research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(pyridin-2-yl)acetamide and 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(pyrazin-2-yl)acetamide

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesta, Ranchi 835215, Jharkhand, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 March 2018; accepted 11 April 2018; online 27 April 2018)

In the title compounds, C11H12N6OS (I) and C10H11N7OS (II), the di­amino­pyrimidine ring makes dihedral angles of 71.10 (9)° with the pyridine ring in (I) and 62.93 (15)° with the pyrazine ring in (II). The ethanamine group, –CH2–C(=O)–NH– lies in the plane of the pyridine and pyrazine rings in compounds (I) and (II), respectively. In both compounds, there is an intra­molecular N—H⋯N hydrogen bond forming an S(7) ring motif and a short C—H⋯O inter­action forming an S(6) loop. In the crystals of both compounds, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with R22(8) ring motifs. In (I), the dimers are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming layers parallel to (1[\overline{1}][\overline{1}]). The layers are linked by offset ππ inter­actions [inter­centroid distance = 3.777 (1) Å], forming a three-dimensional supra­molecular structure. In (II), the dimers are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, also forming a three-dimensional supra­molecular structure.

1. Chemical context

An important property of di­amino­pyrimidine derivatives is their inhibition potential against cancer targets. Because of the limited capacity of drugs that can cure cancer, there is always an urgent requirement for new chemotherapeutics. 2,4-Di­amino­pyrimidine derivatives combined with aryl­thia­zole derivatives have shown to possess significant anti-proliferation properties against breast cancer cell lines (Zhou et al., 2015[Zhou, W., Huang, A., Zhang, Y., Lin, Q., Guo, W., You, Z., Yi, Z., Liu, M. & Chen, Y. (2015). Eur. J. Med. Chem. 96, 269-280.]). 2,4-Di­amino­pyrimidine derivatives have shown significant inhibitory activity against influenza viruses (Kimura et al., 2006[Kimura, H., Katoh, T., Kajimoto, T., Node, M., Hisaki, M., Sugimoto, Y., Majima, T., Uehara, Y. & Yamori, T. (2006). Anticancer Res. 26, 91-97.]). A series of 2,4- di­amino­pyrimidine derivatives were evaluated against Bacillus anthracis, which showed inhibition (Nammalwar et al., 2012[Nammalwar, B., Bunce, R. A., Berlin, K. D., Bourne, C. R., Bourne, P. C., Barrow, E. W. & Barrow, W. W. (2012). Eur. J. Med. Chem. 54, 387-396.]). Di­hydro­folate reductase inhibitor drugs such as pyrimethamine, trimetrexate and piritrexim (Nelson & Rosowsky, 2001[Nelson, R. G. & Rosowsky, A. (2001). Antimicrob. Agents Chemother. 45, 3293-3303.]) and the anti­biotics iclaprim and trimethoprim all include di­amino­pyrimidine as the fundamental structural motif. Di­amino­pyrimidine derivatives have also shown anti-retroviral activity (Hocková et al., 2004[Hocková, D., Holý, A. N., Masoj\?ídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197-3202.]), anti­bacterial (Kandeel et al., 1994[Kandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197-205.]) and potential anti-microbial properties (Holla et al., 2006[Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040-2047.]). As part of our own studies in this area, we report herein on the syntheses, crystal structures and Hirshfeld surface analyses of the title compounds, 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(pyridin-2-yl)acet­amide (I)[link] and 2-[(4,6-di­amino­pyrimidin-2-yl)sulfan­yl]-N-(pyrazin-2-yl)acetamide (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compounds (I)[link] and (II)[link] are shown in the Figs. 1[link] and 2[link], respectively. Compound (I)[link] crystallizes in the triclinic space group P[\overline{1}] and compound (II)[link] crystallizes in the monoclinic space group P21/c. In both the compounds, there is an intra­molecular N—H⋯N hydrogen bond forming an S(7) ring motif and a short C—H⋯O inter­action forming an S(6) loop; see Tables 1[link] and 2[link] for details of the hydrogen bonding. The nitro­gen atoms N1 and N2 lie in the plane of the pyrimidine ring to which they are attached [deviations are −0.0269 (17) and 0.0521 (16) Å, respectively, for compound (I)[link], and 0.0350 (28) and 0.0284 (28) Å, respectively, for compound (II)]. The di­amino­pyrimidine ring makes a dihedral angle of 71.10 (9)° with the pyridine ring in compound (I)[link] and a dihedral angle of 62.93 (15)° with the pyrazine ring in compound (II)[link]. In (I)[link] the ethanamine group (N5/O1/C6/C5) and the pyridine ring are coplanar, as evidenced by torsion angle C7—N5—C6—C5 = 179.1 (2)°. In (II)[link] the ethanamine group (N5/O1/C6/C5) and pyrazine ring also lie in a plane [C7—N5—C6—C5 = 177.6 (3)°]. Bond lengths C4—S1 [1.768 (2) Å] and C5—S1 [1.802 (2) Å] for compound (I)[link], and C4—S1 [1.768 (3) Å] and C5—S1 [1.795 (3) Å] for compound (II)[link], are comparable with values reported for similar compounds (see Section 4. Database survey).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N3 0.86 (2) 2.18 (2) 2.975 (2) 154 (2)
C8—H8⋯O1 0.93 2.31 2.894 (2) 121
N2—H2B⋯N4i 0.88 (2) 2.20 (2) 3.082 (2) 178 (2)
N1—H1A⋯N6ii 0.86 (2) 2.38 (2) 3.174 (2) 155 (2)
N2—H2A⋯O1iii 0.86 (2) 2.13 (2) 2.956 (2) 159 (2)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x+1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N3 0.82 (3) 2.25 (3) 2.993 (4) 151 (3)
C8—H8⋯O1 0.93 2.24 2.854 (4) 123
N2—H2B⋯N4i 1.00 (3) 2.11 (3) 3.092 (4) 169 (3)
N1—H1A⋯O1ii 0.86 (3) 2.06 (4) 2.904 (4) 167 (3)
N2—H2A⋯N7iii 0.85 (3) 2.41 (3) 3.235 (4) 164 (3)
C9—H9⋯O1iv 0.93 2.56 3.368 (4) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the compound (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯N and C—H⋯O hydrogen bonds (see Table 1[link]) are shown as dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of the compound (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯N and C—H⋯O hydrogen bonds (see Table 2[link]) are shown as dashed lines.

3. Supra­molecular features

The crystal packing in compound (I)[link] is illustrated in Fig. 3[link], and that for compound (II)[link] in Fig. 4[link]. Details of the hydrogen-bonding geometry in compound (I)[link] are given in Table 1[link] and in Table 2[link] for (II)[link]. In the crystals of both compounds, mol­ecules are linked by pairs of N2—H2B⋯N4i hydrogen bonds, forming inversion dimers with R22(8) ring motifs (Figs. 3[link] and 4[link], respectively).

[Figure 3]
Figure 3
A view normal to the (1[\overline{1}][\overline{1}]) plane of the crystal packing of compound (I)[link]. The hydrogen bonds (see Table 1[link]) are shown as dashed lines and C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds (see Table 2[link]) are shown as dashed lines, and C-bound H atoms have been omitted for clarity.

In the crystal of (I)[link], the dimers are linked by N2—H2A⋯O1iii hydrogen bonds, forming ribbons along [010], enclosing R44(18) ring motifs. Adjacent ribbons are linked by N1—H1A⋯N6ii hydrogen bonds, forming sheets lying parallel to the (1[\overline{1}][\overline{1}]) plane, see Fig. 3[link]. The layers are linked by offset ππ inter­actions, forming a three-dimensional supra­molecular structure [CgCgv = 3.777 (1) Å, inter­planar distance = 3.483 (1) Å, slippage = 1.459 Å, Cg is the centroid of the pyridine ring (N6/C7–C11); symmetry code: (v) −x + 1, −y, −z + 1)].

In the crystal of (II)[link], the dimers are linked by N1—H1A⋯Oii, N2—H2A⋯N7iii and C9—H9⋯O1iv hydrogen bonds (Table 2[link]), forming a three-dimensional supra­molecular structure (Fig. 4[link]). In contrast, in the crystal of (II)[link] there are no ππ inter­actions present.

4. Database survey

A search of the Cambridge Structure Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for [(4,6-di­amino­pyrmidin-2-yl)sulfan­yl]acetamide yielded nine hits, eight of which have a substituted phenyl substituent in place of the pyridine ring in (I)[link] and the pyrazine ring in (II)[link], and one a naphthalene group (JARPOK; Subasri et al., 2017a[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017a). Acta Cryst. E73, 306-309.]). They include the following analogues: 3-nitro­phenyl (ARAROC; Subasri et al., 2016[Subasri, S., Timiri, A. K., Barji, N. S., Jayaprakash, V., Vijayan, V. & Velmurugan, D. (2016). Acta Cryst. E72, 1171-1175.]), 2-chloro­phenyl (ARARUI; Subasri et al., 2016[Subasri, S., Timiri, A. K., Barji, N. S., Jayaprakash, V., Vijayan, V. & Velmurugan, D. (2016). Acta Cryst. E72, 1171-1175.]), 2-methyl­phenyl (GOKWIO; Subasri et al., 2014[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850.]), 4-fluoro­phenyl (JARPUQ; Subasri et al., 2017a[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017a). Acta Cryst. E73, 306-309.]), 2,4-di­methyl­phenyl (JAXFIA; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]), 3-meth­oxy­phenyl (JAXFOG; Choudhury et al., 2017[Choudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996-1000.]), 4-chloro­phenyl (KAPQIE; Subasri et al., 2017b[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017b). Acta Cryst. E73, 467-471.]), and 3-chloro­phenyl (KAPQOK; Subasri et al., 2017b[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017b). Acta Cryst. E73, 467-471.]).

In these eight compounds, the di­amino­pyrimidine and benzene rings are inclined to one another by dihedral angles varying from ca 42.25 to 78.33°. The dihedral angle between the di­amino­pyrimidine and the pyridine ring in (I)[link] is 71.10 (9)° and with the pyrazine ring in (II)[link] is 62.93 (15)°, well within these limits. As in the title compounds, there is also an intra­molecular N—H⋯N hydrogen bond present in all eight compounds, stabilizing the folded conformation of each mol­ecule. In the crystals of all but two compounds (ARAROC and JARPUQ), mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, involving the 4,6-di­amino­pyrimidine moieties, forming inversion dimers with R22(8) ring motifs, as for compounds (I)[link] and (II)[link].

5. Hirshfeld surface analysis

In Figs. 5[link] and 6[link], the ball and stick model of the front and back views of the compounds (I)[link] and (II)[link], respectively, and the inter­molecular contacts are shown by conventional mapping of dnorm on the mol­ecular Hirshfeld surfaces, where the red-spot areas denote inter­molecular contacts involved in the hydrogen-bonding inter­actions (McKinnon et al., 2007[McKinnon, J. J., Fabbiani, F. P. & Spackman, M. A. (2007). Cryst. Growth Des. 7, 755-769.]). The electrostatic potential is mapped on the Hirshfeld surface using the STO-3G basis set at the Hartree–Fock theory over the range of ±0.025 a.u. The positive electrostatic potential (blue region) over the surface shows hydrogen-donor potential, and the hydrogen-bond acceptors are shown by negative electrostatic potential (red regions); see Figs. 5[link] and 6[link]. The two-dimensional fingerprint plots [Fig. 7[link] for (I)[link] and Fig. 8[link] for (II)] are deconvoluted to highlight atom-pair close contacts by which different atomic types, overlapping the full fingerprint can be separated based on different inter­action types. For compound (I)[link], inter­molecular H⋯H contacts of 39.1% are the most significant, followed by 17.7% for N⋯H/H⋯N, 12% for C⋯H/H⋯C, 9.3% for O⋯H/H⋯O, 8.4% for S⋯H/H⋯S and 4.1% for C⋯C contacts. In contrast, for compound (II)[link] the H⋯H contacts at 28.2% are significantly lower than in (I)[link], while the N⋯H/H⋯N contacts at 27% are significantly higher than in (I)[link]. The C⋯C contacts at only 1.9% are much lower than in (I)[link] where offset ππ inter­actions are observed in the crystal structure.

[Figure 5]
Figure 5
Ball and stick, Hirshfeld surface and electrostatic potential surface diagrams for compound (I)[link].
[Figure 6]
Figure 6
Ball and stick, Hirshfeld surface and electrostatic potential surface diagrams for compound (II)[link].
[Figure 7]
Figure 7
The 2D fingerprint plot for all the inter­molecular contacts for compound (I)[link].
[Figure 8]
Figure 8
The 2D fingerprint plot for all the inter­molecular contacts for compound (II)[link].

6. Synthesis and crystallization

Compound (I)[link]: To a solution of 4, 6-di­amino-pyrimidine-2-thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about 30 min. Then an equimolar qu­antity of 2-chloro-N-(pyridin-2-yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5 h. Evaporation of the organic layer under vacuum provided compound (I)[link]. After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.

Compound (II): To a solution of 4, 6-di­amino-pyrimidine-2-thiol (0.5 g; 3.52 mmol) in 25 ml of ethanol, (0.2g; 3.52 mmol) potassium hydroxide was added and refluxed for about 30 min. Then an equimolar qu­antity of 2-chloro-N-(pyrazin-2-yl)acetamide (3.52 mmol) was added to the above reaction mixture and it was refluxed for 5.5 h. Evaporation of the organic layer under vacuum resulted in compound (II)[link]. After purification, the compound was crystallized from ethanol solution by slow evaporation of the solvent giving yellow block-like crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, the NH2 and NH H atoms were located in difference-Fourier maps and freely refined, and the C-bound H atoms were placed in calculated positions and refined in the riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C11H12N6OS C10H11N7OS
Mr 276.33 277.32
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 7.2341 (2), 9.3852 (2), 9.7971 (2) 12.1333 (5), 8.1561 (3), 12.8442 (5)
α, β, γ (°) 95.820 (1), 91.116 (1), 105.682 (1) 90, 94.307 (3), 90
V3) 636.33 (3) 1267.48 (9)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.26 0.26
Crystal size (mm) 0.30 × 0.25 × 0.20 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII area-detector Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.742, 0.841 0.723, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 9447, 2605, 2160 11968, 3124, 1320
Rint 0.020 0.084
(sin θ/λ)max−1) 0.626 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.05 0.054, 0.126, 0.94
No. of reflections 2605 3124
No. of parameters 192 192
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.20 0.20, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-[(4,6-Diaminopyrimidin-2-yl)sulfanyl]-N-(pyridin-2-yl)acetamide (I) top
Crystal data top
C11H12N6OSZ = 2
Mr = 276.33F(000) = 288
Triclinic, P1Dx = 1.442 Mg m3
a = 7.2341 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3852 (2) ÅCell parameters from 2605 reflections
c = 9.7971 (2) Åθ = 2.1–26.4°
α = 95.820 (1)°µ = 0.26 mm1
β = 91.116 (1)°T = 293 K
γ = 105.682 (1)°Block, yellow
V = 636.33 (3) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2160 reflections with I > 2σ(I)
Radiation source: X-rayRint = 0.020
ω and φ scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.742, Tmax = 0.841k = 1111
9447 measured reflectionsl = 1012
2605 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1669P]
where P = (Fo2 + 2Fc2)/3
2605 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47564 (6)0.24187 (5)0.97878 (4)0.04443 (15)
O10.1201 (2)0.07191 (14)0.81504 (14)0.0637 (4)
N10.4212 (3)0.58093 (19)0.63223 (17)0.0509 (4)
H1A0.470 (3)0.652 (2)0.584 (2)0.059 (6)*
H1B0.299 (3)0.546 (2)0.641 (2)0.066 (7)*
N21.0373 (2)0.60541 (19)0.83751 (19)0.0500 (4)
H2A1.087 (3)0.696 (2)0.820 (2)0.059 (6)*
H2B1.092 (3)0.590 (2)0.914 (2)0.071 (7)*
N30.45530 (19)0.42030 (14)0.78589 (14)0.0378 (3)
N40.75997 (18)0.44133 (14)0.89781 (13)0.0374 (3)
N50.2555 (2)0.10689 (16)0.67916 (14)0.0395 (3)
H50.304 (3)0.201 (2)0.6830 (18)0.046 (5)*
N60.3287 (2)0.11118 (16)0.45436 (15)0.0458 (4)
C10.5404 (2)0.53494 (17)0.71413 (16)0.0373 (4)
C20.7366 (2)0.59919 (18)0.72509 (17)0.0398 (4)
H20.7950080.6727630.6706940.048*
C30.8435 (2)0.55043 (16)0.81970 (16)0.0367 (4)
C40.5717 (2)0.38421 (16)0.87394 (15)0.0351 (4)
C50.2265 (2)0.17793 (19)0.91965 (17)0.0452 (4)
H5A0.1491230.1396340.9944860.054*
H5B0.1851010.2611920.8919050.054*
C60.1943 (2)0.05740 (18)0.80001 (18)0.0415 (4)
C70.2500 (2)0.02603 (17)0.55029 (17)0.0369 (4)
C80.1697 (3)0.12615 (19)0.5237 (2)0.0506 (4)
H80.1188240.1829780.5935110.061*
C90.1674 (3)0.1909 (2)0.3911 (2)0.0603 (5)
H90.1131480.2927460.3698610.072*
C100.2447 (3)0.1056 (2)0.2905 (2)0.0574 (5)
H100.2431380.1474000.2001250.069*
C110.3246 (3)0.0435 (2)0.32694 (19)0.0551 (5)
H110.3794200.1013580.2588570.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0510 (3)0.0393 (2)0.0344 (2)0.00414 (19)0.00358 (18)0.00918 (17)
O10.0848 (10)0.0348 (7)0.0585 (8)0.0084 (6)0.0102 (7)0.0109 (6)
N10.0466 (10)0.0522 (10)0.0532 (10)0.0079 (8)0.0012 (8)0.0183 (8)
N20.0377 (8)0.0444 (9)0.0648 (11)0.0003 (7)0.0006 (7)0.0222 (8)
N30.0399 (7)0.0308 (7)0.0382 (7)0.0019 (6)0.0022 (6)0.0041 (5)
N40.0404 (8)0.0310 (7)0.0369 (7)0.0020 (6)0.0018 (6)0.0064 (5)
N50.0438 (8)0.0288 (7)0.0397 (8)0.0008 (6)0.0032 (6)0.0044 (6)
N60.0523 (9)0.0425 (8)0.0418 (8)0.0106 (7)0.0039 (7)0.0070 (6)
C10.0443 (9)0.0331 (8)0.0332 (8)0.0084 (7)0.0034 (7)0.0030 (6)
C20.0427 (9)0.0349 (8)0.0411 (9)0.0058 (7)0.0085 (7)0.0127 (7)
C30.0395 (9)0.0281 (8)0.0397 (9)0.0042 (6)0.0063 (7)0.0040 (6)
C40.0427 (9)0.0266 (7)0.0311 (8)0.0022 (6)0.0056 (7)0.0004 (6)
C50.0451 (10)0.0417 (9)0.0412 (9)0.0018 (7)0.0134 (8)0.0050 (7)
C60.0385 (9)0.0354 (9)0.0458 (10)0.0003 (7)0.0037 (7)0.0087 (7)
C70.0319 (8)0.0358 (8)0.0419 (9)0.0079 (6)0.0010 (7)0.0038 (7)
C80.0531 (11)0.0375 (9)0.0546 (11)0.0026 (8)0.0031 (9)0.0009 (8)
C90.0629 (13)0.0441 (11)0.0672 (13)0.0099 (9)0.0011 (10)0.0111 (9)
C100.0611 (12)0.0643 (13)0.0488 (11)0.0266 (10)0.0007 (9)0.0100 (10)
C110.0636 (12)0.0607 (12)0.0436 (10)0.0204 (10)0.0081 (9)0.0073 (9)
Geometric parameters (Å, º) top
S1—C41.7682 (15)N6—C71.332 (2)
S1—C51.8021 (18)N6—C111.338 (2)
O1—C61.2124 (19)C1—C21.381 (2)
N1—C11.348 (2)C2—C31.384 (2)
N1—H1A0.86 (2)C2—H20.9300
N1—H1B0.86 (2)C5—C61.512 (2)
N2—C31.358 (2)C5—H5A0.9700
N2—H2A0.86 (2)C5—H5B0.9700
N2—H2B0.88 (2)C7—C81.384 (2)
N3—C41.324 (2)C8—C91.376 (3)
N3—C11.358 (2)C8—H80.9300
N4—C41.328 (2)C9—C101.365 (3)
N4—C31.3570 (19)C9—H90.9300
N5—C61.354 (2)C10—C111.368 (3)
N5—C71.400 (2)C10—H100.9300
N5—H50.856 (19)C11—H110.9300
C4—S1—C5102.83 (8)C6—C5—S1111.72 (12)
C1—N1—H1A118.3 (14)C6—C5—H5A109.3
C1—N1—H1B117.3 (15)S1—C5—H5A109.3
H1A—N1—H1B124 (2)C6—C5—H5B109.3
C3—N2—H2A117.2 (13)S1—C5—H5B109.3
C3—N2—H2B117.6 (15)H5A—C5—H5B107.9
H2A—N2—H2B110 (2)O1—C6—N5124.47 (16)
C4—N3—C1114.94 (13)O1—C6—C5121.07 (15)
C4—N4—C3115.04 (13)N5—C6—C5114.46 (14)
C6—N5—C7129.23 (14)N6—C7—C8123.05 (16)
C6—N5—H5114.6 (12)N6—C7—N5112.92 (13)
C7—N5—H5116.2 (12)C8—C7—N5124.02 (15)
C7—N6—C11116.91 (15)C9—C8—C7118.03 (18)
N1—C1—N3115.65 (15)C9—C8—H8121.0
N1—C1—C2122.72 (15)C7—C8—H8121.0
N3—C1—C2121.63 (15)C10—C9—C8120.00 (18)
C1—C2—C3117.79 (14)C10—C9—H9120.0
C1—C2—H2121.1C8—C9—H9120.0
C3—C2—H2121.1C9—C10—C11117.86 (18)
N4—C3—N2116.08 (15)C9—C10—H10121.1
N4—C3—C2121.51 (14)C11—C10—H10121.1
N2—C3—C2122.39 (15)N6—C11—C10124.13 (18)
N3—C4—N4128.88 (14)N6—C11—H11117.9
N3—C4—S1119.16 (12)C10—C11—H11117.9
N4—C4—S1111.95 (12)
C4—N3—C1—N1174.86 (14)C7—N5—C6—O10.5 (3)
C4—N3—C1—C25.2 (2)C7—N5—C6—C5179.12 (15)
N1—C1—C2—C3175.39 (15)S1—C5—C6—O1105.06 (17)
N3—C1—C2—C34.7 (2)S1—C5—C6—N574.58 (17)
C4—N4—C3—N2176.87 (14)C11—N6—C7—C81.2 (2)
C4—N4—C3—C21.5 (2)C11—N6—C7—N5178.11 (15)
C1—C2—C3—N41.2 (2)C6—N5—C7—N6178.11 (16)
C1—C2—C3—N2179.38 (15)C6—N5—C7—C82.5 (3)
C1—N3—C4—N42.5 (2)N6—C7—C8—C91.7 (3)
C1—N3—C4—S1177.30 (10)N5—C7—C8—C9177.57 (17)
C3—N4—C4—N30.8 (2)C7—C8—C9—C100.7 (3)
C3—N4—C4—S1179.39 (10)C8—C9—C10—C110.7 (3)
C5—S1—C4—N33.32 (14)C7—N6—C11—C100.2 (3)
C5—S1—C4—N4176.85 (11)C9—C10—C11—N61.2 (3)
C4—S1—C5—C687.65 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N30.86 (2)2.18 (2)2.975 (2)154 (2)
C8—H8···O10.932.312.894 (2)121
N2—H2B···N4i0.88 (2)2.20 (2)3.082 (2)178 (2)
N1—H1A···N6ii0.86 (2)2.38 (2)3.174 (2)155 (2)
N2—H2A···O1iii0.86 (2)2.13 (2)2.956 (2)159 (2)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
2-[(4,6-Diaminopyrimidin-2-yl)sulfanyl]-N-(pyrazin-2-yl)acetamide (II) top
Crystal data top
C10H11N7OSF(000) = 576
Mr = 277.32Dx = 1.453 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1333 (5) ÅCell parameters from 3124 reflections
b = 8.1561 (3) Åθ = 2.2–28.3°
c = 12.8442 (5) ŵ = 0.26 mm1
β = 94.307 (3)°T = 293 K
V = 1267.48 (9) Å3Block, yellow
Z = 40.28 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1320 reflections with I > 2σ(I)
Radiation source: X-rayRint = 0.084
ω and φ scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1612
Tmin = 0.723, Tmax = 0.863k = 109
11968 measured reflectionsl = 1717
3124 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0452P)2]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77107 (6)0.20394 (11)0.50448 (6)0.0525 (3)
O11.06221 (18)0.2503 (3)0.55054 (17)0.0779 (8)
N10.6951 (3)0.2961 (4)0.8740 (2)0.0651 (9)
H1A0.651 (3)0.297 (4)0.923 (3)0.084 (13)*
H1B0.760 (3)0.342 (4)0.881 (3)0.079 (13)*
N20.4369 (2)0.0046 (4)0.6423 (3)0.0635 (9)
H2A0.391 (2)0.015 (4)0.687 (2)0.060 (11)*
H2B0.423 (2)0.044 (4)0.571 (3)0.080 (11)*
N30.72886 (19)0.2473 (3)0.70403 (17)0.0452 (7)
N40.59901 (19)0.1011 (3)0.58901 (17)0.0463 (7)
N50.9712 (2)0.1889 (3)0.69294 (19)0.0494 (7)
H50.912 (2)0.197 (4)0.719 (2)0.057 (11)*
N61.0164 (2)0.0445 (3)0.84291 (19)0.0545 (7)
N71.2266 (2)0.0273 (4)0.7815 (2)0.0659 (8)
C10.6580 (3)0.2321 (4)0.7813 (2)0.0450 (8)
C20.5579 (2)0.1540 (4)0.7649 (2)0.0466 (8)
H20.5098770.1464530.8178300.056*
C30.5306 (2)0.0872 (4)0.6680 (2)0.0438 (8)
C40.6909 (2)0.1845 (4)0.6132 (2)0.0421 (7)
C50.8779 (2)0.3427 (4)0.5525 (2)0.0497 (9)
H5A0.8977290.4125940.4957840.060*
H5B0.8495280.4122810.6056400.060*
C60.9796 (3)0.2561 (4)0.5981 (2)0.0499 (9)
C71.0498 (2)0.0968 (4)0.7528 (2)0.0440 (8)
C81.1544 (3)0.0605 (4)0.7222 (3)0.0613 (10)
H81.1745350.0989210.6581720.074*
C91.1922 (3)0.0808 (4)0.8710 (3)0.0610 (10)
H91.2393660.1448940.9144810.073*
C101.0895 (3)0.0446 (4)0.9011 (2)0.0598 (9)
H101.0696300.0838660.9650110.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0478 (5)0.0731 (6)0.0376 (4)0.0116 (5)0.0092 (3)0.0006 (4)
O10.0459 (15)0.134 (3)0.0572 (14)0.0005 (14)0.0236 (12)0.0208 (14)
N10.062 (2)0.091 (2)0.0445 (17)0.021 (2)0.0163 (16)0.0161 (17)
N20.0446 (19)0.090 (3)0.0569 (19)0.0240 (17)0.0124 (16)0.0020 (18)
N30.0437 (16)0.0552 (19)0.0379 (13)0.0049 (12)0.0104 (12)0.0024 (12)
N40.0372 (15)0.0617 (18)0.0408 (14)0.0088 (14)0.0095 (12)0.0002 (13)
N50.0379 (18)0.069 (2)0.0428 (15)0.0018 (16)0.0162 (13)0.0043 (14)
N60.0478 (17)0.072 (2)0.0447 (15)0.0030 (15)0.0119 (13)0.0055 (14)
N70.0512 (19)0.079 (2)0.0690 (19)0.0126 (17)0.0169 (15)0.0064 (17)
C10.049 (2)0.046 (2)0.0402 (16)0.0041 (16)0.0087 (15)0.0021 (15)
C20.042 (2)0.058 (2)0.0416 (17)0.0005 (17)0.0110 (14)0.0027 (15)
C30.0338 (19)0.049 (2)0.0493 (18)0.0015 (16)0.0076 (15)0.0061 (16)
C40.0395 (19)0.047 (2)0.0410 (16)0.0036 (16)0.0083 (14)0.0024 (15)
C50.047 (2)0.055 (2)0.0479 (18)0.0136 (16)0.0103 (15)0.0067 (15)
C60.044 (2)0.061 (2)0.0449 (18)0.0142 (17)0.0067 (16)0.0004 (16)
C70.0338 (19)0.053 (2)0.0463 (18)0.0016 (16)0.0105 (15)0.0048 (16)
C80.053 (2)0.076 (3)0.057 (2)0.007 (2)0.0187 (18)0.0088 (19)
C90.054 (2)0.073 (3)0.057 (2)0.012 (2)0.0051 (17)0.0020 (19)
C100.061 (3)0.069 (3)0.0508 (19)0.002 (2)0.0107 (18)0.0063 (19)
Geometric parameters (Å, º) top
S1—C41.768 (3)N6—C71.325 (3)
S1—C51.795 (3)N6—C101.331 (4)
O1—C61.213 (3)N7—C81.326 (4)
N1—C11.346 (4)N7—C91.326 (4)
N1—H1A0.86 (3)C1—C21.374 (4)
N1—H1B0.88 (3)C2—C31.375 (4)
N2—C31.341 (4)C2—H20.9300
N2—H2A0.85 (3)C5—C61.502 (4)
N2—H2B1.00 (3)C5—H5A0.9700
N3—C41.325 (3)C5—H5B0.9700
N3—C11.367 (3)C7—C81.389 (4)
N4—C41.323 (3)C8—H80.9300
N4—C31.364 (3)C9—C101.364 (4)
N5—C61.347 (4)C9—H90.9300
N5—C71.398 (4)C10—H100.9300
N5—H50.82 (3)
C4—S1—C5102.17 (14)N4—C4—S1111.4 (2)
C1—N1—H1A118 (2)N3—C4—S1119.0 (2)
C1—N1—H1B120 (2)C6—C5—S1112.8 (2)
H1A—N1—H1B122 (3)C6—C5—H5A109.0
C3—N2—H2A121 (2)S1—C5—H5A109.0
C3—N2—H2B120.4 (17)C6—C5—H5B109.0
H2A—N2—H2B118 (3)S1—C5—H5B109.0
C4—N3—C1114.1 (2)H5A—C5—H5B107.8
C4—N4—C3114.7 (3)O1—C6—N5124.1 (3)
C6—N5—C7128.4 (3)O1—C6—C5120.5 (3)
C6—N5—H5118 (2)N5—C6—C5115.4 (3)
C7—N5—H5114 (2)N6—C7—C8121.7 (3)
C7—N6—C10115.5 (3)N6—C7—N5114.4 (3)
C8—N7—C9116.0 (3)C8—C7—N5124.0 (3)
N1—C1—N3114.9 (3)N7—C8—C7122.1 (3)
N1—C1—C2123.3 (3)N7—C8—H8119.0
N3—C1—C2121.9 (3)C7—C8—H8119.0
C1—C2—C3118.2 (3)N7—C9—C10121.9 (3)
C1—C2—H2120.9N7—C9—H9119.1
C3—C2—H2120.9C10—C9—H9119.1
N2—C3—N4114.2 (3)N6—C10—C9122.9 (3)
N2—C3—C2124.3 (3)N6—C10—H10118.5
N4—C3—C2121.4 (3)C9—C10—H10118.5
N4—C4—N3129.6 (3)
C4—N3—C1—N1179.7 (3)C7—N5—C6—O12.8 (5)
C4—N3—C1—C21.7 (4)C7—N5—C6—C5177.6 (3)
N1—C1—C2—C3177.3 (3)S1—C5—C6—O1105.2 (3)
N3—C1—C2—C31.3 (5)S1—C5—C6—N575.2 (3)
C4—N4—C3—N2179.0 (3)C10—N6—C7—C80.1 (5)
C4—N4—C3—C20.9 (4)C10—N6—C7—N5179.5 (3)
C1—C2—C3—N2178.4 (3)C6—N5—C7—N6178.8 (3)
C1—C2—C3—N41.7 (5)C6—N5—C7—C80.8 (5)
C3—N4—C4—N34.6 (5)C9—N7—C8—C71.1 (5)
C3—N4—C4—S1177.3 (2)N6—C7—C8—N70.4 (5)
C1—N3—C4—N45.0 (5)N5—C7—C8—N7180.0 (3)
C1—N3—C4—S1177.1 (2)C8—N7—C9—C101.3 (5)
C5—S1—C4—N4172.4 (2)C7—N6—C10—C90.1 (5)
C5—S1—C4—N39.3 (3)N7—C9—C10—N60.9 (5)
C4—S1—C5—C693.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N30.82 (3)2.25 (3)2.993 (4)151 (3)
C8—H8···O10.932.242.854 (4)123
N2—H2B···N4i1.00 (3)2.11 (3)3.092 (4)169 (3)
N1—H1A···O1ii0.86 (3)2.06 (4)2.904 (4)167 (3)
N2—H2A···N7iii0.85 (3)2.41 (3)3.235 (4)164 (3)
C9—H9···O1iv0.932.563.368 (4)145
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+5/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection

Funding information

MC thanks the CSIR, Government of India, for the SRF fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, M., Viswanathan, V., Timiri, A. K., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2017). Acta Cryst. E73, 996–1000.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHocková, D., Holý, A. N., Masoj\?ídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197–3202.  Google Scholar
First citationHolla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197–205.  CAS Google Scholar
First citationKimura, H., Katoh, T., Kajimoto, T., Node, M., Hisaki, M., Sugimoto, Y., Majima, T., Uehara, Y. & Yamori, T. (2006). Anticancer Res. 26, 91–97.  Web of Science PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Fabbiani, F. P. & Spackman, M. A. (2007). Cryst. Growth Des. 7, 755–769.  CrossRef CAS Google Scholar
First citationNammalwar, B., Bunce, R. A., Berlin, K. D., Bourne, C. R., Bourne, P. C., Barrow, E. W. & Barrow, W. W. (2012). Eur. J. Med. Chem. 54, 387–396.  CrossRef CAS Google Scholar
First citationNelson, R. G. & Rosowsky, A. (2001). Antimicrob. Agents Chemother. 45, 3293–3303.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V. & Velmurugan, D. (2014). Acta Cryst. E70, o850.  CSD CrossRef IUCr Journals Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017a). Acta Cryst. E73, 306–309.  CrossRef IUCr Journals Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017b). Acta Cryst. E73, 467–471.  CrossRef IUCr Journals Google Scholar
First citationSubasri, S., Timiri, A. K., Barji, N. S., Jayaprakash, V., Vijayan, V. & Velmurugan, D. (2016). Acta Cryst. E72, 1171–1175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, W., Huang, A., Zhang, Y., Lin, Q., Guo, W., You, Z., Yi, Z., Liu, M. & Chen, Y. (2015). Eur. J. Med. Chem. 96, 269–280.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds