research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{[(2-Amino­phen­yl)imino]­meth­yl}-5-(benz­yl­­oxy)phenol and (Z)-3-benz­yl­­oxy-6-{[(5-chloro-2-hy­dr­oxy­phen­yl)amino]­methyl­­idene}cyclo­hexa-2,4-dien-1-one

CROSSMARK_Color_square_no_text.svg

aUnit of Research CHEMS, University of Constantine 1, Algeria, bBiotechnology Research Center, Constantine, Algeria, and cLaboratory of Materials Chemistry,University of Constantine 1, Algeria
*Correspondence e-mail: nadirgh82@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 26 March 2018; accepted 11 April 2018; online 27 April 2018)

The title Schiff base compounds, C20H18N2O2 (I) and C20H16ClNO3 (II), were synthesized from 4-benz­yloxy-2-hy­droxy­benzaldehyde by reaction with 1,2-di­amino­benzene for (I), and condensation with 2-amino-4-chloro­phenol for (II). Compound (I) adopts the enol–imine tautomeric form with an E configuration about the C=N imine bond. In contrast, the o-hy­droxy Schiff base (II), is in the keto–imine tautomeric form with a Z configuration about the CH—NH bond. Neither mol­ecule is planar. In (I), the central benzene ring makes dihedral angles of 46.80 (10) and 78.19 (10)° with the outer phenyl­amine and phenyl rings, respectively, while for (II), the corresponding angles are 5.11 (9) and 58.42 (11)°, respectively. The mol­ecular structures of both compounds are affected by the formation of intra­molecular contacts, an O—H⋯N hydrogen bond for (I) and an N—H⋯O hydrogen bond for (II); each contact generates an S(6) ring motif. In the crystal of (I), strong N—H⋯O hydrogen bonds form zigzag chains of mol­ecules along the b-axis direction. Mol­ecules are further linked by C—H⋯π inter­actions and offset ππ contacts and these combine to form a three-dimensional network. The density functional theory (DFT) optimized structure of compound (II), at the B3LYP/6–311+G(d) level, confirmed that the keto tautomeric form of the compound, as found in the structure determination, is the lowest energy form. The anti­oxidant capacities of both compounds were determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.

1. Chemical context

Schiff base compounds have been used as fine chemicals and medicinal substrates (Fun et al., 2011[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011). Acta Cryst. E67, o1932.]). Studies of the tautom­erism of Schiff bases (Alpaslan et al., 2011[Alpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2011). Struct. Chem. 22, 681-690.]; Blagus et al., 2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]; Ünver et al., 2002[Ünver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685-690.]) have demonstrated that the stabilization of the keto–amino tautomer in the crystal depends mostly on the parent o-hydroxyl aldehyde, the type of the N-substituent, the electron withdrawing or donating of the N-substituent, its position and stereochemistry (Blagus et al., 2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]). Schiff base compounds exhibit a broad range of biological activities, including anti­fungal and anti­bacterial (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1-8.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536-540.]; Khalil et al., 2009[Khalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). J. Iran. Chem. Soc. 6, 345-352.]), non-linear optical compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]), and as versatile ligands in coordination chemistry (Khanmohammadi et al., 2009[Khanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300-309.]; Keypour et al., 2010[Keypour, H., Dehghani-Firouzabadi, A. A., Rezaeivala, M. & Goudarziafshar, H. (2010). J. Iran. Chem. Soc. 7, 820-824.]). In view of the inter­est in such materials we have synthesized the title compounds, (I)[link] and (II)[link], and report their crystal structures here. The common structural feature of these compounds is the presence of a benz­yloxy substituent on the central ring, although each mol­ecule adopts a different tautomeric form. Density functional theory (DFT) calculations on (II)[link], carried out at the B3LYP/6-311+G(d) level, are compared with the experimentally determined mol­ecular structure and confirm that the keto tautomeric form of this compound, similar to that found in the structure determination, is the lowest energy form. The anti­oxidant capacity of both compounds was determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link], illus­trated in Figs. 1[link] and 2[link], respectively, are influenced by intra­molecular hydrogen bonds: the O—H⋯N hydrogen bond in (I)[link] and the N—H⋯O contact in (II)[link] (Tables 1[link] and 2[link]) both form S(6) ring motifs. In compound (II)[link], the N atom is protonated and the C9—O1 bond length, 1.277 (2) Å confirms this to be double bond. In compound (I)[link], however, the C9=O1 bond length of 1.3498 (19) Å indicates a single bond. Bond C7=C8 [1.395 (3) Å] is a double bond in compound (II)[link], whereas the corresponding bond in (I)[link] [1.435 (3) Å] is a single bond. Compound (I)[link] adopts the enol–imine tautomeric form and the configuration of the C7=N1 imine bond is E with a length of 1.288 (3) Å. In contrast the o-hy­droxy Schiff base of (II)[link], has a Z configuration about the C7=C8 double bond and the mol­ecule adopts the keto–imine tautomeric form, with the N1—C7 bond length being 1.309 (2) Å. Neither mol­ecule is planar: in (I)[link], the central ring (C8–C13) is inclined to the two outer rings (C1–C6 and C15–C20) by 46.80 (10) and 78.19 (10)°, respectively, while for (II)[link], the dihedral angles between these rings are 5.11 (9) and 58.42 (11)°, respectively. In compound (II)[link], the C1—N1—C7 angle is 127.15 (17)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg3 are the centroids of the C1–C6 and C15–C20 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.629 (2) 147
N2—H2A⋯O2i 0.86 2.43 3.211 (3) 151
C14—H14BCg1ii 0.97 2.74 3.704 (3) 171
C16—H16⋯Cg1iii 0.93 2.96 3.792 (3) 150
C18—H18⋯Cg3iv 0.93 2.94 3.620 (2) 131
Symmetry codes: (i) [-x, y-1, -z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 1.93 (2) 2.637 (2) 139 (2)
N1—H1⋯O2 0.86 (2) 2.27 (2) 2.620 (2) 104.5 (18)
O2—H2⋯O1i 0.80 (3) 1.84 (3) 2.619 (2) 165 (3)
C7—H7⋯Cl1ii 0.98 (2) 2.84 (2) 3.7971 (18) 164.5 (17)
C14—H14ACg3iii 0.97 2.71 3.569 (3) 148
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+2, -y+2, -z; (iii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal of (I)[link], strong N2—H2A⋯O2i hydrogen bonds, Table 1[link], form zigzag chains of mol­ecules along the b-axis direction, Fig. 3[link]. Weaker C—H⋯π and offset ππ stacking inter­actions also contribute to the packing (Fig. 4[link]) [Cg2⋯Cg2(−x, y, −z + [{1\over 2}]) = 3.8151 (11) Å; Cg2 is the centroid of the central ring]. The overall crystal packing for this structure is shown in Fig. 5[link].

[Figure 3]
Figure 3
Zigzag chains of mol­ecules of (I)[link] along the b-axis direction. Hydrogen bonds are drawn as blue dashed lines.
[Figure 4]
Figure 4
C—H⋯π and ππ conatcts (dotted green lines) in the crystal structure of (I)[link].
[Figure 5]
Figure 5
Overall packing for (I)[link] viewed along the b-axis direction.

For (II)[link], strong O2—H2⋯O1i hydrogen bonds Table 2[link], form inversion dimers that enclose R22(18) rings. These combine with weaker C7—H7⋯Cl1 hydrogen bonds, which also generate inversion dimers but with R22(14) motifs. Inversion-related C14—H14ACg3ii contacts lead to the formation of sheets of mol­ecules parallel to ([\overline{1}]20), Fig. 6[link], which are stacked approximately along the b-axis direction. The overall packing for this structure is shown in Fig. 7[link].

[Figure 6]
Figure 6
Sheets of mol­ecules of (II)[link] parallel to ([\overline{1}]20).
[Figure 7]
Figure 7
Overall packing for (II)[link] viewed along the b-axis direction.

4. Database survey

A search of the Cambridge Database (Version 5.39, updated February 2018; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures similar to (I)[link] gave two hits, viz. (Z)-6-{2-[(E)-2,4-di­hydroxy­benzyl­idene­amino]­phenyl­amino­methyl­ene}-3-hy­droxy­cyclo­hexa-2,4-dien­one (Fun et al., 2008[Fun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, o1790-o1791.]) and (E)-5-(benz­yloxy)-2-[(4-nitrophen­yl)carbonoimido­yl]phenol reported by us in 2015 (Ghichi et al., 2015[Ghichi, N., Benaouida, M. A., Benboudiaf, A. & Merazig, H. (2015). Acta Cryst. E71, o1000-o1001.]). More recently, we have described the very similar structure of (E)-5-benz­yloxy-2-{[(4-chloro­phen­yl)imino]meth­yl}phenol (Ghichi et al., 2018[Ghichi, N., Bensouici, C., Benboudiaf, A., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 478-482.]). A search for analogues of (II)[link] produced three related phenyl­ethyl­amino)­methyl­ene)cyclo­hexa-2,4-dien-1-ones (Chatziefthimiou et al., 2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701-23709.]) and our recent contribution also reported (E)-5-benz­yloxy-2-({[2-(1H-indol-3-yl)eth­yl]iminium­yl)meth­yl)phen­ol­ate, which is closely similar to (II)[link]. The structures of Schiff bases derived from hydroxyaryl aldehydes have been the subject of a general survey, in which a number of structural errors, often involving misplaced H atoms, were pointed out (Blagus et al., 2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]).

5. DFT-optimized calculations

DFT quantum chemical calculations were performed on mol­ecule (II)[link] using the hybrid functional B3LYP (Becke et al., 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]), and base 6–311+G (d). The DFT structure optimization of (II)[link] was performed starting from the X-ray geometry. The DFT and X-ray stuctures are compared in Fig. 8[link]. The calculated values of bond lengths (Table 3[link]) compare well with experimental values with the largest bond-length deviation being less than 0.031 Å from those found in the crystal structure. The adoption of the keto–imine tautomeric form is also predicted by these calculations. The study also shows that the HOMO and LUMO are localized in the plane extending from the chloro­hydroxy­benzene ring to the central phenol ring. The electron distribution of the HOMO-1, HOMO, LUMO and LUMO+1 energy levels is shown in Fig. 9[link]. The occupied orbitals are predominantly of σ-character as is the LUMO, while LUMO+1 is mainly of π-character. The HOMO–LUMO gap is 0.12449 a.u, with frontier mol­ecular orbital energies, EHOMO and ELUMO of −5.622 and −2.234 eV, respectively.

Table 3
Experimental and calculated bond lengths (Å) for compound (II)

Bond X-ray B3LYP/6–311+G(d)
N1—C1 1.406 (2) 1.399
N1—C7 1.309 (2) 1.340
O1—C9 1.277 (2) 1.254
O2—C2 1.351 (2) 1.364
O3—C11 1.363 (2) 1.355
O3—C14 1.432 (3) 1.439
C1—C2 1.403 (2) 1.410
C1—C6 1.389 (2) 1.398
C2—C3 1.384 (3) 1.389
C3—C4 1.381 (3) 1.394
C5—C11 1.742 (2) 1.759
C7—C8 1.395 (3) 1.385
C9—C10 1.418 (3) 1.411
C10—C11 1.373 (3) 1.373
C12—C13 1.350 (3) 1.358
C14—C15 1.504 (3) 1.504
C16—C17 1.392 (4) 1.393
C19—C20 1.387 (3) 1.393
[Figure 8]
Figure 8
Comparison of the structures of (II)[link] obtained from (a) the X-ray determination and (b) the DFT calculations.
[Figure 9]
Figure 9
Electron distribution in the HOMO-1, HOMO, LUMO and LUMO-1 energy levels for (II)[link].

6. Anti­oxidant activity

The anti­oxidant activity profiles of (I)[link] and (II)[link] were determined using the copper(II)–neocuprine [CuII–Nc] (CUPRAC) process (Apak et al., 2004[Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970-7981.]). The CUPRAC method (cupric ion reducing anti­oxidant capacity) follows the variation in the absorbance of the neocuproine (2,9-dimethyl-1,10-phenanthroline, Nc), copper+2 complex Nc2–Cu+2 In the presence of an anti­oxidant, the copper–neocuproine complex is reduced and this reaction is followed and qu­anti­fied spectrophotometrically at a wavelength of 450 nm. The results indicate that the percentage (%) inhibition (IC50) in the CUPRAC assay is small for both compounds in comparison to that for butyl­ated hy­droxy­toluene (BHT) that was used as a positive control. In Table 4[link] the values shown are the means of three separate measurements.

Table 4
Cupric ion reducing anti­oxidant capacity of compounds (I)[link] and (II)

  Percentage (%) Inhibition
  3.125 µg 6.25 µg 12.5 µg 25 µg 50 µg 100 µg 200 µg A0.50 (μg/ml)
Compound (I) 0.28±0.01 0.46±0.00 0.76±0.03 1.55±0.04 2.60±0.14 3.81±0.15 4.33±0.04 7.4±0.21
Compound (II) 0.30±0.00 0.46±0.01 0.78±0.01 1.12±0.07 1.84±0.19 2.34±0.12 4.39±0.04 6.10±0.26
BHT 0.19±0.01 0.33±0.04 0.66±0.07 1.03±0.07 1.48±0.09 2.04±0.14 2.32±0.28 9.62±0.87

7. Synthesis and crystallization

Compound (I)

1,2-Di­amino­benzene (1 equiv.) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (1 equiv.) in ethanol (15–20 ml) were refluxed for 1 h, the solvent was evaporated in vacuo. The residue was recrystallized from ethanol, yielding yellow block-like crystals on slow evaporation of the solvent. The purity of the compound was determined from its NMR spectrum (250 MHz, CDCl3). The azomethine proton appears in the 8.5–8.6 p.p.m.range, while the imine bond is characterized in the 13C NMR spectrum with the imine C and the C atom bound to the OH group appearing in the 161.58–163.20 p.p.m.range. 1H NMR: δ = 6.6–7.6 (m, 12H; H-ar), δ = 13.5 (s, 1H; OH), δ = 4 (s, 1H; NH2), δ = 5.1 (s, 1H; CH2–O). 13C NMR: 70.22, 127.66, 127.73, 128.32, 128.8, 140.66, 161.58, 163.02, 163.2.

Compound (II)

2-Amino-4-chloro­yphenol (1 equiv.) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (1 equiv.) in ethanol (20 ml) were refluxed for 30–60 min, the solvent was evaporated in vacuo. The residue was recrystallized from ethanol, yielding orange block-like crystals on slow evaporation of the solvent. The purity of the compound was detemined by its NMR spectrum (250 MHz, CDCl3). 1H NMR: δ = 6.5–7.7 (m, 11H; H-ar), δ = 8.5–8.6 (s, 1H; OH), δ = 5.1 (s, 1H; CH2–O). 13C NMR: 55.6, 128.2, 128.7, 133.3, 136.4, 141.4, 159.69, 162.82, 163.77.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In compound (I)[link], the hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinements it was positioned geometrically (O—H = 0.82 Å) and refined with Uiso(H) = 1.5Ueq(O). In compound (II)[link], the H atoms on N1, C7 and O2 were located in a difference-Fourier and refined freely. For both compounds, the other C-bound H atoms were positioned geometrically (C—H = 0.97–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H18N2O2 C20H16ClNO3
Mr 318.36 353.79
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 35.1343 (12), 7.2564 (2), 13.1450 (5) 5.9590 (2), 7.8710 (3), 17.9743 (6)
α, β, γ (°) 90, 95.553 (2), 90 98.381 (2), 93.817 (2), 90.294 (2)
V3) 3335.57 (19) 832.11 (5)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.25
Crystal size (mm) 0.03 × 0.02 × 0.01 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 18218, 3811, 1915 13513, 3052, 2490
Rint 0.072 0.025
(sin θ/λ)max−1) 0.650 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.00 0.042, 0.133, 1.10
No. of reflections 3811 3052
No. of parameters 221 238
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.15 0.21, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-2-{[(2-Aminophenyl)imino]methyl}-5-(benzyloxy)phenol (I) top
Crystal data top
C20H18N2O2F(000) = 1344
Mr = 318.36Dx = 1.268 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.1343 (12) ÅCell parameters from 1907 reflections
b = 7.2564 (2) Åθ = 2.9–21.9°
c = 13.1450 (5) ŵ = 0.08 mm1
β = 95.553 (2)°T = 293 K
V = 3335.57 (19) Å3Block, yellow
Z = 80.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.072
Detector resolution: 18.4 pixels mm-1θmax = 27.5°, θmin = 3.4°
φ and ω scansh = 4545
18218 measured reflectionsk = 99
3811 independent reflectionsl = 1617
1915 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.5669P]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00836 (4)0.03108 (16)0.12180 (11)0.0578 (5)
O20.10314 (4)0.43746 (16)0.17382 (10)0.0513 (5)
N10.06331 (5)0.0754 (2)0.08936 (12)0.0477 (6)
N20.09669 (6)0.1879 (3)0.19901 (17)0.0913 (9)
C10.10273 (6)0.0392 (2)0.06599 (15)0.0458 (7)
C20.12530 (6)0.1274 (3)0.01145 (17)0.0529 (8)
C30.16347 (7)0.0816 (3)0.03355 (19)0.0653 (9)
C40.17934 (7)0.0518 (3)0.0237 (2)0.0708 (10)
C50.15720 (7)0.1400 (3)0.1008 (2)0.0683 (10)
C60.11880 (6)0.1003 (3)0.12233 (17)0.0553 (8)
C70.05090 (6)0.2425 (3)0.09311 (14)0.0436 (7)
C80.01110 (5)0.2870 (2)0.11319 (14)0.0396 (6)
C90.01726 (6)0.1499 (2)0.12587 (14)0.0411 (7)
C100.05547 (6)0.1960 (2)0.14368 (15)0.0452 (7)
C110.06603 (5)0.3795 (2)0.15199 (14)0.0410 (6)
C120.03863 (6)0.5185 (2)0.13959 (14)0.0431 (7)
C130.00105 (6)0.4708 (2)0.12065 (14)0.0421 (7)
C140.13205 (6)0.2969 (3)0.18376 (19)0.0617 (9)
C150.16990 (6)0.3854 (2)0.21507 (18)0.0490 (7)
C160.18486 (7)0.3842 (3)0.3151 (2)0.0623 (9)
C170.22001 (7)0.4634 (3)0.3441 (2)0.0693 (10)
C180.24053 (7)0.5423 (3)0.2725 (2)0.0698 (10)
C190.22599 (7)0.5434 (3)0.1723 (2)0.0715 (10)
C200.19090 (6)0.4654 (3)0.14359 (19)0.0617 (9)
H10.014900.043100.111490.0870*
H20.114640.219040.049240.0640*
H2A0.106630.270190.235400.1100*
H2B0.072850.160650.210820.1100*
H30.178220.140230.086520.0780*
H40.205040.082260.010220.0850*
H50.168360.228610.139520.0820*
H70.0691 (5)0.349 (3)0.0810 (13)0.045 (5)*
H100.074010.104190.150060.0540*
H120.045830.641780.144160.0520*
H130.017200.563850.112380.0510*
H14A0.126130.207440.234760.0740*
H14B0.132960.233310.119130.0740*
H160.171210.329370.364250.0750*
H170.229710.462920.412440.0830*
H180.264250.595060.291820.0840*
H190.239860.596980.123250.0860*
H200.181250.466650.075180.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0526 (9)0.0348 (7)0.0852 (11)0.0032 (6)0.0022 (8)0.0001 (6)
O20.0397 (9)0.0389 (7)0.0745 (10)0.0008 (6)0.0021 (7)0.0048 (6)
N10.0457 (11)0.0460 (10)0.0507 (11)0.0054 (7)0.0018 (8)0.0016 (7)
N20.0912 (17)0.0807 (15)0.0962 (17)0.0325 (12)0.0211 (13)0.0422 (12)
C10.0440 (13)0.0420 (11)0.0509 (13)0.0023 (9)0.0028 (10)0.0036 (9)
C20.0527 (15)0.0473 (11)0.0581 (14)0.0000 (9)0.0020 (11)0.0007 (10)
C30.0532 (16)0.0590 (14)0.0801 (18)0.0082 (11)0.0113 (13)0.0071 (12)
C40.0454 (15)0.0639 (15)0.102 (2)0.0072 (11)0.0012 (14)0.0144 (14)
C50.0598 (17)0.0602 (14)0.0848 (19)0.0201 (11)0.0058 (14)0.0032 (12)
C60.0544 (15)0.0470 (12)0.0633 (15)0.0100 (10)0.0002 (12)0.0042 (10)
C70.0474 (13)0.0430 (11)0.0403 (12)0.0003 (9)0.0041 (9)0.0017 (8)
C80.0417 (12)0.0403 (10)0.0365 (11)0.0009 (8)0.0027 (9)0.0003 (8)
C90.0476 (13)0.0347 (10)0.0411 (12)0.0006 (8)0.0056 (10)0.0004 (8)
C100.0434 (13)0.0369 (10)0.0553 (13)0.0036 (8)0.0043 (10)0.0015 (9)
C110.0401 (12)0.0418 (10)0.0415 (11)0.0024 (8)0.0056 (9)0.0018 (8)
C120.0471 (13)0.0344 (10)0.0472 (12)0.0014 (8)0.0021 (10)0.0014 (8)
C130.0457 (13)0.0380 (10)0.0422 (12)0.0044 (8)0.0021 (9)0.0006 (8)
C140.0454 (14)0.0441 (12)0.0954 (19)0.0041 (9)0.0055 (12)0.0047 (11)
C150.0398 (13)0.0381 (10)0.0683 (15)0.0037 (8)0.0017 (11)0.0001 (9)
C160.0557 (16)0.0601 (14)0.0720 (18)0.0053 (11)0.0111 (13)0.0067 (11)
C170.0664 (18)0.0707 (15)0.0673 (17)0.0101 (13)0.0113 (14)0.0064 (12)
C180.0473 (15)0.0571 (14)0.102 (2)0.0037 (11)0.0074 (15)0.0060 (13)
C190.0623 (17)0.0643 (15)0.088 (2)0.0158 (12)0.0079 (15)0.0094 (13)
C200.0618 (16)0.0554 (13)0.0668 (16)0.0088 (11)0.0014 (13)0.0057 (11)
Geometric parameters (Å, º) top
O1—C91.3498 (19)C14—C151.498 (3)
O2—C111.374 (2)C15—C201.378 (3)
O2—C141.437 (3)C15—C161.368 (3)
N1—C11.414 (3)C16—C171.382 (3)
N1—C71.288 (3)C17—C181.366 (4)
O1—H10.8200C18—C191.366 (4)
N2—C61.368 (3)C19—C201.376 (3)
C1—C21.385 (3)C2—H20.9300
C1—C61.405 (3)C3—H30.9300
N2—H2A0.8600C4—H40.9300
N2—H2B0.8600C5—H50.9300
C2—C31.385 (3)C7—H71.01 (2)
C3—C41.377 (3)C10—H100.9300
C4—C51.375 (4)C12—H120.9300
C5—C61.382 (3)C13—H130.9300
C7—C81.435 (3)C14—H14A0.9700
C8—C91.407 (2)C14—H14B0.9700
C8—C131.401 (2)C16—H160.9300
C9—C101.381 (3)C17—H170.9300
C10—C111.384 (2)C18—H180.9300
C11—C121.393 (2)C19—H190.9300
C12—C131.364 (3)C20—H200.9300
C11—O2—C14116.75 (13)C17—C18—C19119.6 (2)
C1—N1—C7120.27 (16)C18—C19—C20120.3 (2)
C9—O1—H1109.00C15—C20—C19120.7 (2)
N1—C1—C2123.57 (17)C1—C2—H2119.00
C2—C1—C6119.33 (19)C3—C2—H2119.00
N1—C1—C6117.04 (17)C2—C3—H3120.00
H2A—N2—H2B120.00C4—C3—H3120.00
C6—N2—H2B120.00C3—C4—H4120.00
C1—C2—C3121.1 (2)C5—C4—H4120.00
C6—N2—H2A120.00C4—C5—H5119.00
C2—C3—C4119.3 (2)C6—C5—H5119.00
C3—C4—C5120.0 (2)N1—C7—H7120.6 (11)
C4—C5—C6121.7 (2)C8—C7—H7116.7 (11)
N2—C6—C5121.8 (2)C9—C10—H10120.00
C1—C6—C5118.5 (2)C11—C10—H10120.00
N2—C6—C1119.7 (2)C11—C12—H12121.00
N1—C7—C8122.64 (19)C13—C12—H12121.00
C7—C8—C9121.96 (15)C8—C13—H13119.00
C7—C8—C13120.81 (17)C12—C13—H13119.00
C9—C8—C13117.23 (17)O2—C14—H14A110.00
O1—C9—C10117.38 (16)O2—C14—H14B110.00
C8—C9—C10120.97 (14)C15—C14—H14A110.00
O1—C9—C8121.65 (17)C15—C14—H14B110.00
C9—C10—C11119.68 (16)H14A—C14—H14B108.00
C10—C11—C12120.70 (17)C15—C16—H16120.00
O2—C11—C10123.57 (15)C17—C16—H16120.00
O2—C11—C12115.72 (14)C16—C17—H17120.00
C11—C12—C13118.90 (14)C18—C17—H17120.00
C8—C13—C12122.50 (16)C17—C18—H18120.00
O2—C14—C15108.77 (16)C19—C18—H18120.00
C14—C15—C16120.6 (2)C18—C19—H19120.00
C14—C15—C20120.9 (2)C20—C19—H19120.00
C16—C15—C20118.5 (2)C15—C20—H20120.00
C15—C16—C17120.8 (2)C19—C20—H20120.00
C16—C17—C18120.1 (2)
C14—O2—C11—C102.8 (3)C13—C8—C9—O1178.84 (17)
C14—O2—C11—C12178.09 (17)C13—C8—C9—C100.8 (3)
C11—O2—C14—C15175.82 (17)C7—C8—C13—C12179.96 (18)
C7—N1—C1—C244.0 (3)C9—C8—C13—C120.1 (3)
C7—N1—C1—C6139.06 (19)O1—C9—C10—C11177.83 (17)
C1—N1—C7—C8177.94 (17)C8—C9—C10—C111.8 (3)
N1—C1—C2—C3177.54 (19)C9—C10—C11—O2177.20 (17)
C6—C1—C2—C30.6 (3)C9—C10—C11—C121.9 (3)
N1—C1—C6—N23.0 (3)O2—C11—C12—C13178.16 (16)
N1—C1—C6—C5179.52 (19)C10—C11—C12—C131.0 (3)
C2—C1—C6—N2179.9 (2)C11—C12—C13—C80.0 (3)
C2—C1—C6—C52.4 (3)O2—C14—C15—C1699.2 (2)
C1—C2—C3—C41.1 (3)O2—C14—C15—C2082.5 (2)
C2—C3—C4—C51.0 (4)C14—C15—C16—C17179.1 (2)
C3—C4—C5—C60.8 (4)C20—C15—C16—C170.8 (3)
C4—C5—C6—N2180.0 (2)C14—C15—C20—C19178.73 (19)
C4—C5—C6—C12.5 (3)C16—C15—C20—C190.4 (3)
N1—C7—C8—C92.8 (3)C15—C16—C17—C180.8 (3)
N1—C7—C8—C13177.43 (18)C16—C17—C18—C190.4 (3)
C7—C8—C9—O11.4 (3)C17—C18—C19—C200.1 (3)
C7—C8—C9—C10179.05 (18)C18—C19—C20—C150.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C15–C20 rings respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.629 (2)147
N2—H2A···O2i0.862.433.211 (3)151
C14—H14B···Cg1ii0.972.743.704 (3)171
C16—H16···Cg1iii0.932.963.792 (3)150
C18—H18···Cg3iv0.932.943.620 (2)131
Symmetry codes: (i) x, y1, z+1/2; (ii) x, y, z; (iii) x, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
(Z)-3-Benzyloxy-6-{[(5-chloro-2-hydroxyphenyl)amino]methylidene}cyclohexa-2,4-dien-1-one (II) top
Crystal data top
C20H16ClNO3Z = 2
Mr = 353.79F(000) = 368
Triclinic, P1Dx = 1.412 Mg m3
a = 5.9590 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8710 (3) ÅCell parameters from 5281 reflections
c = 17.9743 (6) Åθ = 2.7–30.7°
α = 98.381 (2)°µ = 0.25 mm1
β = 93.817 (2)°T = 293 K
γ = 90.294 (2)°Block, orange
V = 832.11 (5) Å30.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.025
Detector resolution: 18.4 pixels mm-1θmax = 25.5°, θmin = 2.6°
φ and ω scansh = 67
13513 measured reflectionsk = 99
3052 independent reflectionsl = 2121
2490 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.2078P]
where P = (Fo2 + 2Fc2)/3
3052 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93492 (8)0.93423 (7)0.13197 (3)0.0533 (2)
O10.1309 (2)0.6289 (2)0.14736 (7)0.0518 (5)
O20.1581 (3)0.5583 (2)0.05318 (9)0.0546 (5)
O30.3158 (2)0.7742 (2)0.41212 (7)0.0520 (5)
N10.4214 (3)0.7241 (2)0.05641 (8)0.0382 (5)
C10.4780 (3)0.7305 (2)0.01782 (10)0.0348 (5)
C20.3343 (3)0.6417 (2)0.07572 (10)0.0381 (6)
C30.3805 (3)0.6429 (3)0.15011 (10)0.0444 (6)
C40.5643 (3)0.7329 (3)0.16776 (10)0.0433 (6)
C50.7028 (3)0.8202 (2)0.11011 (10)0.0374 (6)
C60.6635 (3)0.8205 (2)0.03551 (10)0.0371 (5)
C70.5388 (3)0.7860 (2)0.11873 (10)0.0394 (6)
C80.4718 (3)0.7766 (2)0.19092 (10)0.0380 (5)
C90.2627 (3)0.6945 (2)0.20317 (10)0.0380 (5)
C100.2119 (3)0.6906 (3)0.27886 (10)0.0426 (6)
C110.3535 (3)0.7669 (3)0.33778 (10)0.0409 (6)
C120.5562 (3)0.8502 (3)0.32557 (11)0.0481 (7)
C130.6123 (3)0.8526 (3)0.25418 (11)0.0465 (6)
C140.1117 (4)0.6974 (3)0.43003 (11)0.0572 (8)
C150.1044 (4)0.7217 (3)0.51439 (10)0.0474 (7)
C160.0740 (4)0.8010 (3)0.54911 (14)0.0632 (8)
C170.0843 (5)0.8143 (3)0.62686 (15)0.0719 (9)
C180.0817 (5)0.7470 (3)0.66975 (12)0.0631 (8)
C190.2599 (5)0.6690 (4)0.63599 (13)0.0677 (9)
C200.2723 (4)0.6576 (3)0.55862 (12)0.0621 (8)
H10.299 (4)0.674 (3)0.0639 (13)0.057 (7)*
H20.080 (5)0.509 (4)0.0877 (18)0.086 (10)*
H30.286780.582620.188550.0530*
H40.594150.734650.217780.0520*
H60.759590.880040.002450.0450*
H70.686 (4)0.840 (3)0.1147 (11)0.043 (5)*
H100.080970.635590.288720.0510*
H120.649330.902480.366120.0580*
H130.746670.905420.246150.0560*
H14A0.106950.575950.410180.0690*
H14B0.016980.751270.407680.0690*
H160.188520.846000.520460.0760*
H170.204800.869280.649880.0860*
H180.072820.754610.721590.0760*
H190.373290.623250.664830.0810*
H200.395850.605910.536190.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0448 (3)0.0693 (4)0.0476 (3)0.0148 (2)0.0136 (2)0.0105 (2)
O10.0473 (8)0.0697 (10)0.0352 (7)0.0287 (7)0.0005 (6)0.0002 (6)
O20.0469 (8)0.0723 (11)0.0437 (8)0.0303 (8)0.0049 (7)0.0105 (7)
O30.0513 (8)0.0735 (10)0.0313 (7)0.0160 (7)0.0047 (6)0.0075 (6)
N10.0356 (8)0.0456 (9)0.0330 (8)0.0118 (7)0.0042 (6)0.0039 (6)
C10.0346 (9)0.0376 (9)0.0323 (9)0.0039 (7)0.0041 (7)0.0046 (7)
C20.0340 (9)0.0399 (10)0.0397 (10)0.0075 (8)0.0029 (8)0.0066 (7)
C30.0469 (11)0.0494 (11)0.0349 (10)0.0082 (9)0.0067 (8)0.0037 (8)
C40.0487 (11)0.0505 (11)0.0310 (9)0.0036 (9)0.0038 (8)0.0068 (8)
C50.0340 (9)0.0404 (10)0.0385 (10)0.0029 (8)0.0062 (7)0.0066 (7)
C60.0343 (9)0.0421 (10)0.0335 (9)0.0077 (8)0.0011 (7)0.0017 (7)
C70.0352 (10)0.0454 (11)0.0373 (10)0.0108 (8)0.0025 (8)0.0052 (8)
C80.0353 (9)0.0440 (10)0.0345 (9)0.0087 (8)0.0025 (7)0.0051 (7)
C90.0370 (9)0.0407 (10)0.0352 (9)0.0089 (8)0.0021 (7)0.0028 (7)
C100.0388 (10)0.0513 (11)0.0379 (10)0.0134 (8)0.0057 (8)0.0063 (8)
C110.0426 (10)0.0484 (11)0.0321 (9)0.0043 (8)0.0034 (8)0.0068 (8)
C120.0414 (11)0.0641 (13)0.0370 (10)0.0152 (9)0.0041 (8)0.0047 (9)
C130.0376 (10)0.0631 (13)0.0380 (10)0.0178 (9)0.0004 (8)0.0066 (9)
C140.0551 (13)0.0804 (16)0.0358 (10)0.0195 (11)0.0051 (9)0.0072 (10)
C150.0520 (12)0.0559 (12)0.0340 (10)0.0134 (9)0.0084 (9)0.0035 (8)
C160.0670 (15)0.0686 (15)0.0584 (14)0.0097 (12)0.0141 (12)0.0195 (11)
C170.0911 (19)0.0635 (15)0.0647 (15)0.0071 (14)0.0405 (15)0.0050 (12)
C180.0877 (18)0.0656 (15)0.0342 (10)0.0144 (13)0.0125 (11)0.0020 (10)
C190.0683 (16)0.0918 (19)0.0397 (12)0.0086 (14)0.0080 (11)0.0046 (11)
C200.0496 (13)0.0896 (18)0.0434 (12)0.0007 (12)0.0051 (10)0.0033 (11)
Geometric parameters (Å, º) top
Cl1—C51.7423 (18)C14—C151.504 (3)
O1—C91.277 (2)C15—C201.380 (3)
O2—C21.351 (2)C15—C161.375 (3)
O3—C111.363 (2)C16—C171.392 (4)
O3—C141.432 (3)C17—C181.370 (4)
N1—C11.406 (2)C18—C191.363 (4)
N1—C71.309 (2)C19—C201.387 (3)
O2—H20.80 (3)C3—H30.9300
C1—C21.403 (2)C4—H40.9300
C1—C61.389 (2)C6—H60.9300
N1—H10.86 (2)C7—H70.98 (2)
C2—C31.384 (3)C10—H100.9300
C3—C41.381 (3)C12—H120.9300
C4—C51.378 (3)C13—H130.9300
C5—C61.376 (3)C14—H14A0.9700
C7—C81.395 (3)C14—H14B0.9700
C8—C131.422 (3)C16—H160.9300
C8—C91.445 (2)C17—H170.9300
C9—C101.418 (3)C18—H180.9300
C10—C111.373 (3)C19—H190.9300
C11—C121.416 (3)C20—H200.9300
C12—C131.350 (3)
C11—O3—C14117.35 (14)C15—C16—C17120.4 (2)
C1—N1—C7127.15 (17)C16—C17—C18120.5 (2)
C2—O2—H2113 (2)C17—C18—C19119.6 (2)
N1—C1—C6123.47 (16)C18—C19—C20120.1 (2)
C2—C1—C6119.86 (16)C15—C20—C19121.1 (2)
N1—C1—C2116.67 (16)C2—C3—H3120.00
C1—N1—H1119.4 (15)C4—C3—H3120.00
C7—N1—H1113.4 (15)C3—C4—H4121.00
C1—C2—C3119.57 (16)C5—C4—H4121.00
O2—C2—C3124.73 (17)C1—C6—H6121.00
O2—C2—C1115.70 (16)C5—C6—H6121.00
C2—C3—C4120.61 (17)N1—C7—H7118.2 (12)
C3—C4—C5118.97 (17)C8—C7—H7117.5 (12)
Cl1—C5—C4119.22 (14)C9—C10—H10120.00
Cl1—C5—C6118.73 (13)C11—C10—H10120.00
C4—C5—C6122.05 (17)C11—C12—H12121.00
C1—C6—C5118.93 (16)C13—C12—H12120.00
N1—C7—C8124.28 (17)C8—C13—H13119.00
C9—C8—C13119.22 (16)C12—C13—H13119.00
C7—C8—C9121.97 (16)O3—C14—H14A110.00
C7—C8—C13118.80 (16)O3—C14—H14B110.00
O1—C9—C8120.48 (16)C15—C14—H14A110.00
O1—C9—C10122.15 (16)C15—C14—H14B110.00
C8—C9—C10117.36 (16)H14A—C14—H14B108.00
C9—C10—C11120.87 (17)C15—C16—H16120.00
C10—C11—C12121.61 (17)C17—C16—H16120.00
O3—C11—C12113.29 (16)C16—C17—H17120.00
O3—C11—C10125.09 (17)C18—C17—H17120.00
C11—C12—C13119.03 (18)C17—C18—H18120.00
C8—C13—C12121.89 (18)C19—C18—H18120.00
O3—C14—C15108.26 (17)C18—C19—H19120.00
C14—C15—C16121.1 (2)C20—C19—H19120.00
C14—C15—C20120.6 (2)C15—C20—H20119.00
C16—C15—C20118.32 (19)C19—C20—H20119.00
C14—O3—C11—C100.5 (3)C7—C8—C9—C10179.38 (17)
C14—O3—C11—C12178.36 (19)C13—C8—C9—O1178.32 (17)
C11—O3—C14—C15179.52 (18)C13—C8—C9—C101.6 (3)
C7—N1—C1—C2174.54 (17)C7—C8—C13—C12179.1 (2)
C7—N1—C1—C66.3 (3)C9—C8—C13—C120.1 (3)
C1—N1—C7—C8179.41 (17)O1—C9—C10—C11177.95 (19)
N1—C1—C2—O20.6 (2)C8—C9—C10—C112.0 (3)
N1—C1—C2—C3180.00 (18)C9—C10—C11—O3177.97 (19)
C6—C1—C2—O2179.83 (16)C9—C10—C11—C120.8 (3)
C6—C1—C2—C30.8 (3)O3—C11—C12—C13179.7 (2)
N1—C1—C6—C5179.28 (16)C10—C11—C12—C130.8 (3)
C2—C1—C6—C50.2 (2)C11—C12—C13—C81.2 (3)
O2—C2—C3—C4179.61 (19)O3—C14—C15—C16124.1 (2)
C1—C2—C3—C41.1 (3)O3—C14—C15—C2058.9 (3)
C2—C3—C4—C50.7 (3)C14—C15—C16—C17176.5 (2)
C3—C4—C5—Cl1179.94 (17)C20—C15—C16—C170.5 (4)
C3—C4—C5—C60.0 (3)C14—C15—C20—C19175.6 (2)
Cl1—C5—C6—C1179.67 (13)C16—C15—C20—C191.4 (4)
C4—C5—C6—C10.2 (3)C15—C16—C17—C180.7 (4)
N1—C7—C8—C90.5 (3)C16—C17—C18—C191.1 (4)
N1—C7—C8—C13178.51 (18)C17—C18—C19—C200.2 (4)
C7—C8—C9—O10.7 (3)C18—C19—C20—C151.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.86 (2)1.93 (2)2.637 (2)139 (2)
N1—H1···O20.86 (2)2.27 (2)2.620 (2)104.5 (18)
O2—H2···O1i0.80 (3)1.84 (3)2.619 (2)165 (3)
C7—H7···Cl1ii0.98 (2)2.84 (2)3.7971 (18)164.5 (17)
C14—H14A···Cg3iii0.972.713.569 (3)148
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z; (iii) x, y+1, z+1.
Experimental and calculated bond lengths (Å) for compound (II) top
BondX-rayB3LYP/6-311+G(d)
N1—C11.406 (2)1.399
N1—C71.309 (2)1.340
O1—C91.277 (2)1.254
O2—C21.351 (2)1.364
O3—C111.363 (2)1.355
O3—C141.432 (3)1.439
C1—C21.403 (2)1.410
C1—C61.389 (2)1.398
C2—C31.384 (3)1.389
C3—C41.381 (3)1.394
C5—C111.742 (2)1.759
C7—C81.395 (3)1.385
C9—C101.418 (3)1.411
C10—C111.373 (3)1.373
C12—C131.350 (3)1.358
C14—C151.504 (3)1.504
C16—C171.392 (4)1.393
C19—C201.387 (3)1.393
Cupric ion reducing antioxidant capacity of compounds (I) and (II) top
Percentage (%) Inhibition
3.125 µg6.25 µg12.5 µg25µg50 µg100 µg200 µgA0.50 (µg/mL)
Compound (I)0.28±0.010.46±0.000.76±0.031.55±0.042.60±0.143.81±0.154.33±0.047.4±0.21
Compound (II)0.30±0.000.46±0.010.78±0.011.12±0.071.84±0.192.34±0.124.39±0.046.10±0.26
BHT0.19±0.010.33±0.040.66±0.071.03±0.071.48±0.092.04±0.142.32±0.289.62±0.87
 

Funding information

We are grateful to the Department of Higher Scientific Research and CHEMS Research Unit, University of Constantine1, Algeria, for funding this research project.

References

First citationAlpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2011). Struct. Chem. 22, 681–690.  Web of Science CSD CrossRef CAS Google Scholar
First citationApak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970–7981.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBlagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.  CAS Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701–23709.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, o1790–o1791.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011). Acta Cryst. E67, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhichi, N., Benaouida, M. A., Benboudiaf, A. & Merazig, H. (2015). Acta Cryst. E71, o1000–o1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhichi, N., Bensouici, C., Benboudiaf, A., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 478–482.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeypour, H., Dehghani-Firouzabadi, A. A., Rezaeivala, M. & Goudarziafshar, H. (2010). J. Iran. Chem. Soc. 7, 820–824.  Web of Science CrossRef CAS Google Scholar
First citationKhalil, R. A., Jalil, A. H. & Abd-Alrazzak, A. Y. (2009). J. Iran. Chem. Soc. 6, 345–352.  Web of Science CrossRef CAS Google Scholar
First citationKhanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300–309.  Web of Science CrossRef CAS Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationÜnver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685–690.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds