research communications
E,1′E)-[1,2-phenylenebis(azanylylidene)]bis(methanylylidene)}bis(5-benzyloxy)phenol
Hirshfeld surface analysis and antioxidant capacity of 2,2′-{(1aUnit of Research CHEMS, University of Constantine1, Algeria, bLaboratory of Materials Chemistry, University of Constantine1, Algeria, and cBiotechnology Research Center, Constantine, Algeria
*Correspondence e-mail: nadirgh82@hotmail.com
The whole molecule of the title Schiff base compound, C34H28N2O4, is generated by mirror symmetry, with the mirror bisecting the central benzene ring. It was synthesized via the condensation reaction of 1,2-diaminebenzene with 4-benzyloxy-2-hydroxybenzaldehyde. The molecule is V-shaped and there are two intramolecular O—H⋯N hydrogen bonds present forming S(6) ring motifs. The configuration about the C=N imine bonds is E. The central benzene ring makes dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring and the outer benzyloxy ring, respectively. The latter two rings are inclined to each other by 84.4 (2)°. In the crystal, molecules are linked by C—H⋯π interactions, forming layers lying parallel to the ab plane. The Hirshfeld surface analysis and the two-dimensional fingerprint plots confirm the predominance of these interactions in the The antioxidant capacity of the compound was determined by the cupric reducing antioxidant capacity (CUPRAC) process.
Keywords: crystal structure; Schiff base; antioxidant capacity; CUPRAC; hydrogen bonding; C—H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 1837095
1. Chemical context
Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu et al., 2015, 2016), anti-inflammatory (Alam et al., 2012), antianxiety, antidepressant (Jubie et al., 2011), anti-tumour, antibacterial, and fungicidal properties (Refat et al., 2008; Kannan & Ramesh, 2006). Bis-bidentate Schiff base ligands have been studied extensively and used as building blocks in metallo-supramolecular chemistry (Birkedal & Pattison, 2006; Shahverdizadeh & Tiekink, 2011; Chu & Huang, 2007; Yoshida & Ichikawa, 1997; Kruger et al., 2001). The common structural feature of these compounds is the presence of an azomethine group, linked by a η methylene bridge, which can act as a hydrogen-bond acceptor. In view of this interest we have synthesized the title compound, (I), and report herein on its The 1H NMR NMR spectrum reveals the presence of an imino group (N=CH) in the range δ = 8.5–8.7 p.p.m. The antioxidant capacity of the compound was determined by the cupric reducing antioxidant capacity (CUPRAC) process.
2. Structural commentary
The molecular structure of compound (I) is illustrated in Fig. 1. The consists of half a molecule, with the whole molecule being generated by mirror symmetry. The mirror bisects the central benzene ring, viz. bonds C1—C1i and C3—C3i [symmetry code: (i) −x, y, z]. In the molecule there are two intramolecular O—H⋯N hydrogen bonds present (Table 1), which form S(6) ring motifs as shown in Fig. 1. The configuration of the C4=N1 imine bonds is E and the C4=N1 bond length is 1.278 (6) Å. The C3—N1=C4 bond angles are less than 120° [118.9 (4)°], and the imine group has a C3—N1—C4—C5 torsion angle of −176.8 (4)°. The molecule is V-shaped and the two arms are non-planar; the central benzene ring forms dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring (C5-C10) and the outer benzyloxy ring (C12–C17), respectively. The latter two rings are almost normal to each other, with a dihedral angle of 84.4 (2)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of (I), molecules are linked by C—H⋯π interactions (Table 1), forming layers parallel to the (001) plane, as illustrated in Fig. 2.
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface of compound (I) mapped over dnorm is given in Fig. 3, and the fingerprint plots are given in Fig. 4. They reveal that the principal intermolecular interactions are H⋯H at 45.7% (Fig. 4b) and H⋯C/C⋯H at 34.6% (Fig. 4c), followed by the H⋯O/O⋯H interactions at 13.6% (Fig. 4d).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, last update February 2018; Groom et al., 2016) for similar compounds yielded four hits. These compounds (see Fig. 5) include 5,5′-dihydroxy-2,2′-[o-phenylenebis(nitrilomethylene)]diphenol ethanol solvate (II) (CSD refcode HUVXUT; Soroceanu et al., 2013), 5,5′-dimethoxy-2,2′-[4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]diphenol (III) (KUSJIS; Kargar et al., 2010), 1,2-bis{[(2-hydroxy-4-methoxyphenyl)(phenyl)methylene]amino}benzene (IV) (SOXCIS; Lippe et al., 2009) and 5,5′-dimethoxy-2,2′-1,2-phenylenebis(nitrilomethylidyne)]diphenol (V) (XIFREK; Eltayeb et al., 2007). In all four compounds there are two intramolecular O—H⋯N hydrogen bonds present forming S(6) ring motifs.
In (II) the phenol rings are inclined to the central benzene ring by 53.9 (3) and 4.0 (2)° and to each other by 49.9 (2)°. In (III) the corresponding dihedral angles are 48.12 (8), 21.44 (8) and 47.70 (8)°, while in (V) the corresponding dihedral angles are 58.29 (12), 2.20 (12) and 57.60 (12)°. In compound (IV), that possesses twofold rotational symmetry with the twofold axis bisecting the central benzene ring, the phenol rings are inclined to the central benzene ring by 82.30 (5)° and to each other by 63.76 (5)°. In the title compound, which possesses mirror symmetry, the corresponding dihedral angles are 41.9 (2) and 68.9 (2)°.
A search of the CSD for metal complexes of compounds similar to compound (I) gave over 30 hits. The ligands always coordinate in a tetradentate manner. For example, there were 13 hits for transition metal complexes of compound (II). The majority involve square-planar coordinated metal atoms, such as in complexes (5,5′-dihydroxy-2,2′-[o-phenylenebis(nitrilomethylidyne)]diphenolato)nickel(II) dihydrate (POFFOG; Fun et al., 2008) and (4,4′-{1,2-phenylenebis[(nitrilo-κN)methylylidene]}dibenzene-1,3-diolato-κO3)copper(II) methanol solvate (DUQBEX; Niu et al., 2010). For compound (V), five hits were found; they include three sixfold-coordinated tin complexes (DOSCOF, DOSDAS, DOSFOI; Muñoz-Flores et al., 2014) and two square-pyramidal manganese complexes (ODESEY, Ghaemi et al., 2016; XIYQOM, Eltayeb et al., 2008).
5. Antioxidant activity
The antioxidant activity profile of the synthesized compound (I) was determined by utilizing the copper(II)–neocuprine [CuII-Nc] (CUPRAC) method (Apak et al., 2004). The CUPRAC method (Fig. 6) (cupric ion reducing antioxidant capacity) is based on the follow-up of the decrease in the increased absorbance of the neocuproene (Nc), copper (Cu+2)Nc2–Cu+2 complex. Indeed, in the presence of an antioxidant agent, the copper–neocuproene complex is reduced and this reaction is quantified spectrophotometrically at a wavelength of 450 nm.
According to the cupric ion reducing antioxidant capacity assay, the title compound displayed activity with variable potency in all tested concentrations, because the percentage (%) inhibition in the CUPRAC assay is good [A0.50 = 15.03 ± 1.50 for a 4 mg dosage, compared to the results for buthylated toluene (BHT) [A0.50 = 8.97 ± 3.94], used as a positive control (see Table 2). Note: In CUPRAC antioxidant activity, the values expressed are the mean ± s.u.s of three parallel measurements (p < 0.05).
|
6. Synthesis and crystallization
1,2-Diaminebenzene (0.027 g) and 4-benzyloxy-2-hydroxybenzaldehyde (0.1141 g) in ethanol (15 ml) were refluxed for 1 h, then the solvent was evaporated in vacuo. The residue was recrystallized from ethanol, yielding yellow block-like crystals of the title compound on slow evaporation of the solvent. The purity of the compound was characterized by its NMR spectrum (250 MHz, CDCl3). The azomethine proton appears in the 8.5–8.7 p.p.m. range, while the imine bond is characterized in the 13C RMN spectrum with the imine C and OH signals in the range 162.23–163.34 p.p.m. 1H NMR: δ = 6.5–7.6 (m, 12H; H-ar), δ = 13.7 (s, 1H; OH), δ = 5.1 (s, 1H; CH2–O). 13C NMR: 70.15, 120.33, 127.30, 127.64, 128.26, 128.75, 142.32, 162.23, 163.33, 163.34.
7. Refinement
Crystal data, data collection and structure . The hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinements it was positioned geometrically (O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 1837095
https://doi.org/10.1107/S2056989018005832/su5438sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018005832/su5438Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018005832/su5438Isup3.cml
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C34H28N2O4 | F(000) = 1112 |
Mr = 528.58 | Dx = 1.267 Mg m−3 |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1621 reflections |
a = 35.297 (3) Å | θ = 2.2–21.3° |
b = 9.3902 (6) Å | µ = 0.08 mm−1 |
c = 8.3603 (5) Å | T = 293 K |
V = 2771.0 (3) Å3 | Block, yellow |
Z = 4 | 0.03 × 0.02 × 0.01 mm |
Bruker APEXII CCD diffractometer | Rint = 0.042 |
Detector resolution: 18.4 pixels mm-1 | θmax = 27.5°, θmin = 3.7° |
φ and ω scans | h = −45→40 |
4493 measured reflections | k = −12→5 |
2516 independent reflections | l = −10→6 |
1691 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: mixed |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0817P)2] where P = (Fo2 + 2Fc2)/3 |
2516 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.29 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
O1 | 0.05052 (9) | 0.2350 (3) | 0.3234 (5) | 0.0693 (13) | |
O2 | 0.15676 (8) | 0.0288 (3) | 0.5919 (4) | 0.0546 (9) | |
N1 | 0.03881 (9) | 0.5084 (4) | 0.3640 (5) | 0.0487 (10) | |
C1 | 0.01955 (13) | 0.8879 (4) | 0.2654 (7) | 0.0639 (15) | |
C2 | 0.03890 (12) | 0.7645 (4) | 0.2985 (6) | 0.0567 (14) | |
C3 | 0.01982 (11) | 0.6379 (4) | 0.3322 (5) | 0.0481 (11) | |
C4 | 0.06841 (12) | 0.5103 (4) | 0.4519 (6) | 0.0495 (14) | |
C5 | 0.09057 (11) | 0.3828 (4) | 0.4833 (5) | 0.0454 (11) | |
C6 | 0.08042 (11) | 0.2506 (4) | 0.4207 (5) | 0.0475 (11) | |
C7 | 0.10168 (11) | 0.1285 (4) | 0.4566 (5) | 0.0488 (11) | |
C8 | 0.13349 (11) | 0.1401 (4) | 0.5523 (5) | 0.0463 (12) | |
C9 | 0.14420 (12) | 0.2710 (4) | 0.6146 (6) | 0.0560 (16) | |
C10 | 0.12269 (12) | 0.3889 (4) | 0.5813 (5) | 0.0560 (16) | |
C11 | 0.14781 (12) | −0.1086 (4) | 0.5260 (6) | 0.0547 (16) | |
C12 | 0.17886 (11) | −0.2104 (4) | 0.5695 (5) | 0.0449 (11) | |
C13 | 0.17544 (12) | −0.2993 (4) | 0.6998 (6) | 0.0543 (16) | |
C14 | 0.20330 (16) | −0.3988 (4) | 0.7345 (6) | 0.0677 (17) | |
C15 | 0.23502 (14) | −0.4070 (5) | 0.6404 (7) | 0.0700 (19) | |
C16 | 0.23920 (14) | −0.3165 (6) | 0.5124 (7) | 0.0697 (17) | |
C17 | 0.21118 (13) | −0.2190 (5) | 0.4765 (6) | 0.0617 (17) | |
H1 | 0.03276 | 0.97121 | 0.24301 | 0.0770* | |
H1O | 0.04038 | 0.31254 | 0.30933 | 0.1040* | |
H2 | 0.06524 | 0.76529 | 0.29851 | 0.0680* | |
H4 | 0.0777 (10) | 0.604 (4) | 0.509 (5) | 0.041 (9)* | |
H7 | 0.09442 | 0.04030 | 0.41635 | 0.0580* | |
H9 | 0.16571 | 0.27872 | 0.67824 | 0.0670* | |
H10 | 0.12968 | 0.47594 | 0.62529 | 0.0670* | |
H11A | 0.12385 | −0.14214 | 0.56862 | 0.0660* | |
H11B | 0.14557 | −0.10203 | 0.41061 | 0.0660* | |
H13 | 0.15420 | −0.29259 | 0.76516 | 0.0650* | |
H14 | 0.20047 | −0.45974 | 0.82141 | 0.0810* | |
H15 | 0.25371 | −0.47378 | 0.66311 | 0.0840* | |
H16 | 0.26095 | −0.32099 | 0.44979 | 0.0840* | |
H17 | 0.21407 | −0.15860 | 0.38915 | 0.0740* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0640 (19) | 0.0400 (16) | 0.104 (3) | 0.0056 (14) | −0.0359 (19) | −0.0063 (17) |
O2 | 0.0595 (17) | 0.0386 (14) | 0.0658 (17) | 0.0080 (12) | −0.0166 (15) | −0.0028 (14) |
N1 | 0.0416 (17) | 0.0335 (16) | 0.071 (2) | 0.0021 (14) | 0.0019 (18) | 0.0024 (15) |
C1 | 0.063 (3) | 0.0317 (19) | 0.097 (3) | −0.0042 (16) | −0.001 (3) | 0.003 (2) |
C2 | 0.047 (2) | 0.041 (2) | 0.082 (3) | −0.0048 (17) | −0.002 (2) | 0.000 (2) |
C3 | 0.049 (2) | 0.0322 (18) | 0.063 (2) | 0.0022 (16) | 0.002 (2) | −0.0028 (17) |
C4 | 0.049 (2) | 0.0345 (19) | 0.065 (3) | 0.0002 (17) | 0.003 (2) | −0.0024 (18) |
C5 | 0.042 (2) | 0.0373 (19) | 0.057 (2) | −0.0015 (16) | 0.002 (2) | −0.0033 (18) |
C6 | 0.042 (2) | 0.0364 (19) | 0.064 (2) | −0.0017 (16) | −0.008 (2) | −0.0015 (17) |
C7 | 0.051 (2) | 0.0365 (18) | 0.059 (2) | −0.0007 (16) | −0.010 (2) | −0.0041 (19) |
C8 | 0.047 (2) | 0.039 (2) | 0.053 (2) | 0.0063 (16) | −0.0047 (19) | 0.0005 (17) |
C9 | 0.058 (3) | 0.045 (2) | 0.065 (3) | −0.0010 (18) | −0.017 (2) | −0.003 (2) |
C10 | 0.060 (3) | 0.039 (2) | 0.069 (3) | −0.0035 (18) | −0.011 (2) | −0.006 (2) |
C11 | 0.059 (3) | 0.041 (2) | 0.064 (3) | 0.0043 (19) | −0.013 (2) | −0.0047 (19) |
C12 | 0.043 (2) | 0.0378 (19) | 0.054 (2) | 0.0001 (16) | −0.0069 (18) | −0.0056 (18) |
C13 | 0.054 (3) | 0.049 (2) | 0.060 (3) | 0.0042 (18) | −0.004 (2) | −0.001 (2) |
C14 | 0.082 (3) | 0.051 (3) | 0.070 (3) | 0.013 (2) | −0.021 (3) | 0.005 (2) |
C15 | 0.060 (3) | 0.055 (3) | 0.095 (4) | 0.020 (2) | −0.023 (3) | −0.028 (3) |
C16 | 0.053 (3) | 0.075 (3) | 0.081 (3) | 0.006 (2) | 0.001 (3) | −0.021 (3) |
C17 | 0.062 (3) | 0.057 (3) | 0.066 (3) | −0.005 (2) | −0.002 (2) | −0.001 (2) |
O1—C6 | 1.341 (5) | C12—C13 | 1.378 (6) |
O2—C8 | 1.370 (5) | C13—C14 | 1.387 (6) |
O2—C11 | 1.438 (5) | C14—C15 | 1.371 (8) |
N1—C3 | 1.414 (5) | C15—C16 | 1.374 (8) |
N1—C4 | 1.278 (6) | C16—C17 | 1.381 (7) |
O1—H1O | 0.8200 | C1—H1 | 0.9300 |
C1—C1i | 1.380 (6) | C2—H2 | 0.9300 |
C1—C2 | 1.373 (6) | C4—H4 | 1.05 (4) |
C2—C3 | 1.395 (5) | C7—H7 | 0.9300 |
C3—C3i | 1.399 (5) | C9—H9 | 0.9300 |
C4—C5 | 1.454 (5) | C10—H10 | 0.9300 |
C5—C10 | 1.400 (6) | C11—H11A | 0.9700 |
C5—C6 | 1.394 (5) | C11—H11B | 0.9700 |
C6—C7 | 1.403 (5) | C13—H13 | 0.9300 |
C7—C8 | 1.383 (6) | C14—H14 | 0.9300 |
C8—C9 | 1.388 (6) | C15—H15 | 0.9300 |
C9—C10 | 1.371 (6) | C16—H16 | 0.9300 |
C11—C12 | 1.499 (6) | C17—H17 | 0.9300 |
C12—C17 | 1.383 (6) | ||
C8—O2—C11 | 117.4 (3) | C12—C17—C16 | 120.5 (5) |
C3—N1—C4 | 118.9 (4) | C2—C1—H1 | 120.00 |
C6—O1—H1O | 109.00 | C1i—C1—H1 | 120.00 |
C1i—C1—C2 | 119.8 (4) | C1—C2—H2 | 119.00 |
C1—C2—C3 | 121.3 (4) | C3—C2—H2 | 119.00 |
N1—C3—C3i | 118.3 (3) | N1—C4—H4 | 122 (2) |
C2—C3—C3i | 118.9 (4) | C5—C4—H4 | 116 (2) |
N1—C3—C2 | 122.8 (4) | C6—C7—H7 | 120.00 |
N1—C4—C5 | 122.2 (4) | C8—C7—H7 | 120.00 |
C4—C5—C10 | 120.5 (4) | C8—C9—H9 | 120.00 |
C6—C5—C10 | 117.7 (3) | C10—C9—H9 | 120.00 |
C4—C5—C6 | 121.8 (4) | C5—C10—H10 | 119.00 |
O1—C6—C7 | 117.5 (3) | C9—C10—H10 | 119.00 |
C5—C6—C7 | 120.7 (4) | O2—C11—H11A | 110.00 |
O1—C6—C5 | 121.8 (3) | O2—C11—H11B | 110.00 |
C6—C7—C8 | 119.6 (4) | C12—C11—H11A | 110.00 |
O2—C8—C9 | 115.0 (4) | C12—C11—H11B | 110.00 |
C7—C8—C9 | 120.5 (4) | H11A—C11—H11B | 108.00 |
O2—C8—C7 | 124.5 (3) | C12—C13—H13 | 120.00 |
C8—C9—C10 | 119.2 (4) | C14—C13—H13 | 120.00 |
C5—C10—C9 | 122.3 (4) | C13—C14—H14 | 120.00 |
O2—C11—C12 | 108.6 (3) | C15—C14—H14 | 120.00 |
C11—C12—C13 | 120.9 (4) | C14—C15—H15 | 120.00 |
C13—C12—C17 | 118.8 (4) | C16—C15—H15 | 120.00 |
C11—C12—C17 | 120.3 (4) | C15—C16—H16 | 120.00 |
C12—C13—C14 | 120.8 (4) | C17—C16—H16 | 120.00 |
C13—C14—C15 | 119.8 (4) | C12—C17—H17 | 120.00 |
C14—C15—C16 | 120.0 (5) | C16—C17—H17 | 120.00 |
C15—C16—C17 | 120.2 (5) | ||
C11—O2—C8—C7 | 1.5 (6) | C4—C5—C10—C9 | 179.6 (4) |
C11—O2—C8—C9 | −177.8 (4) | C6—C5—C10—C9 | 0.9 (6) |
C8—O2—C11—C12 | 174.0 (3) | O1—C6—C7—C8 | 177.9 (4) |
C4—N1—C3—C2 | 41.3 (6) | C5—C6—C7—C8 | −1.4 (6) |
C4—N1—C3—C3i | −139.8 (4) | C6—C7—C8—O2 | −178.4 (4) |
C3—N1—C4—C5 | −176.8 (4) | C6—C7—C8—C9 | 0.9 (6) |
C1i—C1—C2—C3 | 0.1 (8) | O2—C8—C9—C10 | 179.9 (4) |
C2—C1—C1i—C2i | 0.0 (9) | C7—C8—C9—C10 | 0.5 (7) |
C1—C2—C3—N1 | 178.9 (5) | C8—C9—C10—C5 | −1.4 (7) |
C1—C2—C3—C3i | −0.1 (7) | O2—C11—C12—C13 | 96.8 (4) |
N1—C3—C3i—N1i | 0.0 (6) | O2—C11—C12—C17 | −84.8 (5) |
N1—C3—C3i—C2i | −179.0 (4) | C11—C12—C13—C14 | 176.4 (4) |
C2—C3—C3i—N1i | 179.0 (4) | C17—C12—C13—C14 | −2.0 (6) |
C2—C3—C3i—C2i | 0.0 (6) | C11—C12—C17—C16 | −177.4 (4) |
N1—C4—C5—C6 | −0.9 (7) | C13—C12—C17—C16 | 1.0 (7) |
N1—C4—C5—C10 | −179.5 (4) | C12—C13—C14—C15 | 1.4 (7) |
C4—C5—C6—O1 | 2.6 (6) | C13—C14—C15—C16 | 0.2 (7) |
C4—C5—C6—C7 | −178.2 (4) | C14—C15—C16—C17 | −1.2 (8) |
C10—C5—C6—O1 | −178.8 (4) | C15—C16—C17—C12 | 0.6 (8) |
C10—C5—C6—C7 | 0.5 (6) |
Symmetry code: (i) −x, y, z. |
Cg2 is the centroid of the C5–C10 phenol ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N1 | 0.82 | 1.90 | 2.622 (5) | 147 |
C2—H2···Cg2ii | 0.93 | 2.88 | 3.499 (5) | 125 |
C13—H13···Cg2iii | 0.93 | 2.60 | 3.493 (5) | 161 |
Symmetry codes: (ii) x, −y+1, z−1/2; (iii) x, −y, z+1/2. |
Percentage (%) Inhibition | ||||||||
12.5 µg | 25 µg | 50 µg | 100 µg | 200 µg | 400 µg | 800 µg | A0.50 (µg ml-1) | |
Compound (I) | 0.39±0.01 | 0.59±0.01 | 0.91±0.03 | 1.42±0.02 | 1.84±0.36 | 3.12±0.25 | 4.29±0.11 | 15.03±1.50 |
BHT | 1.41±0.03 | 2.22±0.05 | 2.42±0.02 | 2.50±0.01 | 2.56±0.05 | 2.86±0.07 | 3.38±0.13 | 8.97±3.94 |
Funding information
We are grateful to the Department of Higher Scientific Research and CHEMS Research Unit, University of Constantine1, Algeria, for funding this research project.
References
Alam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103–4108. Web of Science CrossRef CAS Google Scholar
Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970–7981. Web of Science CrossRef CAS Google Scholar
Birkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139–o141. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA. Google Scholar
Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22. Web of Science CSD CrossRef CAS Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m670–m671. CSD CrossRef IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094–o3095. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, m1181–m1182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ghaemi, A., Keyvani, B., Rayati, S., Zarei, S. & Notash, B. (2016). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 57, 1027–1030. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291. Web of Science CSD CrossRef CAS Google Scholar
Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195. Web of Science CSD CrossRef CAS Google Scholar
Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109–112. Web of Science CAS PubMed Google Scholar
Kannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103. Web of Science CrossRef CAS Google Scholar
Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kruger, P. E., Martin, N. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Dalton Trans. pp. 1966–1970. Web of Science CSD CrossRef Google Scholar
Lippe, K., Gerlach, D., Kroke, E. & Wagler, J. (2009). Organometallics, 28, 621–629. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Muñoz-Flores, B. M., Santillán, R., Farfán, N., Álvarez-Venicio, V., Jiménez-Pérez, V. M., Rodríguez, M., Morales-Saavedra, O. G., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2014). J. Organomet. Chem. 769, 64–71. Google Scholar
Niu, M., Fan, S., Liu, K., Cao, Z. & Wang, D. (2010). Acta Cryst. E66, m77. CSD CrossRef IUCr Journals Google Scholar
Refat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898–906. Web of Science CrossRef Google Scholar
Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soroceanu, A., Shova, S., Cazacu, M., Balan, I., Gorinchoy, N. & Turta, C. (2013). J. Chem. Crystallogr. 43, 310–318. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Yoshida, N. & Ichikawa, K. (1997). Chem. Commun. pp. 1091–1092. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.