219 to R. Hamera-Fałdyga, G. Mlostoń); Institutspartnerschaft, Alexander von Humboldt Foundation, Bonn (grant to R. Hamera-Fałdyga, G. Mlostoń).
References
Astruc, D. (2017). Eur. J. Inorg. Chem. pp. 6–29. Web of Science CrossRef Google Scholar
Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem. 637, 653–663. Web of Science CSD CrossRef Google Scholar
Chen, Y. J., Pan, D.-S., Chiu, C.-F., Su, J.-X., Lin, S. J. & Kwan, K. S. (2000). Inorg. Chem. 39, 953–958. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dang, Y., Geise, H., Dommisse, R. & Esmans, E. (1990). Inorg. Chim. Acta, 175, 115–120. CrossRef CAS Google Scholar
DeHope, A., Mendoza-Espinosa, D., Donnadieu, B. & Bertrand, G. (2011). New J. Chem. 35, 2037–2042. Web of Science CSD CrossRef CAS Google Scholar
Denifl, P., Hradsky, A., Bildstein, B. & Wurst, K. (1996). J. Organomet. Chem. 523, 79–91. CSD CrossRef CAS Web of Science Google Scholar
Dong, T.-Y., Ke, T.-J., Peng, S.-M. & Yeh, S.-K. (1989). Inorg. Chem. 28, 2103–2106. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J., Evans, C., Lentz, D. & Roemer, M. (2009). J. Am. Chem. Soc. 131, 1251–1268. Web of Science CSD CrossRef PubMed CAS Google Scholar
García, J. J. S., Flores-Alamo, M., Flores, D. E. C. & Klimova, E. I. (2017). Mendeleev Commun. 27, 26–28. Google Scholar
García, J. J. S., Flores-Alamo, M., Ortiz-Frade, L. & Klimova, E. I. (2017). J. Organomet. Chem. 842, 21–31. Google Scholar
García, J. J. S., Ortiz-Frade, L., Martínez-Klimova, E., García-Ramos, J. C., Flores-Alamo, M., Apan, T. R. & Klimova, E. I. (2014). Open J. Synth. Theory Appl. 3, 44–56. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Heigl, O. M., Herker, M. A., Hiller, W., Köhler, F. H. & Schell, A. (1999). J. Organomet. Chem. 574, 94–98. Web of Science CSD CrossRef CAS Google Scholar
Jaouen, G., Vessières, A. & Top, S. (2015). Chem. Soc. Rev. 44, 8802–8817. Web of Science CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Klimova, E. I., Berestneva, T. K., Cinquantini, A., Corsini, M., Zanello, P., Tuscano, R. A., Hernández-Ortega, S. & Martínez-García, M. (2003). Org. Biomol. Chem. 1, 4458–4464. Web of Science CSD CrossRef CAS Google Scholar
Klimova, E. I., Berestneva, T. K., Ramirez, L. R., Cinquantini, A., Corsini, M., Zanello, P., Hernández-Ortega, S. & García, M. M. (2003). Eur. J. Org. Chem. pp. 4265–4272. Web of Science CSD CrossRef Google Scholar
Klimova, E. I., Flores-Alamo, M., Maya, S. C., García-Ramos, J. C., Ortiz-Frade, L. & Stivalet, J. M. M. (2013). J. Organomet. Chem. 743, 24–30. Web of Science CSD CrossRef CAS Google Scholar
Klimova, E. I., Klimova, T., Flores-Alamo, M., Backinowsky, L. V. & García, M. M. (2009). Molecules, 14, 3161–3175. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mata, J. A. & Peris, E. (2001). J. Chem. Soc. Dalton Trans. pp. 3634–3640. Web of Science CSD CrossRef Google Scholar
Mlostoń, G., Hamera, R. & Heimgartner, H. (2015). Phosphorus Sulfur Silicon Relat. Elem. 190, 2125–2133. Google Scholar
Mlostoń, G., Hamera-Fałdyga, R. & Heimgartner, H. (2018). J. Sulfur Chem. 39, doi: 10.1080/17415993.2017.1415339 Google Scholar
Mlostoń, G., Pipiak, P., Hamera-Fałdyga, R. & Heimgartner, H. (2017). Beilstein J. Org. Chem. 13, 1900–1906. Google Scholar
Nagahora, N., Yuasa, A., Sasamori, T. & Tokitoh, N. (2007). Acta Cryst. E63, m2702. Web of Science CSD CrossRef IUCr Journals Google Scholar
Resnier, R., Galopin, N., Sibiril, Y., Clavreul, A., Cayon, J., Briganti, A., Legras, P., Vessières, A., Montier, T., Jaouen, G., Benoit, J.-P. & Passirani, C. (2017). Pharmacol. Res. 126, 54–65. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Abingdon, England. Google Scholar
Roemer, M., Donnadieu, B. & Nijhuis, C. A. (2016). Eur. J. Inorg. Chem. pp. 1314–1318. Web of Science CSD CrossRef Google Scholar
Roemer, M. & Lentz, D. (2008). Eur. J. Inorg. Chem. pp. 4875–4878. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skibar, W., Kopacka, H., Wurst, K., Salzmann, C., Ongania, K.-H., de Biani, F. F., Zanello, P. & Bildstein, B. (2004). Organometallics, 23, 1024–1041. Web of Science CSD CrossRef CAS Google Scholar
Solntsev, P. V., Dudkin, S. V., Sabin, J. R. & Nemykin, V. N. (2011). Organometallics, 30, 3037–3046. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Top, S., Dauer, B., Vaissermann, J. & Jaouen, G. (1997). J. Organomet. Chem. 541, 355–361. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.