research communications
Crystal structures and Hirshfeld surface analyses of 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyridin-2-yl)acetamide and 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyrazin-2-yl)acetamide
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesta, Ranchi 835215, Jharkhand, India
*Correspondence e-mail: shirai2011@gmail.com
In the title compounds, C11H12N6OS (I) and C10H11N7OS (II), the diaminopyrimidine ring makes dihedral angles of 71.10 (9)° with the pyridine ring in (I) and 62.93 (15)° with the pyrazine ring in (II). The ethanamine group, –CH2–C(=O)–NH– lies in the plane of the pyridine and pyrazine rings in compounds (I) and (II), respectively. In both compounds, there is an intramolecular N—H⋯N hydrogen bond forming an S(7) ring motif and a short C—H⋯O interaction forming an S(6) loop. In the crystals of both compounds, molecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with R22(8) ring motifs. In (I), the dimers are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming layers parallel to (1). The layers are linked by offset π–π interactions [intercentroid distance = 3.777 (1) Å], forming a three-dimensional supramolecular structure. In (II), the dimers are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, also forming a three-dimensional supramolecular structure.
1. Chemical context
An important property of diaminopyrimidine derivatives is their inhibition potential against cancer targets. Because of the limited capacity of drugs that can cure cancer, there is always an urgent requirement for new chemotherapeutics. 2,4-Diaminopyrimidine derivatives combined with arylthiazole derivatives have shown to possess significant anti-proliferation properties against breast cancer cell lines (Zhou et al., 2015). 2,4-Diaminopyrimidine derivatives have shown significant inhibitory activity against influenza viruses (Kimura et al., 2006). A series of 2,4- diaminopyrimidine derivatives were evaluated against Bacillus anthracis, which showed inhibition (Nammalwar et al., 2012). Dihydrofolate reductase inhibitor drugs such as pyrimethamine, trimetrexate and piritrexim (Nelson & Rosowsky, 2001) and the antibiotics iclaprim and trimethoprim all include diaminopyrimidine as the fundamental structural motif. Diaminopyrimidine derivatives have also shown anti-retroviral activity (Hocková et al., 2004), antibacterial (Kandeel et al., 1994) and potential anti-microbial properties (Holla et al., 2006). As part of our own studies in this area, we report herein on the syntheses, crystal structures and Hirshfeld surface analyses of the title compounds, 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyridin-2-yl)acetamide (I) and 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(pyrazin-2-yl)acetamide (II).
2. Structural commentary
The molecular structure of compounds (I) and (II) are shown in the Figs. 1 and 2, respectively. Compound (I) crystallizes in the triclinic P and compound (II) crystallizes in the monoclinic P21/c. In both the compounds, there is an intramolecular N—H⋯N hydrogen bond forming an S(7) ring motif and a short C—H⋯O interaction forming an S(6) loop; see Tables 1 and 2 for details of the hydrogen bonding. The nitrogen atoms N1 and N2 lie in the plane of the pyrimidine ring to which they are attached [deviations are −0.0269 (17) and 0.0521 (16) Å, respectively, for compound (I), and 0.0350 (28) and 0.0284 (28) Å, respectively, for compound (II)]. The diaminopyrimidine ring makes a dihedral angle of 71.10 (9)° with the pyridine ring in compound (I) and a dihedral angle of 62.93 (15)° with the pyrazine ring in compound (II). In (I) the ethanamine group (N5/O1/C6/C5) and the pyridine ring are coplanar, as evidenced by torsion angle C7—N5—C6—C5 = 179.1 (2)°. In (II) the ethanamine group (N5/O1/C6/C5) and pyrazine ring also lie in a plane [C7—N5—C6—C5 = 177.6 (3)°]. Bond lengths C4—S1 [1.768 (2) Å] and C5—S1 [1.802 (2) Å] for compound (I), and C4—S1 [1.768 (3) Å] and C5—S1 [1.795 (3) Å] for compound (II), are comparable with values reported for similar compounds (see Section 4. Database survey).
|
3. Supramolecular features
The crystal packing in compound (I) is illustrated in Fig. 3, and that for compound (II) in Fig. 4. Details of the hydrogen-bonding geometry in compound (I) are given in Table 1 and in Table 2 for (II). In the crystals of both compounds, molecules are linked by pairs of N2—H2B⋯N4i hydrogen bonds, forming inversion dimers with R22(8) ring motifs (Figs. 3 and 4, respectively).
In the crystal of (I), the dimers are linked by N2—H2A⋯O1iii hydrogen bonds, forming ribbons along [010], enclosing R44(18) ring motifs. Adjacent ribbons are linked by N1—H1A⋯N6ii hydrogen bonds, forming sheets lying parallel to the (1) plane, see Fig. 3. The layers are linked by offset π–π interactions, forming a three-dimensional supramolecular structure [Cg⋯Cgv = 3.777 (1) Å, interplanar distance = 3.483 (1) Å, slippage = 1.459 Å, Cg is the centroid of the pyridine ring (N6/C7–C11); symmetry code: (v) −x + 1, −y, −z + 1)].
In the crystal of (II), the dimers are linked by N1—H1A⋯Oii, N2—H2A⋯N7iii and C9—H9⋯O1iv hydrogen bonds (Table 2), forming a three-dimensional supramolecular structure (Fig. 4). In contrast, in the crystal of (II) there are no π–π interactions present.
4. Database survey
A search of the Cambridge Structure Database (Version 5.39, last update February 2018; Groom et al., 2016) for [(4,6-diaminopyrmidin-2-yl)sulfanyl]acetamide yielded nine hits, eight of which have a substituted phenyl substituent in place of the pyridine ring in (I) and the pyrazine ring in (II), and one a naphthalene group (JARPOK; Subasri et al., 2017a). They include the following analogues: 3-nitrophenyl (ARAROC; Subasri et al., 2016), 2-chlorophenyl (ARARUI; Subasri et al., 2016), 2-methylphenyl (GOKWIO; Subasri et al., 2014), 4-fluorophenyl (JARPUQ; Subasri et al., 2017a), 2,4-dimethylphenyl (JAXFIA; Choudhury et al., 2017), 3-methoxyphenyl (JAXFOG; Choudhury et al., 2017), 4-chlorophenyl (KAPQIE; Subasri et al., 2017b), and 3-chlorophenyl (KAPQOK; Subasri et al., 2017b).
In these eight compounds, the diaminopyrimidine and benzene rings are inclined to one another by dihedral angles varying from ca 42.25 to 78.33°. The dihedral angle between the diaminopyrimidine and the pyridine ring in (I) is 71.10 (9)° and with the pyrazine ring in (II) is 62.93 (15)°, well within these limits. As in the title compounds, there is also an intramolecular N—H⋯N hydrogen bond present in all eight compounds, stabilizing the folded conformation of each molecule. In the crystals of all but two compounds (ARAROC and JARPUQ), molecules are linked by pairs of N—H⋯N hydrogen bonds, involving the 4,6-diaminopyrimidine moieties, forming inversion dimers with R22(8) ring motifs, as for compounds (I) and (II).
5. Hirshfeld surface analysis
In Figs. 5 and 6, the ball and stick model of the front and back views of the compounds (I) and (II), respectively, and the intermolecular contacts are shown by conventional mapping of dnorm on the molecular Hirshfeld surfaces, where the red-spot areas denote intermolecular contacts involved in the hydrogen-bonding interactions (McKinnon et al., 2007). The electrostatic potential is mapped on the Hirshfeld surface using the STO-3G basis set at the Hartree–Fock theory over the range of ±0.025 a.u. The positive electrostatic potential (blue region) over the surface shows hydrogen-donor potential, and the hydrogen-bond acceptors are shown by negative electrostatic potential (red regions); see Figs. 5 and 6. The two-dimensional fingerprint plots [Fig. 7 for (I) and Fig. 8 for (II)] are deconvoluted to highlight atom-pair close contacts by which different atomic types, overlapping the full fingerprint can be separated based on different interaction types. For compound (I), intermolecular H⋯H contacts of 39.1% are the most significant, followed by 17.7% for N⋯H/H⋯N, 12% for C⋯H/H⋯C, 9.3% for O⋯H/H⋯O, 8.4% for S⋯H/H⋯S and 4.1% for C⋯C contacts. In contrast, for compound (II) the H⋯H contacts at 28.2% are significantly lower than in (I), while the N⋯H/H⋯N contacts at 27% are significantly higher than in (I). The C⋯C contacts at only 1.9% are much lower than in (I) where offset π–π interactions are observed in the crystal structure.
6. Synthesis and crystallization
Compound (I): To a solution of 4, 6-diamino-pyrimidine-2-thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about 30 min. Then an equimolar quantity of 2-chloro-N-(pyridin-2-yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5 h. Evaporation of the organic layer under vacuum provided compound (I). After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.
Compound (II): To a solution of 4, 6-diamino-pyrimidine-2-thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about 30 min. Then an equimolar quantity of 2-chloro-N-(pyrazin-2-yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5.5 h. Evaporation of the organic layer under vacuum resulted in compound (II). After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.
7. Refinement
Crystal data, data collection and structure . For both compounds, the NH2 and NH H atoms were located in difference-Fourier maps and freely refined, and the C-bound H atoms were placed in calculated positions and refined in the riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018005704/su5430sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005704/su5430Isup4.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018005704/su5430IIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005704/su5430Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005704/su5430IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).C11H12N6OS | Z = 2 |
Mr = 276.33 | F(000) = 288 |
Triclinic, P1 | Dx = 1.442 Mg m−3 |
a = 7.2341 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.3852 (2) Å | Cell parameters from 2605 reflections |
c = 9.7971 (2) Å | θ = 2.1–26.4° |
α = 95.820 (1)° | µ = 0.26 mm−1 |
β = 91.116 (1)° | T = 293 K |
γ = 105.682 (1)° | Block, yellow |
V = 636.33 (3) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker SMART APEXII area-detector diffractometer | 2160 reflections with I > 2σ(I) |
Radiation source: X-ray | Rint = 0.020 |
ω and φ scans | θmax = 26.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→9 |
Tmin = 0.742, Tmax = 0.841 | k = −11→11 |
9447 measured reflections | l = −10→12 |
2605 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1669P] where P = (Fo2 + 2Fc2)/3 |
2605 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.47564 (6) | 0.24187 (5) | 0.97878 (4) | 0.04443 (15) | |
O1 | 0.1201 (2) | −0.07191 (14) | 0.81504 (14) | 0.0637 (4) | |
N1 | 0.4212 (3) | 0.58093 (19) | 0.63223 (17) | 0.0509 (4) | |
H1A | 0.470 (3) | 0.652 (2) | 0.584 (2) | 0.059 (6)* | |
H1B | 0.299 (3) | 0.546 (2) | 0.641 (2) | 0.066 (7)* | |
N2 | 1.0373 (2) | 0.60541 (19) | 0.83751 (19) | 0.0500 (4) | |
H2A | 1.087 (3) | 0.696 (2) | 0.820 (2) | 0.059 (6)* | |
H2B | 1.092 (3) | 0.590 (2) | 0.914 (2) | 0.071 (7)* | |
N3 | 0.45530 (19) | 0.42030 (14) | 0.78589 (14) | 0.0378 (3) | |
N4 | 0.75997 (18) | 0.44133 (14) | 0.89781 (13) | 0.0374 (3) | |
N5 | 0.2555 (2) | 0.10689 (16) | 0.67916 (14) | 0.0395 (3) | |
H5 | 0.304 (3) | 0.201 (2) | 0.6830 (18) | 0.046 (5)* | |
N6 | 0.3287 (2) | 0.11118 (16) | 0.45436 (15) | 0.0458 (4) | |
C1 | 0.5404 (2) | 0.53494 (17) | 0.71413 (16) | 0.0373 (4) | |
C2 | 0.7366 (2) | 0.59919 (18) | 0.72509 (17) | 0.0398 (4) | |
H2 | 0.795008 | 0.672763 | 0.670694 | 0.048* | |
C3 | 0.8435 (2) | 0.55043 (16) | 0.81970 (16) | 0.0367 (4) | |
C4 | 0.5717 (2) | 0.38421 (16) | 0.87394 (15) | 0.0351 (4) | |
C5 | 0.2265 (2) | 0.17793 (19) | 0.91965 (17) | 0.0452 (4) | |
H5A | 0.149123 | 0.139634 | 0.994486 | 0.054* | |
H5B | 0.185101 | 0.261192 | 0.891905 | 0.054* | |
C6 | 0.1943 (2) | 0.05740 (18) | 0.80001 (18) | 0.0415 (4) | |
C7 | 0.2500 (2) | 0.02603 (17) | 0.55029 (17) | 0.0369 (4) | |
C8 | 0.1697 (3) | −0.12615 (19) | 0.5237 (2) | 0.0506 (4) | |
H8 | 0.118824 | −0.182978 | 0.593511 | 0.061* | |
C9 | 0.1674 (3) | −0.1909 (2) | 0.3911 (2) | 0.0603 (5) | |
H9 | 0.113148 | −0.292746 | 0.369861 | 0.072* | |
C10 | 0.2447 (3) | −0.1056 (2) | 0.2905 (2) | 0.0574 (5) | |
H10 | 0.243138 | −0.147400 | 0.200125 | 0.069* | |
C11 | 0.3246 (3) | 0.0435 (2) | 0.32694 (19) | 0.0551 (5) | |
H11 | 0.379420 | 0.101358 | 0.258857 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0510 (3) | 0.0393 (2) | 0.0344 (2) | −0.00414 (19) | 0.00358 (18) | 0.00918 (17) |
O1 | 0.0848 (10) | 0.0348 (7) | 0.0585 (8) | −0.0084 (6) | 0.0102 (7) | 0.0109 (6) |
N1 | 0.0466 (10) | 0.0522 (10) | 0.0532 (10) | 0.0079 (8) | −0.0012 (8) | 0.0183 (8) |
N2 | 0.0377 (8) | 0.0444 (9) | 0.0648 (11) | 0.0003 (7) | 0.0006 (7) | 0.0222 (8) |
N3 | 0.0399 (7) | 0.0308 (7) | 0.0382 (7) | 0.0019 (6) | 0.0022 (6) | 0.0041 (5) |
N4 | 0.0404 (8) | 0.0310 (7) | 0.0369 (7) | 0.0020 (6) | 0.0018 (6) | 0.0064 (5) |
N5 | 0.0438 (8) | 0.0288 (7) | 0.0397 (8) | −0.0008 (6) | 0.0032 (6) | 0.0044 (6) |
N6 | 0.0523 (9) | 0.0425 (8) | 0.0418 (8) | 0.0106 (7) | 0.0039 (7) | 0.0070 (6) |
C1 | 0.0443 (9) | 0.0331 (8) | 0.0332 (8) | 0.0084 (7) | 0.0034 (7) | 0.0030 (6) |
C2 | 0.0427 (9) | 0.0349 (8) | 0.0411 (9) | 0.0058 (7) | 0.0085 (7) | 0.0127 (7) |
C3 | 0.0395 (9) | 0.0281 (8) | 0.0397 (9) | 0.0042 (6) | 0.0063 (7) | 0.0040 (6) |
C4 | 0.0427 (9) | 0.0266 (7) | 0.0311 (8) | 0.0022 (6) | 0.0056 (7) | −0.0004 (6) |
C5 | 0.0451 (10) | 0.0417 (9) | 0.0412 (9) | −0.0018 (7) | 0.0134 (8) | 0.0050 (7) |
C6 | 0.0385 (9) | 0.0354 (9) | 0.0458 (10) | 0.0003 (7) | 0.0037 (7) | 0.0087 (7) |
C7 | 0.0319 (8) | 0.0358 (8) | 0.0419 (9) | 0.0079 (6) | −0.0010 (7) | 0.0038 (7) |
C8 | 0.0531 (11) | 0.0375 (9) | 0.0546 (11) | 0.0026 (8) | 0.0031 (9) | 0.0009 (8) |
C9 | 0.0629 (13) | 0.0441 (11) | 0.0672 (13) | 0.0099 (9) | −0.0011 (10) | −0.0111 (9) |
C10 | 0.0611 (12) | 0.0643 (13) | 0.0488 (11) | 0.0266 (10) | −0.0007 (9) | −0.0100 (10) |
C11 | 0.0636 (12) | 0.0607 (12) | 0.0436 (10) | 0.0204 (10) | 0.0081 (9) | 0.0073 (9) |
S1—C4 | 1.7682 (15) | N6—C7 | 1.332 (2) |
S1—C5 | 1.8021 (18) | N6—C11 | 1.338 (2) |
O1—C6 | 1.2124 (19) | C1—C2 | 1.381 (2) |
N1—C1 | 1.348 (2) | C2—C3 | 1.384 (2) |
N1—H1A | 0.86 (2) | C2—H2 | 0.9300 |
N1—H1B | 0.86 (2) | C5—C6 | 1.512 (2) |
N2—C3 | 1.358 (2) | C5—H5A | 0.9700 |
N2—H2A | 0.86 (2) | C5—H5B | 0.9700 |
N2—H2B | 0.88 (2) | C7—C8 | 1.384 (2) |
N3—C4 | 1.324 (2) | C8—C9 | 1.376 (3) |
N3—C1 | 1.358 (2) | C8—H8 | 0.9300 |
N4—C4 | 1.328 (2) | C9—C10 | 1.365 (3) |
N4—C3 | 1.3570 (19) | C9—H9 | 0.9300 |
N5—C6 | 1.354 (2) | C10—C11 | 1.368 (3) |
N5—C7 | 1.400 (2) | C10—H10 | 0.9300 |
N5—H5 | 0.856 (19) | C11—H11 | 0.9300 |
C4—S1—C5 | 102.83 (8) | C6—C5—S1 | 111.72 (12) |
C1—N1—H1A | 118.3 (14) | C6—C5—H5A | 109.3 |
C1—N1—H1B | 117.3 (15) | S1—C5—H5A | 109.3 |
H1A—N1—H1B | 124 (2) | C6—C5—H5B | 109.3 |
C3—N2—H2A | 117.2 (13) | S1—C5—H5B | 109.3 |
C3—N2—H2B | 117.6 (15) | H5A—C5—H5B | 107.9 |
H2A—N2—H2B | 110 (2) | O1—C6—N5 | 124.47 (16) |
C4—N3—C1 | 114.94 (13) | O1—C6—C5 | 121.07 (15) |
C4—N4—C3 | 115.04 (13) | N5—C6—C5 | 114.46 (14) |
C6—N5—C7 | 129.23 (14) | N6—C7—C8 | 123.05 (16) |
C6—N5—H5 | 114.6 (12) | N6—C7—N5 | 112.92 (13) |
C7—N5—H5 | 116.2 (12) | C8—C7—N5 | 124.02 (15) |
C7—N6—C11 | 116.91 (15) | C9—C8—C7 | 118.03 (18) |
N1—C1—N3 | 115.65 (15) | C9—C8—H8 | 121.0 |
N1—C1—C2 | 122.72 (15) | C7—C8—H8 | 121.0 |
N3—C1—C2 | 121.63 (15) | C10—C9—C8 | 120.00 (18) |
C1—C2—C3 | 117.79 (14) | C10—C9—H9 | 120.0 |
C1—C2—H2 | 121.1 | C8—C9—H9 | 120.0 |
C3—C2—H2 | 121.1 | C9—C10—C11 | 117.86 (18) |
N4—C3—N2 | 116.08 (15) | C9—C10—H10 | 121.1 |
N4—C3—C2 | 121.51 (14) | C11—C10—H10 | 121.1 |
N2—C3—C2 | 122.39 (15) | N6—C11—C10 | 124.13 (18) |
N3—C4—N4 | 128.88 (14) | N6—C11—H11 | 117.9 |
N3—C4—S1 | 119.16 (12) | C10—C11—H11 | 117.9 |
N4—C4—S1 | 111.95 (12) | ||
C4—N3—C1—N1 | −174.86 (14) | C7—N5—C6—O1 | −0.5 (3) |
C4—N3—C1—C2 | 5.2 (2) | C7—N5—C6—C5 | 179.12 (15) |
N1—C1—C2—C3 | 175.39 (15) | S1—C5—C6—O1 | 105.06 (17) |
N3—C1—C2—C3 | −4.7 (2) | S1—C5—C6—N5 | −74.58 (17) |
C4—N4—C3—N2 | −176.87 (14) | C11—N6—C7—C8 | 1.2 (2) |
C4—N4—C3—C2 | 1.5 (2) | C11—N6—C7—N5 | −178.11 (15) |
C1—C2—C3—N4 | 1.2 (2) | C6—N5—C7—N6 | −178.11 (16) |
C1—C2—C3—N2 | 179.38 (15) | C6—N5—C7—C8 | 2.5 (3) |
C1—N3—C4—N4 | −2.5 (2) | N6—C7—C8—C9 | −1.7 (3) |
C1—N3—C4—S1 | 177.30 (10) | N5—C7—C8—C9 | 177.57 (17) |
C3—N4—C4—N3 | −0.8 (2) | C7—C8—C9—C10 | 0.7 (3) |
C3—N4—C4—S1 | 179.39 (10) | C8—C9—C10—C11 | 0.7 (3) |
C5—S1—C4—N3 | 3.32 (14) | C7—N6—C11—C10 | 0.2 (3) |
C5—S1—C4—N4 | −176.85 (11) | C9—C10—C11—N6 | −1.2 (3) |
C4—S1—C5—C6 | 87.65 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···N3 | 0.86 (2) | 2.18 (2) | 2.975 (2) | 154 (2) |
C8—H8···O1 | 0.93 | 2.31 | 2.894 (2) | 121 |
N2—H2B···N4i | 0.88 (2) | 2.20 (2) | 3.082 (2) | 178 (2) |
N1—H1A···N6ii | 0.86 (2) | 2.38 (2) | 3.174 (2) | 155 (2) |
N2—H2A···O1iii | 0.86 (2) | 2.13 (2) | 2.956 (2) | 159 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y+1, z. |
C10H11N7OS | F(000) = 576 |
Mr = 277.32 | Dx = 1.453 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1333 (5) Å | Cell parameters from 3124 reflections |
b = 8.1561 (3) Å | θ = 2.2–28.3° |
c = 12.8442 (5) Å | µ = 0.26 mm−1 |
β = 94.307 (3)° | T = 293 K |
V = 1267.48 (9) Å3 | Block, yellow |
Z = 4 | 0.28 × 0.25 × 0.20 mm |
Bruker SMART APEXII area-detector diffractometer | 1320 reflections with I > 2σ(I) |
Radiation source: X-ray | Rint = 0.084 |
ω and φ scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −16→12 |
Tmin = 0.723, Tmax = 0.863 | k = −10→9 |
11968 measured reflections | l = −17→17 |
3124 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: mixed |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0452P)2] where P = (Fo2 + 2Fc2)/3 |
3124 reflections | (Δ/σ)max = 0.001 |
192 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.77107 (6) | 0.20394 (11) | 0.50448 (6) | 0.0525 (3) | |
O1 | 1.06221 (18) | 0.2503 (3) | 0.55054 (17) | 0.0779 (8) | |
N1 | 0.6951 (3) | 0.2961 (4) | 0.8740 (2) | 0.0651 (9) | |
H1A | 0.651 (3) | 0.297 (4) | 0.923 (3) | 0.084 (13)* | |
H1B | 0.760 (3) | 0.342 (4) | 0.881 (3) | 0.079 (13)* | |
N2 | 0.4369 (2) | 0.0046 (4) | 0.6423 (3) | 0.0635 (9) | |
H2A | 0.391 (2) | −0.015 (4) | 0.687 (2) | 0.060 (11)* | |
H2B | 0.423 (2) | −0.044 (4) | 0.571 (3) | 0.080 (11)* | |
N3 | 0.72886 (19) | 0.2473 (3) | 0.70403 (17) | 0.0452 (7) | |
N4 | 0.59901 (19) | 0.1011 (3) | 0.58901 (17) | 0.0463 (7) | |
N5 | 0.9712 (2) | 0.1889 (3) | 0.69294 (19) | 0.0494 (7) | |
H5 | 0.912 (2) | 0.197 (4) | 0.719 (2) | 0.057 (11)* | |
N6 | 1.0164 (2) | 0.0445 (3) | 0.84291 (19) | 0.0545 (7) | |
N7 | 1.2266 (2) | −0.0273 (4) | 0.7815 (2) | 0.0659 (8) | |
C1 | 0.6580 (3) | 0.2321 (4) | 0.7813 (2) | 0.0450 (8) | |
C2 | 0.5579 (2) | 0.1540 (4) | 0.7649 (2) | 0.0466 (8) | |
H2 | 0.509877 | 0.146453 | 0.817830 | 0.056* | |
C3 | 0.5306 (2) | 0.0872 (4) | 0.6680 (2) | 0.0438 (8) | |
C4 | 0.6909 (2) | 0.1845 (4) | 0.6132 (2) | 0.0421 (7) | |
C5 | 0.8779 (2) | 0.3427 (4) | 0.5525 (2) | 0.0497 (9) | |
H5A | 0.897729 | 0.412594 | 0.495784 | 0.060* | |
H5B | 0.849528 | 0.412281 | 0.605640 | 0.060* | |
C6 | 0.9796 (3) | 0.2561 (4) | 0.5981 (2) | 0.0499 (9) | |
C7 | 1.0498 (2) | 0.0968 (4) | 0.7528 (2) | 0.0440 (8) | |
C8 | 1.1544 (3) | 0.0605 (4) | 0.7222 (3) | 0.0613 (10) | |
H8 | 1.174535 | 0.098921 | 0.658172 | 0.074* | |
C9 | 1.1922 (3) | −0.0808 (4) | 0.8710 (3) | 0.0610 (10) | |
H9 | 1.239366 | −0.144894 | 0.914481 | 0.073* | |
C10 | 1.0895 (3) | −0.0446 (4) | 0.9011 (2) | 0.0598 (9) | |
H10 | 1.069630 | −0.083866 | 0.965011 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0478 (5) | 0.0731 (6) | 0.0376 (4) | −0.0116 (5) | 0.0092 (3) | −0.0006 (4) |
O1 | 0.0459 (15) | 0.134 (3) | 0.0572 (14) | 0.0005 (14) | 0.0236 (12) | 0.0208 (14) |
N1 | 0.062 (2) | 0.091 (2) | 0.0445 (17) | −0.021 (2) | 0.0163 (16) | −0.0161 (17) |
N2 | 0.0446 (19) | 0.090 (3) | 0.0569 (19) | −0.0240 (17) | 0.0124 (16) | −0.0020 (18) |
N3 | 0.0437 (16) | 0.0552 (19) | 0.0379 (13) | −0.0049 (12) | 0.0104 (12) | −0.0024 (12) |
N4 | 0.0372 (15) | 0.0617 (18) | 0.0408 (14) | −0.0088 (14) | 0.0095 (12) | −0.0002 (13) |
N5 | 0.0379 (18) | 0.069 (2) | 0.0428 (15) | −0.0018 (16) | 0.0162 (13) | 0.0043 (14) |
N6 | 0.0478 (17) | 0.072 (2) | 0.0447 (15) | 0.0030 (15) | 0.0119 (13) | 0.0055 (14) |
N7 | 0.0512 (19) | 0.079 (2) | 0.0690 (19) | 0.0126 (17) | 0.0169 (15) | 0.0064 (17) |
C1 | 0.049 (2) | 0.046 (2) | 0.0402 (16) | 0.0041 (16) | 0.0087 (15) | −0.0021 (15) |
C2 | 0.042 (2) | 0.058 (2) | 0.0416 (17) | −0.0005 (17) | 0.0110 (14) | 0.0027 (15) |
C3 | 0.0338 (19) | 0.049 (2) | 0.0493 (18) | 0.0015 (16) | 0.0076 (15) | 0.0061 (16) |
C4 | 0.0395 (19) | 0.047 (2) | 0.0410 (16) | 0.0036 (16) | 0.0083 (14) | 0.0024 (15) |
C5 | 0.047 (2) | 0.055 (2) | 0.0479 (18) | −0.0136 (16) | 0.0103 (15) | 0.0067 (15) |
C6 | 0.044 (2) | 0.061 (2) | 0.0449 (18) | −0.0142 (17) | 0.0067 (16) | 0.0004 (16) |
C7 | 0.0338 (19) | 0.053 (2) | 0.0463 (18) | −0.0016 (16) | 0.0105 (15) | −0.0048 (16) |
C8 | 0.053 (2) | 0.076 (3) | 0.057 (2) | 0.007 (2) | 0.0187 (18) | 0.0088 (19) |
C9 | 0.054 (2) | 0.073 (3) | 0.057 (2) | 0.012 (2) | 0.0051 (17) | 0.0020 (19) |
C10 | 0.061 (3) | 0.069 (3) | 0.0508 (19) | 0.002 (2) | 0.0107 (18) | 0.0063 (19) |
S1—C4 | 1.768 (3) | N6—C7 | 1.325 (3) |
S1—C5 | 1.795 (3) | N6—C10 | 1.331 (4) |
O1—C6 | 1.213 (3) | N7—C8 | 1.326 (4) |
N1—C1 | 1.346 (4) | N7—C9 | 1.326 (4) |
N1—H1A | 0.86 (3) | C1—C2 | 1.374 (4) |
N1—H1B | 0.88 (3) | C2—C3 | 1.375 (4) |
N2—C3 | 1.341 (4) | C2—H2 | 0.9300 |
N2—H2A | 0.85 (3) | C5—C6 | 1.502 (4) |
N2—H2B | 1.00 (3) | C5—H5A | 0.9700 |
N3—C4 | 1.325 (3) | C5—H5B | 0.9700 |
N3—C1 | 1.367 (3) | C7—C8 | 1.389 (4) |
N4—C4 | 1.323 (3) | C8—H8 | 0.9300 |
N4—C3 | 1.364 (3) | C9—C10 | 1.364 (4) |
N5—C6 | 1.347 (4) | C9—H9 | 0.9300 |
N5—C7 | 1.398 (4) | C10—H10 | 0.9300 |
N5—H5 | 0.82 (3) | ||
C4—S1—C5 | 102.17 (14) | N4—C4—S1 | 111.4 (2) |
C1—N1—H1A | 118 (2) | N3—C4—S1 | 119.0 (2) |
C1—N1—H1B | 120 (2) | C6—C5—S1 | 112.8 (2) |
H1A—N1—H1B | 122 (3) | C6—C5—H5A | 109.0 |
C3—N2—H2A | 121 (2) | S1—C5—H5A | 109.0 |
C3—N2—H2B | 120.4 (17) | C6—C5—H5B | 109.0 |
H2A—N2—H2B | 118 (3) | S1—C5—H5B | 109.0 |
C4—N3—C1 | 114.1 (2) | H5A—C5—H5B | 107.8 |
C4—N4—C3 | 114.7 (3) | O1—C6—N5 | 124.1 (3) |
C6—N5—C7 | 128.4 (3) | O1—C6—C5 | 120.5 (3) |
C6—N5—H5 | 118 (2) | N5—C6—C5 | 115.4 (3) |
C7—N5—H5 | 114 (2) | N6—C7—C8 | 121.7 (3) |
C7—N6—C10 | 115.5 (3) | N6—C7—N5 | 114.4 (3) |
C8—N7—C9 | 116.0 (3) | C8—C7—N5 | 124.0 (3) |
N1—C1—N3 | 114.9 (3) | N7—C8—C7 | 122.1 (3) |
N1—C1—C2 | 123.3 (3) | N7—C8—H8 | 119.0 |
N3—C1—C2 | 121.9 (3) | C7—C8—H8 | 119.0 |
C1—C2—C3 | 118.2 (3) | N7—C9—C10 | 121.9 (3) |
C1—C2—H2 | 120.9 | N7—C9—H9 | 119.1 |
C3—C2—H2 | 120.9 | C10—C9—H9 | 119.1 |
N2—C3—N4 | 114.2 (3) | N6—C10—C9 | 122.9 (3) |
N2—C3—C2 | 124.3 (3) | N6—C10—H10 | 118.5 |
N4—C3—C2 | 121.4 (3) | C9—C10—H10 | 118.5 |
N4—C4—N3 | 129.6 (3) | ||
C4—N3—C1—N1 | −179.7 (3) | C7—N5—C6—O1 | −2.8 (5) |
C4—N3—C1—C2 | 1.7 (4) | C7—N5—C6—C5 | 177.6 (3) |
N1—C1—C2—C3 | −177.3 (3) | S1—C5—C6—O1 | 105.2 (3) |
N3—C1—C2—C3 | 1.3 (5) | S1—C5—C6—N5 | −75.2 (3) |
C4—N4—C3—N2 | 179.0 (3) | C10—N6—C7—C8 | −0.1 (5) |
C4—N4—C3—C2 | −0.9 (4) | C10—N6—C7—N5 | 179.5 (3) |
C1—C2—C3—N2 | 178.4 (3) | C6—N5—C7—N6 | −178.8 (3) |
C1—C2—C3—N4 | −1.7 (5) | C6—N5—C7—C8 | 0.8 (5) |
C3—N4—C4—N3 | 4.6 (5) | C9—N7—C8—C7 | 1.1 (5) |
C3—N4—C4—S1 | −177.3 (2) | N6—C7—C8—N7 | −0.4 (5) |
C1—N3—C4—N4 | −5.0 (5) | N5—C7—C8—N7 | 180.0 (3) |
C1—N3—C4—S1 | 177.1 (2) | C8—N7—C9—C10 | −1.3 (5) |
C5—S1—C4—N4 | 172.4 (2) | C7—N6—C10—C9 | −0.1 (5) |
C5—S1—C4—N3 | −9.3 (3) | N7—C9—C10—N6 | 0.9 (5) |
C4—S1—C5—C6 | 93.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···N3 | 0.82 (3) | 2.25 (3) | 2.993 (4) | 151 (3) |
C8—H8···O1 | 0.93 | 2.24 | 2.854 (4) | 123 |
N2—H2B···N4i | 1.00 (3) | 2.11 (3) | 3.092 (4) | 169 (3) |
N1—H1A···O1ii | 0.86 (3) | 2.06 (4) | 2.904 (4) | 167 (3) |
N2—H2A···N7iii | 0.85 (3) | 2.41 (3) | 3.235 (4) | 164 (3) |
C9—H9···O1iv | 0.93 | 2.56 | 3.368 (4) | 145 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z; (iv) −x+5/2, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection
Funding information
MC thanks the CSIR, Government of India, for the SRF fellowship.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996–1000. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hocková, D., Holý, A. N., Masoj\?ídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197–3202. Google Scholar
Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047. Web of Science CrossRef PubMed CAS Google Scholar
Kandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197–205. CAS Google Scholar
Kimura, H., Katoh, T., Kajimoto, T., Node, M., Hisaki, M., Sugimoto, Y., Majima, T., Uehara, Y. & Yamori, T. (2006). Anticancer Res. 26, 91–97. Web of Science PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Fabbiani, F. P. & Spackman, M. A. (2007). Cryst. Growth Des. 7, 755–769. CrossRef CAS Google Scholar
Nammalwar, B., Bunce, R. A., Berlin, K. D., Bourne, C. R., Bourne, P. C., Barrow, E. W. & Barrow, W. W. (2012). Eur. J. Med. Chem. 54, 387–396. CrossRef CAS Google Scholar
Nelson, R. G. & Rosowsky, A. (2001). Antimicrob. Agents Chemother. 45, 3293–3303. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850. CSD CrossRef IUCr Journals Google Scholar
Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017a). Acta Cryst. E73, 306–309. CrossRef IUCr Journals Google Scholar
Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017b). Acta Cryst. E73, 467–471. CrossRef IUCr Journals Google Scholar
Subasri, S., Timiri, A. K., Barji, N. S., Jayaprakash, V., Vijayan, V. & Velmurugan, D. (2016). Acta Cryst. E72, 1171–1175. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, W., Huang, A., Zhang, Y., Lin, Q., Guo, W., You, Z., Yi, Z., Liu, M. & Chen, Y. (2015). Eur. J. Med. Chem. 96, 269–280. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.