research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4′-(2-chloro­phen­yl)-1′-methyl-3′′-phenyl-7′′,8′′-di­hydro-5′′H-di­spiro­[indoline-3,2′-pyrrolidine-3′,6′′-iso­quinoline]-2,5′′-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 March 2018; accepted 9 April 2018; online 12 April 2018)

In the title di­spiro compound, C32H26ClN3O2, the cyclo­hexa­none ring of the iso­quinoline unit has a distorted envelope conformation, with the methyl­ene C atom adjacent to the spiro C atom as the flap. The central 1-methyl­pyrrolidine ring has an envelope conformation with the N atom as the flap. The mean planes of the indolin-2-one ring system, the chloro­benzene ring and the iso­quinoline ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine ring by 87.95 (11), 71.01 (12) and 88.81 (10)°, respectively. There are two short C—H⋯O intra­molecular contacts present. In the crystal, mol­ecules are linked via C—H⋯ O hydrogen bonds, forming chains along the a-axis direction. The NH H atom is involved in a weak N—H⋯O hydrogen bond with the same carbonyl O atom. There are no further significant inter­molecular contacts present. The largest contribution to the overall Hirshfeld surface of 52.3% is due to H—H contacts.

1. Chemical context

Spiro scaffolds are being used more and more in drug discovery because of their built-in three-dimensionality and structural variations, resulting in new synthetic routes to introduce spiro building blocks into more pharmaceutically active mol­ecules (Kobayashi et al., 1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.]; James et al., 1991[James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.]). The spiro-pyrrolidine ring system is a structural motif present in many biologically important and pharmacologically relevant alkaloids. Spiro-pyrrolidine-indolin-2-one ring systems are also found in a number of alkaloids of biological importance (Hilton et al., 2000[Hilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). Some derivatives are used as anti­microbial and anti­tumour agents (Sundar et al., 2011[Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.]), or possess analgesic (Crooks & Sommerville, 1982[crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291-294.]) and anti-influenza virus (Stylianakis et al., 2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]) activities. In view of this importance, the primary goal for the X-ray analyses of the title compound is to obtain detailed information on the structural conformation that may be useful in understanding the chemical reactivity of such compounds.

2. Structural commentary

The mol­ecular structure of the title mol­ecule is shown in Fig. 1[link]. There are two short C—H⋯O intra­molecular contacts present (Table 1[link]). In the iso­quinoline ring system (N3/C3/C31–C38) the cyclo­hexa­none ring (C3/C31–C38) adopts a distorted envelope conformation [puckering parameters: Q = 0.500 (2) Å, θ = 63.7 (2)°, φ = 308.9 (3)°], with atom C38 as the flap. The pyridine ring (N3/C32–C36) has a shallow twist-boat conformation [puckering parameters: Q = 0.094 (2) Å, θ = 92.3 (13)°, φ = 84.5 (13)°]. Their mean planes are inclined to each other by 14.06 (10)°, and the phenyl ring (C51–C56) is inclined to the pyridine ring mean plane by 22.35 (12)°.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O2 0.93 2.57 3.227 (3) 128
C38—H38A⋯O1 0.97 2.46 3.135 (3) 127
C37—H37A⋯O2i 0.97 2.38 3.159 (3) 137
N2—H2⋯O2i 0.88 (3) 2.50 (2) 2.911 (3) 109.0 (19)
Symmetry code: (i) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 30% probability displacement ellipsoids and atom labelling. The intra­molecular C—H⋯O contacts (see Table 1[link]) are shown as dashed lines.

In the indolin-2-one ring system (N2/C2/C21–C27), the benzene (C21–C26) and pyrrolidine (N2/C2/C21/C26/C27) rings make a dihedral angle of 2.45 (12)°, while the keto atom O1 deviates from the attached pyrrolidine ring by 0.043 (1) Å. The 1-methyl­pyrrole ring (N1/C2–C5) has an envelope conformation with atom N1 as the flap [puckering parameters: Q = 0.094 (2) Å, θ = 92.3 (13)°, φ = 84.5 (13)°]. The mean planes of the indolin-2-one ring system, the chloro­benzene (C41–C46) ring and the iso­quinoline (N3/C3/C31–C38) ring system are inclined to the mean plane of the central 1-methyl­pyrrolidine (N1/C2–C5) ring by 87.95 (11), 71.01 (12) and 88.81 (10)°, respectively. The sum of the bond angles around atoms N1 and N2 are 333.6 and 358.6°, respectively, indicating a pyramidal geometry and sp3 hybridization.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and a weak N—H⋯O hydrogen bond, forming chains propagating along the a-axis direction (Fig. 2[link] and Table 1[link]). There are no further significant inter­molecular inter­actions present.

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, illustrating the formation of the hydrogen-bonded (dashed lines; Table 1[link]) chains running along the a-axis direction. H atoms not involved in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central di­spiro fragment, 1′-methyl­dispiro­[cyclo­hexane-1,3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione (see Fig. 3[link]), gave eight hits of which coordinates were available for six structures. Two compounds closely resemble the title compound, viz. 4′-(4-chloro­phen­yl)-1′-methyl-3,4-di­hydro-1H-di­spiro­[acridine-2,3′- pyrrolidine-2′,3′′-indole]-1,2′′(1′′H)-dione methanol solvate (CSD refcode NAQCAL: Maheswari et al., 2012[Maheswari, S. U., Perumal, S. & Almansour, A. I. (2012). Tetrahedron Lett. 53, 349-353.]), and 4′-(2,4-di­chloro­phen­yl)-1′,3′′-dimethyl-1′′-phenyl-7′′,8′′-di­hydro­dispiro­[indole-3,2′-pyrrolidine-3′,6′′-pyrazolo­[3,4-b]quinoline]-2,5′′(1H,1′′H)-dione chloro­form solvate (UQIROD; Sumesh et al., 2016[Sumesh, R. V., Muthu, M., Almansour, A. I., Kumar, R. S., Arumugam, N., Athimoolam, S., Jeya Yasmi Prabha, E. A. & Kumar, R. R. (2016). ACS Comb. Sci. 18, 262-270.]). In both compounds, the mean plane of the 1-methyl­pyrrolidine ring was found to be almost perpendicular to the mean plane of the indoline ring system and the mean plane of the cyclo­hexa­none ring, similar to the situation in the title compound, see Section 2 Structural commentary.

[Figure 3]
Figure 3
Structural fragment for the CSD search.

5. Hirshfeld Analysis

The program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.]) was used to generate the Hirshfeld surfaces mapped over dnorm, and the electrostatic potential for the title compound. The contact distances, di and de, from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of dnorm. Two-dimensional fingerprint plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]) provide an indication of the inter­molecular contacts in the crystal.

The hydrogen-bonding network generated in the crystal can be visualized using Hirshfeld surface analysis. The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 4[link]), with labels H2 and H37A, on the surface represent donors for potential hydrogen bonds (see Table 1[link]); the corresponding acceptor on the surface appears as a bright-red spot at atom O2.

[Figure 4]
Figure 4
dnorm mapped on the Hirshfeld surface for visualizing the contacts of the title compound. Dotted lines indicate hydrogen bonds.

The overall two-dimensional fingerprint plot is illustrated in Fig. 5[link]a, and those delineated into C⋯H/H⋯C, Cl⋯H/H⋯Cl, H⋯H, N⋯H/H⋯·N and O⋯H/H⋯O in Fig. 5[link]bf, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 52.3%, is due to H⋯H contacts (Fig. 5[link]d; widely scattered points with a high concentration in the middle region, shown in green). The relative contributions of the other different inter­molecular inter­actions to the Hirshfeld surface in descending order are: C⋯H/H⋯C (23.3%), O⋯H/H⋯O (8.5%), Cl⋯H/H⋯Cl (8.4%), N⋯H/H⋯N (4.1%) and there is only a very small contribution from other contacts, i.e. 3.1%, in the structure. This illustrates that the N—H⋯O and C—H⋯O inter­actions contribute significantly to the crystal packing of the title compound.

[Figure 5]
Figure 5
Fingerprint plot of the title compound, (a) all, (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N contacts. The outline of the full fingerprint plots is shown in grey. di is the closet inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

6. Synthesis and crystallization

An equimolar mixture of 2-phenyl-5,6,7,8-tetra­hydro-5-quinolinone and 2-chloro­benzaldehyde was dissolved in 10 ml of ethanol followed by the addition of 0.5 equiv. of potassium hydroxide. The mixture was stirred for 1 h at ambient temperature and the precipitate formed was filtered and dried to obtain pure (E)-6-(2-chloro­benzyl­idene)-2-phenyl-7,8-di­hydro­quinolin-5(6H)-one (L) in 94% yield (m.p. 323–324 K). A mixture of isatin (1.1 mmol) and sarcosine (1.1 mmol) was taken in 10 ml of aceto­nitrile in a 50 ml round-bottom flask and heated to reflux for 2 h. Then 1 mmol of L was added to the above reaction mixture and reflux was continued for a further 14 h. After completion of the reaction, as evident from TLC, the solvent was removed under reduced pressure and the residue washed with ice-cold water (50 ml). The crude product was purified by column chromatography using a 90:10 (v/v) petroleum ether–ethyl acetate mixture to obtain the pure product (yield 82%, m.p. 356 K). Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: C—H = 0.93–0.98 Å with Uiso = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C32H26ClN3O2
Mr 520.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.7722 (4), 11.5017 (8), 16.6305 (11)
α, β, γ (°) 80.224 (3), 84.618 (3), 81.077 (3)
V3) 1258.09 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.23 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 25368, 4659, 3577
Rint 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.05
No. of reflections 4659
No. of parameters 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

4'-(2-Chlorophenyl)-1'-methyl-3''-phenyl-7'',8''-dihydro-5''H-dispiro[indoline-3,2'-pyrrolidine-3',6''-isoquinoline]-2,5''-dione top
Crystal data top
C32H26ClN3O2Z = 2
Mr = 520.01F(000) = 544
Triclinic, P1Dx = 1.373 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7722 (4) ÅCell parameters from 4659 reflections
b = 11.5017 (8) Åθ = 2–26°
c = 16.6305 (11) ŵ = 0.19 mm1
α = 80.224 (3)°T = 293 K
β = 84.618 (3)°Block, colourless
γ = 81.077 (3)°0.23 × 0.21 × 0.19 mm
V = 1258.09 (14) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
4659 independent reflections
Radiation source: fine-focus sealed tube3577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1313
Tmin = 0.967, Tmax = 0.974l = 2020
25368 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.8008P]
where P = (Fo2 + 2Fc2)/3
4659 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2424 (3)0.02521 (19)0.28318 (12)0.0341 (5)
C30.2874 (3)0.15629 (19)0.28084 (12)0.0308 (4)
C40.4045 (3)0.1455 (2)0.36013 (12)0.0346 (5)
H40.54130.15970.34110.041*
C50.4193 (4)0.0154 (2)0.39905 (14)0.0439 (6)
H5A0.54570.01150.42390.053*
H5B0.31020.00260.44020.053*
C210.2282 (3)0.01793 (19)0.20329 (13)0.0354 (5)
C220.3670 (4)0.0337 (2)0.13896 (15)0.0456 (6)
H220.49600.01600.14010.055*
C230.3124 (4)0.0761 (2)0.07238 (16)0.0545 (7)
H230.40520.08610.02830.065*
C240.1226 (4)0.1037 (2)0.07072 (16)0.0544 (7)
H240.08820.13170.02540.065*
C250.0169 (4)0.0903 (2)0.13520 (16)0.0487 (6)
H250.14520.10930.13430.058*
C260.0384 (3)0.04795 (19)0.20120 (13)0.0364 (5)
C270.0290 (3)0.01083 (19)0.32584 (13)0.0366 (5)
C310.4322 (3)0.18485 (19)0.20612 (12)0.0321 (5)
C60.3840 (4)0.1718 (2)0.35516 (18)0.0606 (7)
H03A0.37570.20750.30770.091*
H03B0.26420.17830.39040.091*
H03C0.49790.21200.38400.091*
C320.3517 (3)0.25452 (19)0.13036 (12)0.0317 (4)
C330.4809 (3)0.2861 (2)0.06304 (13)0.0402 (5)
H330.61850.27560.06790.048*
C340.4035 (3)0.3327 (2)0.01031 (13)0.0438 (6)
H340.48700.35810.05540.053*
C350.1978 (3)0.34183 (19)0.01695 (12)0.0340 (5)
C360.1461 (3)0.28141 (17)0.12155 (12)0.0292 (4)
C370.0024 (3)0.26574 (19)0.19474 (12)0.0322 (5)
H37A0.06040.19550.19450.039*
H37B0.10200.33410.19160.039*
C380.1032 (3)0.25252 (19)0.27456 (12)0.0316 (4)
H38A0.00690.23300.31990.038*
H38B0.14340.32830.27940.038*
C410.3264 (3)0.2350 (2)0.41643 (12)0.0355 (5)
C420.3936 (3)0.3452 (2)0.40547 (14)0.0418 (5)
C430.3308 (4)0.4279 (2)0.45654 (16)0.0517 (6)
H430.37770.50120.44650.062*
C440.1979 (4)0.4016 (3)0.52262 (16)0.0548 (7)
H440.15720.45600.55850.066*
C450.1265 (4)0.2950 (3)0.53485 (15)0.0556 (7)
H450.03530.27730.57900.067*
C460.1880 (3)0.2129 (2)0.48247 (14)0.0444 (6)
H460.13560.14130.49160.053*
C510.1096 (3)0.37258 (19)0.09725 (13)0.0364 (5)
C520.2260 (4)0.3562 (2)0.16886 (14)0.0507 (6)
H520.36280.33030.16680.061*
C530.1402 (5)0.3779 (3)0.24306 (15)0.0594 (7)
H530.21920.36640.29070.071*
C540.0620 (5)0.4166 (3)0.24678 (15)0.0588 (7)
H540.12000.43050.29670.071*
C550.1772 (4)0.4346 (2)0.17684 (15)0.0515 (6)
H550.31350.46190.17950.062*
C560.0939 (3)0.4129 (2)0.10239 (14)0.0413 (5)
H560.17430.42530.05530.050*
N10.4056 (3)0.04573 (17)0.32992 (11)0.0408 (4)
N20.0728 (3)0.03406 (17)0.27448 (12)0.0399 (4)
N30.0704 (2)0.32058 (15)0.04888 (10)0.0322 (4)
O10.0328 (2)0.03246 (16)0.39312 (10)0.0503 (4)
O20.6092 (2)0.14584 (15)0.20669 (10)0.0455 (4)
Cl10.56220 (11)0.38517 (7)0.32331 (5)0.0654 (2)
H20.202 (4)0.037 (2)0.2839 (16)0.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0293 (10)0.0390 (12)0.0336 (11)0.0051 (9)0.0064 (8)0.0024 (9)
C30.0238 (9)0.0399 (11)0.0288 (10)0.0040 (8)0.0060 (8)0.0039 (8)
C40.0265 (10)0.0461 (12)0.0321 (11)0.0048 (9)0.0062 (8)0.0068 (9)
C50.0437 (12)0.0480 (14)0.0381 (12)0.0033 (10)0.0142 (10)0.0041 (10)
C210.0349 (11)0.0349 (11)0.0365 (11)0.0025 (9)0.0064 (9)0.0058 (9)
C220.0405 (12)0.0499 (14)0.0487 (14)0.0068 (10)0.0001 (10)0.0158 (11)
C230.0680 (17)0.0517 (15)0.0463 (14)0.0080 (13)0.0043 (12)0.0201 (12)
C240.0723 (18)0.0476 (15)0.0484 (15)0.0105 (13)0.0138 (13)0.0154 (12)
C250.0502 (14)0.0431 (13)0.0579 (15)0.0120 (11)0.0174 (12)0.0097 (11)
C260.0371 (11)0.0313 (11)0.0407 (12)0.0042 (9)0.0087 (9)0.0029 (9)
C270.0366 (11)0.0351 (11)0.0351 (12)0.0064 (9)0.0044 (9)0.0050 (9)
C310.0233 (10)0.0418 (12)0.0334 (11)0.0073 (8)0.0033 (8)0.0094 (9)
C60.0669 (17)0.0406 (14)0.0716 (18)0.0026 (12)0.0241 (14)0.0002 (13)
C320.0255 (10)0.0400 (12)0.0311 (11)0.0075 (8)0.0002 (8)0.0085 (9)
C330.0277 (10)0.0571 (14)0.0371 (12)0.0108 (10)0.0009 (9)0.0083 (10)
C340.0382 (12)0.0615 (15)0.0319 (12)0.0167 (11)0.0049 (9)0.0030 (10)
C350.0378 (11)0.0358 (11)0.0299 (11)0.0081 (9)0.0009 (9)0.0070 (9)
C360.0273 (9)0.0314 (10)0.0295 (10)0.0062 (8)0.0032 (8)0.0044 (8)
C370.0225 (9)0.0412 (12)0.0313 (11)0.0030 (8)0.0028 (8)0.0022 (9)
C380.0259 (10)0.0391 (11)0.0289 (10)0.0036 (8)0.0008 (8)0.0042 (8)
C410.0297 (10)0.0457 (13)0.0319 (11)0.0033 (9)0.0105 (8)0.0056 (9)
C420.0379 (12)0.0531 (14)0.0371 (12)0.0082 (10)0.0098 (9)0.0089 (10)
C430.0530 (14)0.0519 (15)0.0537 (15)0.0054 (12)0.0185 (12)0.0122 (12)
C440.0598 (16)0.0609 (17)0.0444 (14)0.0075 (13)0.0139 (12)0.0198 (12)
C450.0507 (15)0.0758 (19)0.0382 (13)0.0021 (13)0.0010 (11)0.0114 (12)
C460.0414 (12)0.0531 (14)0.0386 (12)0.0078 (11)0.0024 (10)0.0060 (11)
C510.0463 (12)0.0335 (11)0.0308 (11)0.0118 (9)0.0039 (9)0.0030 (9)
C520.0576 (15)0.0596 (16)0.0351 (13)0.0106 (12)0.0014 (11)0.0071 (11)
C530.080 (2)0.0679 (18)0.0300 (13)0.0144 (15)0.0011 (12)0.0050 (12)
C540.080 (2)0.0622 (17)0.0358 (14)0.0165 (15)0.0193 (13)0.0025 (12)
C550.0562 (15)0.0499 (15)0.0478 (15)0.0106 (12)0.0181 (12)0.0047 (11)
C560.0492 (13)0.0392 (12)0.0362 (12)0.0093 (10)0.0062 (10)0.0035 (9)
N10.0401 (10)0.0395 (10)0.0421 (11)0.0021 (8)0.0145 (8)0.0053 (8)
N20.0318 (10)0.0430 (11)0.0457 (11)0.0109 (8)0.0048 (8)0.0027 (8)
N30.0324 (9)0.0357 (9)0.0295 (9)0.0060 (7)0.0039 (7)0.0060 (7)
O10.0482 (9)0.0646 (11)0.0376 (9)0.0161 (8)0.0046 (7)0.0035 (8)
O20.0219 (7)0.0657 (11)0.0470 (9)0.0041 (7)0.0028 (6)0.0048 (8)
Cl10.0626 (4)0.0716 (5)0.0654 (5)0.0297 (4)0.0096 (3)0.0096 (3)
Geometric parameters (Å, º) top
C2—N11.469 (3)C33—H330.9300
C2—C211.511 (3)C34—C351.394 (3)
C2—C271.569 (3)C34—H340.9300
C2—C31.577 (3)C35—N31.342 (3)
C3—C311.532 (3)C35—C511.479 (3)
C3—C381.532 (3)C36—N31.337 (3)
C3—C41.579 (3)C36—C371.490 (3)
C4—C411.510 (3)C37—C381.523 (3)
C4—C51.518 (3)C37—H37A0.9700
C4—H40.9800C37—H37B0.9700
C5—N11.463 (3)C38—H38A0.9700
C5—H5A0.9700C38—H38B0.9700
C5—H5B0.9700C41—C421.389 (3)
C21—C221.373 (3)C41—C461.391 (3)
C21—C261.387 (3)C42—C431.375 (4)
C22—C231.385 (3)C42—Cl11.743 (2)
C22—H220.9300C43—C441.377 (4)
C23—C241.375 (4)C43—H430.9300
C23—H230.9300C44—C451.364 (4)
C24—C251.374 (4)C44—H440.9300
C24—H240.9300C45—C461.384 (4)
C25—C261.378 (3)C45—H450.9300
C25—H250.9300C46—H460.9300
C26—N21.391 (3)C51—C521.389 (3)
C27—O11.210 (3)C51—C561.390 (3)
C27—N21.358 (3)C52—C531.381 (3)
C31—O21.213 (2)C52—H520.9300
C31—C321.475 (3)C53—C541.376 (4)
C6—N11.465 (3)C53—H530.9300
C6—H03A0.9600C54—C551.366 (4)
C6—H03B0.9600C54—H540.9300
C6—H03C0.9600C55—C561.377 (3)
C32—C331.389 (3)C55—H550.9300
C32—C361.394 (3)C56—H560.9300
C33—C341.364 (3)N2—H20.88 (3)
N1—C2—C21112.06 (17)C35—C34—H34120.4
N1—C2—C27113.20 (17)N3—C35—C34121.76 (19)
C21—C2—C27101.09 (16)N3—C35—C51116.63 (18)
N1—C2—C3102.01 (16)C34—C35—C51121.59 (19)
C21—C2—C3118.75 (17)N3—C36—C32122.40 (18)
C27—C2—C3110.19 (16)N3—C36—C37117.68 (17)
C31—C3—C38108.09 (16)C32—C36—C37119.91 (17)
C31—C3—C2107.53 (16)C36—C37—C38112.47 (16)
C38—C3—C2115.01 (16)C36—C37—H37A109.1
C31—C3—C4108.09 (15)C38—C37—H37A109.1
C38—C3—C4114.82 (16)C36—C37—H37B109.1
C2—C3—C4102.89 (15)C38—C37—H37B109.1
C41—C4—C5115.76 (18)H37A—C37—H37B107.8
C41—C4—C3115.84 (16)C37—C38—C3113.25 (17)
C5—C4—C3105.59 (17)C37—C38—H38A108.9
C41—C4—H4106.3C3—C38—H38A108.9
C5—C4—H4106.3C37—C38—H38B108.9
C3—C4—H4106.3C3—C38—H38B108.9
N1—C5—C4103.22 (17)H38A—C38—H38B107.7
N1—C5—H5A111.1C42—C41—C46115.9 (2)
C4—C5—H5A111.1C42—C41—C4120.99 (19)
N1—C5—H5B111.1C46—C41—C4123.1 (2)
C4—C5—H5B111.1C43—C42—C41122.9 (2)
H5A—C5—H5B109.1C43—C42—Cl1116.8 (2)
C22—C21—C26119.4 (2)C41—C42—Cl1120.30 (18)
C22—C21—C2131.5 (2)C42—C43—C44119.6 (3)
C26—C21—C2109.14 (18)C42—C43—H43120.2
C21—C22—C23119.2 (2)C44—C43—H43120.2
C21—C22—H22120.4C45—C44—C43119.2 (2)
C23—C22—H22120.4C45—C44—H44120.4
C24—C23—C22120.7 (2)C43—C44—H44120.4
C24—C23—H23119.6C44—C45—C46120.9 (2)
C22—C23—H23119.6C44—C45—H45119.6
C25—C24—C23120.8 (2)C46—C45—H45119.6
C25—C24—H24119.6C45—C46—C41121.4 (2)
C23—C24—H24119.6C45—C46—H46119.3
C24—C25—C26118.2 (2)C41—C46—H46119.3
C24—C25—H25120.9C52—C51—C56118.4 (2)
C26—C25—H25120.9C52—C51—C35120.8 (2)
C25—C26—C21121.8 (2)C56—C51—C35120.7 (2)
C25—C26—N2128.1 (2)C53—C52—C51120.6 (3)
C21—C26—N2110.08 (19)C53—C52—H52119.7
O1—C27—N2125.8 (2)C51—C52—H52119.7
O1—C27—C2126.6 (2)C54—C53—C52120.2 (2)
N2—C27—C2107.54 (18)C54—C53—H53119.9
O2—C31—C32119.56 (18)C52—C53—H53119.9
O2—C31—C3121.31 (18)C55—C54—C53119.7 (2)
C32—C31—C3119.01 (16)C55—C54—H54120.2
N1—C6—H03A109.5C53—C54—H54120.2
N1—C6—H03B109.5C54—C55—C56120.8 (2)
H03A—C6—H03B109.5C54—C55—H55119.6
N1—C6—H03C109.5C56—C55—H55119.6
H03A—C6—H03C109.5C55—C56—C51120.4 (2)
H03B—C6—H03C109.5C55—C56—H56119.8
C33—C32—C36118.10 (19)C51—C56—H56119.8
C33—C32—C31120.06 (18)C5—N1—C6112.86 (19)
C36—C32—C31121.61 (18)C5—N1—C2105.95 (17)
C34—C33—C32119.1 (2)C6—N1—C2114.76 (18)
C34—C33—H33120.4C27—N2—C26112.06 (18)
C32—C33—H33120.4C27—N2—H2120.9 (18)
C33—C34—C35119.3 (2)C26—N2—H2125.6 (18)
C33—C34—H34120.4C36—N3—C35118.38 (17)
N1—C2—C3—C3187.78 (18)C33—C34—C35—C51169.7 (2)
C21—C2—C3—C3135.9 (2)C33—C32—C36—N39.5 (3)
C27—C2—C3—C31151.73 (16)C31—C32—C36—N3164.92 (19)
N1—C2—C3—C38151.78 (16)C33—C32—C36—C37170.98 (19)
C21—C2—C3—C3884.5 (2)C31—C32—C36—C3714.6 (3)
C27—C2—C3—C3831.3 (2)N3—C36—C37—C38165.11 (18)
N1—C2—C3—C426.19 (19)C32—C36—C37—C3815.4 (3)
C21—C2—C3—C4149.88 (17)C36—C37—C38—C351.8 (2)
C27—C2—C3—C494.30 (18)C31—C3—C38—C3755.5 (2)
C31—C3—C4—C41117.6 (2)C2—C3—C38—C3764.7 (2)
C38—C3—C4—C413.1 (3)C4—C3—C38—C37176.20 (16)
C2—C3—C4—C41128.80 (18)C5—C4—C41—C42147.3 (2)
C31—C3—C4—C5112.83 (19)C3—C4—C41—C4288.3 (2)
C38—C3—C4—C5126.44 (19)C5—C4—C41—C4631.5 (3)
C2—C3—C4—C50.7 (2)C3—C4—C41—C4693.0 (2)
C41—C4—C5—N1154.80 (17)C46—C41—C42—C430.7 (3)
C3—C4—C5—N125.2 (2)C4—C41—C42—C43178.2 (2)
N1—C2—C21—C2255.7 (3)C46—C41—C42—Cl1178.29 (16)
C27—C2—C21—C22176.6 (2)C4—C41—C42—Cl12.8 (3)
C3—C2—C21—C2262.8 (3)C41—C42—C43—C441.1 (4)
N1—C2—C21—C26122.16 (19)Cl1—C42—C43—C44179.90 (18)
C27—C2—C21—C261.3 (2)C42—C43—C44—C451.9 (4)
C3—C2—C21—C26119.2 (2)C43—C44—C45—C460.9 (4)
C26—C21—C22—C231.7 (3)C44—C45—C46—C411.0 (4)
C2—C21—C22—C23179.5 (2)C42—C41—C46—C451.7 (3)
C21—C22—C23—C240.7 (4)C4—C41—C46—C45177.1 (2)
C22—C23—C24—C250.3 (4)N3—C35—C51—C52157.6 (2)
C23—C24—C25—C260.4 (4)C34—C35—C51—C5221.0 (3)
C24—C25—C26—C210.7 (3)N3—C35—C51—C5619.1 (3)
C24—C25—C26—N2175.9 (2)C34—C35—C51—C56162.3 (2)
C22—C21—C26—C251.8 (3)C56—C51—C52—C530.9 (4)
C2—C21—C26—C25180.0 (2)C35—C51—C52—C53175.9 (2)
C22—C21—C26—N2175.4 (2)C51—C52—C53—C540.2 (4)
C2—C21—C26—N22.8 (2)C52—C53—C54—C550.7 (4)
N1—C2—C27—O158.7 (3)C53—C54—C55—C560.9 (4)
C21—C2—C27—O1178.8 (2)C54—C55—C56—C510.2 (4)
C3—C2—C27—O154.8 (3)C52—C51—C56—C550.7 (3)
N1—C2—C27—N2119.41 (19)C35—C51—C56—C55176.1 (2)
C21—C2—C27—N20.6 (2)C4—C5—N1—C6170.69 (19)
C3—C2—C27—N2127.08 (18)C4—C5—N1—C244.3 (2)
C38—C3—C31—O2158.3 (2)C21—C2—N1—C5172.38 (18)
C2—C3—C31—O277.0 (2)C27—C2—N1—C574.1 (2)
C4—C3—C31—O233.5 (3)C3—C2—N1—C544.3 (2)
C38—C3—C31—C3225.8 (2)C21—C2—N1—C662.4 (3)
C2—C3—C31—C3298.9 (2)C27—C2—N1—C651.1 (3)
C4—C3—C31—C32150.66 (18)C3—C2—N1—C6169.51 (19)
O2—C31—C32—C336.9 (3)O1—C27—N2—C26179.5 (2)
C3—C31—C32—C33177.10 (19)C2—C27—N2—C262.4 (2)
O2—C31—C32—C36167.4 (2)C25—C26—N2—C27179.7 (2)
C3—C31—C32—C368.6 (3)C21—C26—N2—C273.4 (3)
C36—C32—C33—C345.4 (3)C32—C36—N3—C354.4 (3)
C31—C32—C33—C34169.2 (2)C37—C36—N3—C35176.14 (18)
C32—C33—C34—C353.3 (4)C34—C35—N3—C364.9 (3)
C33—C34—C35—N38.8 (4)C51—C35—N3—C36173.66 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O20.932.573.227 (3)128
C38—H38A···O10.972.463.135 (3)127
C37—H37A···O2i0.972.383.159 (3)137
N2—H2···O2i0.88 (3)2.50 (2)2.911 (3)109.0 (19)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

JS and RV thank the management of Madurai College for their encouragement and support.

Funding information

JS thanks the UGC for funds under project No. F MRP-7018/16(SERO/UGC).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationcrooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291–294.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJames, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationMaheswari, S. U., Perumal, S. & Almansour, A. I. (2012). Tetrahedron Lett. 53, 349–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSumesh, R. V., Muthu, M., Almansour, A. I., Kumar, R. S., Arumugam, N., Athimoolam, S., Jeya Yasmi Prabha, E. A. & Kumar, R. R. (2016). ACS Comb. Sci. 18, 262–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationSundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds