research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and anti­oxidant capacity of 2,2′-{(1E,1′E)-[1,2-phenyl­enebis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­(5-benz­yl­oxy)phenol

CROSSMARK_Color_square_no_text.svg

aUnit of Research CHEMS, University of Constantine1, Algeria, bLaboratory of Materials Chemistry, University of Constantine1, Algeria, and cBiotechnology Research Center, Constantine, Algeria
*Correspondence e-mail: nadirgh82@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 April 2018; accepted 15 April 2018; online 19 April 2018)

The whole mol­ecule of the title Schiff base compound, C34H28N2O4, is generated by mirror symmetry, with the mirror bis­ecting the central benzene ring. It was synthesized via the condensation reaction of 1,2-di­amine­benzene with 4-benz­yloxy-2-hy­droxy­benzaldehyde. The mol­ecule is V-shaped and there are two intra­molecular O—H⋯N hydrogen bonds present forming S(6) ring motifs. The configuration about the C=N imine bonds is E. The central benzene ring makes dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring and the outer benz­yloxy ring, respectively. The latter two rings are inclined to each other by 84.4 (2)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming layers lying parallel to the ab plane. The Hirshfeld surface analysis and the two-dimensional fingerprint plots confirm the predominance of these inter­actions in the crystal structure. The anti­oxidant capacity of the compound was determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.

1. Chemical context

Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu et al., 2015[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281-291.], 2016[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185-195.]), anti-inflammatory (Alam et al., 2012[Alam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103-4108.]), anti­anxiety, anti­depressant (Jubie et al., 2011[Jubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109-112.]), anti-tumour, anti­bacterial, and fungicidal properties (Refat et al., 2008[Refat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898-906.]; Kannan & Ramesh, 2006[Kannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095-3103.]). Bis-bidentate Schiff base ligands have been studied extensively and used as building blocks in metallo-supra­molecular chemistry (Birkedal & Pattison, 2006[Birkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139-o141.]; Shahverdizadeh & Tiekink, 2011[Shahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.]; Chu & Huang, 2007[Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]; Yoshida & Ichikawa, 1997[Yoshida, N. & Ichikawa, K. (1997). Chem. Commun. pp. 1091-1092.]; Kruger et al., 2001[Kruger, P. E., Martin, N. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Dalton Trans. pp. 1966-1970.]). The common structural feature of these compounds is the presence of an azomethine group, linked by a η methyl­ene bridge, which can act as a hydrogen-bond acceptor. In view of this inter­est we have synthesized the title compound, (I)[link], and report herein on its crystal structure. The 1H NMR NMR spectrum reveals the presence of an imino group (N=CH) in the range δ = 8.5–8.7 p.p.m. The anti­oxidant capacity of the compound was determined by the cupric reducing anti­oxidant capacity (CUPRAC) process.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is illustrated in Fig. 1[link]. The asymmetric unit consists of half a mol­ecule, with the whole mol­ecule being generated by mirror symmetry. The mirror bis­ects the central benzene ring, viz. bonds C1—C1i and C3—C3i [symmetry code: (i) −x, y, z]. In the mol­ecule there are two intra­molecular O—H⋯N hydrogen bonds present (Table 1[link]), which form S(6) ring motifs as shown in Fig. 1[link]. The configuration of the C4=N1 imine bonds is E and the C4=N1 bond length is 1.278 (6) Å. The C3—N1=C4 bond angles are less than 120° [118.9 (4)°], and the imine group has a C3—N1—C4—C5 torsion angle of −176.8 (4)°. The mol­ecule is V-shaped and the two arms are non-planar; the central benzene ring forms dihedral angles of 41.9 (2) and 43.6 (2)° with the phenol ring (C5-C10) and the outer benz­yloxy ring (C12–C17), respectively. The latter two rings are almost normal to each other, with a dihedral angle of 84.4 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C10 phenol ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.82 1.90 2.622 (5) 147
C2—H2⋯Cg2i 0.93 2.88 3.499 (5) 125
C13—H13⋯Cg2ii 0.93 2.60 3.493 (5) 161
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of compound (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the mirror symmetry code: (i) −x, y, z. The intra­molecular O—H⋯N hydrogen bonds (see Table 1[link]) are shown as dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I)[link], mol­ecules are linked by C—H⋯π inter­actions (Table 1[link]), forming layers parallel to the (001) plane, as illustrated in Fig. 2[link].

[Figure 2]
Figure 2
Crystal packing of compound (I)[link] viewed along the c axis, with the O—H⋯N intra­molecular hydrogen bonds and the C—H⋯π inter­actions (see Table 1[link]) illustrated as dashed lines.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface of compound (I)[link] mapped over dnorm is given in Fig. 3[link], and the fingerprint plots are given in Fig. 4[link]. They reveal that the principal inter­molecular inter­actions are H⋯H at 45.7% (Fig. 4[link]b) and H⋯C/C⋯H at 34.6% (Fig. 4[link]c), followed by the H⋯O/O⋯H inter­actions at 13.6% (Fig. 4[link]d).

[Figure 3]
Figure 3
View of the Hirshfeld surface of (I)[link] mapped over dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of (I)[link]: (a) all inter­actions; (b) H⋯H; (c) H⋯C/C⋯H; (d) H⋯O/O⋯H.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar compounds yielded four hits. These compounds (see Fig. 5[link]) include 5,5′-dihy­droxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­ene)]diphenol ethanol solvate (II) (CSD refcode HUVXUT; Soroceanu et al., 2013[Soroceanu, A., Shova, S., Cazacu, M., Balan, I., Gorinchoy, N. & Turta, C. (2013). J. Chem. Crystallogr. 43, 310-318.]), 5,5′-dimeth­oxy-2,2′-[4,5-dimethyl-o-phenyl­enebis(nitrilo­methyl­idyne)]diphenol (III) (KUSJIS; Kargar et al., 2010[Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.]), 1,2-bis­{[(2-hy­droxy-4-meth­oxy­phen­yl)(phen­yl)methyl­ene]amino}­benzene (IV) (SOXCIS; Lippe et al., 2009[Lippe, K., Gerlach, D., Kroke, E. & Wagler, J. (2009). Organometallics, 28, 621-629.]) and 5,5′-dimeth­oxy-2,2′-1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenol (V) (XIFREK; Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094-o3095.]). In all four compounds there are two intra­molecular O—H⋯N hydrogen bonds present forming S(6) ring motifs.

[Figure 5]
Figure 5
Similar compounds to that of the title compound, (I)[link], in the CSD; see Section 4, Database survey.

In (II) the phenol rings are inclined to the central benzene ring by 53.9 (3) and 4.0 (2)° and to each other by 49.9 (2)°. In (III) the corresponding dihedral angles are 48.12 (8), 21.44 (8) and 47.70 (8)°, while in (V) the corresponding dihedral angles are 58.29 (12), 2.20 (12) and 57.60 (12)°. In compound (IV), that possesses twofold rotational symmetry with the twofold axis bis­ecting the central benzene ring, the phenol rings are inclined to the central benzene ring by 82.30 (5)° and to each other by 63.76 (5)°. In the title compound, which possesses mirror symmetry, the corresponding dihedral angles are 41.9 (2) and 68.9 (2)°.

A search of the CSD for metal complexes of compounds similar to compound (I)[link] gave over 30 hits. The ligands always coordinate in a tetra­dentate manner. For example, there were 13 hits for transition metal complexes of compound (II). The majority involve square-planar coordinated metal atoms, such as in complexes (5,5′-dihy­droxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato)nickel(II) dihydrate (POFFOG; Fun et al., 2008[Fun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, m1181-m1182.]) and (4,4′-{1,2-phenyl­enebis[(nitrilo-κN)methylyl­idene]}di­benzene-1,3-diolato-κO3)copper(II) methanol solvate (DUQBEX; Niu et al., 2010[Niu, M., Fan, S., Liu, K., Cao, Z. & Wang, D. (2010). Acta Cryst. E66, m77.]). For compound (V), five hits were found; they include three sixfold-coord­inated tin complexes (DOSCOF, DOSDAS, DOSFOI; Muñoz-Flores et al., 2014[Muñoz-Flores, B. M., Santillán, R., Farfán, N., Álvarez-Venicio, V., Jiménez-Pérez, V. M., Rodríguez, M., Morales-Saavedra, O. G., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2014). J. Organomet. Chem. 769, 64-71.]) and two square-pyramidal manganese complexes (ODESEY, Ghaemi et al., 2016[Ghaemi, A., Keyvani, B., Rayati, S., Zarei, S. & Notash, B. (2016). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 57, 1027-1030.]; XIYQOM, Eltayeb et al., 2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m670-m671.]).

5. Anti­oxidant activity

The anti­oxidant activity profile of the synthesized compound (I)[link] was determined by utilizing the copper(II)–neocuprine [CuII-Nc] (CUPRAC) method (Apak et al., 2004[Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970-7981.]). The CUPRAC method (Fig. 6[link]) (cupric ion reducing anti­oxidant capacity) is based on the follow-up of the decrease in the increased absorbance of the neocuproene (Nc), copper (Cu+2)Nc2–Cu+2 complex. Indeed, in the presence of an anti­oxidant agent, the copper–neocuproene complex is reduced and this reaction is qu­anti­fied spectrophotometrically at a wavelength of 450 nm.

[Figure 6]
Figure 6
Reduction of the chromogenic complex of Cu+2–Nc

According to the cupric ion reducing anti­oxidant capacity assay, the title compound displayed activity with variable potency in all tested concentrations, because the percentage (%) inhibition in the CUPRAC assay is good [A0.50 = 15.03 ± 1.50 for a 4 mg dosage, compared to the results for buthylated toluene (BHT) [A0.50 = 8.97 ± 3.94], used as a positive control (see Table 2[link]). Note: In CUPRAC anti­oxidant activity, the values expressed are the mean ± s.u.s of three parallel measurements (p < 0.05).

Table 2
Cupric ion reducing anti­oxidant capacity of compound (I)

  Percentage (%) Inhibition
  12.5 µg 25 µg 50 µg 100 µg 200 µg 400 µg 800 µg A0.50 (μg ml−1)
Compound (I) 0.39±0.01 0.59±0.01 0.91±0.03 1.42±0.02 1.84±0.36 3.12±0.25 4.29±0.11 15.03±1.50
BHT 1.41±0.03 2.22±0.05 2.42±0.02 2.50±0.01 2.56±0.05 2.86±0.07 3.38±0.13 8.97±3.94

6. Synthesis and crystallization

1,2-Di­amine­benzene (0.027 g) and 4-benz­yloxy-2-hy­droxy­benzaldehyde (0.1141 g) in ethanol (15 ml) were refluxed for 1 h, then the solvent was evaporated in vacuo. The residue was recrystallized from ethanol, yielding yellow block-like crystals of the title compound on slow evaporation of the solvent. The purity of the compound was characterized by its NMR spectrum (250 MHz, CDCl3). The azomethine proton appears in the 8.5–8.7 p.p.m. range, while the imine bond is characterized in the 13C RMN spectrum with the imine C and OH signals in the range 162.23–163.34 p.p.m. 1H NMR: δ = 6.5–7.6 (m, 12H; H-ar), δ = 13.7 (s, 1H; OH), δ = 5.1 (s, 1H; CH2–O). 13C NMR: 70.15, 120.33, 127.30, 127.64, 128.26, 128.75, 142.32, 162.23, 163.33, 163.34.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydroxyl H atom was located in a difference-Fourier map and initially freely refined. In the final cycles of refinements it was positioned geometrically (O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C34H28N2O4
Mr 528.58
Crystal system, space group Orthorhombic, Cmc21
Temperature (K) 293
a, b, c (Å) 35.297 (3), 9.3902 (6), 8.3603 (5)
V3) 2771.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 4493, 2516, 1691
Rint 0.042
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.02
No. of reflections 2516
No. of parameters 185
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al.2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

2,2'-{(1E,1'E)-[1,2-Phenylenebis(azanylylidene)]bis(methanylylidene)}bis(5-benzyloxy)phenol top
Crystal data top
C34H28N2O4F(000) = 1112
Mr = 528.58Dx = 1.267 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1621 reflections
a = 35.297 (3) Åθ = 2.2–21.3°
b = 9.3902 (6) ŵ = 0.08 mm1
c = 8.3603 (5) ÅT = 293 K
V = 2771.0 (3) Å3Block, yellow
Z = 40.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.042
Detector resolution: 18.4 pixels mm-1θmax = 27.5°, θmin = 3.7°
φ and ω scansh = 4540
4493 measured reflectionsk = 125
2516 independent reflectionsl = 106
1691 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.158H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0817P)2]
where P = (Fo2 + 2Fc2)/3
2516 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.24 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05052 (9)0.2350 (3)0.3234 (5)0.0693 (13)
O20.15676 (8)0.0288 (3)0.5919 (4)0.0546 (9)
N10.03881 (9)0.5084 (4)0.3640 (5)0.0487 (10)
C10.01955 (13)0.8879 (4)0.2654 (7)0.0639 (15)
C20.03890 (12)0.7645 (4)0.2985 (6)0.0567 (14)
C30.01982 (11)0.6379 (4)0.3322 (5)0.0481 (11)
C40.06841 (12)0.5103 (4)0.4519 (6)0.0495 (14)
C50.09057 (11)0.3828 (4)0.4833 (5)0.0454 (11)
C60.08042 (11)0.2506 (4)0.4207 (5)0.0475 (11)
C70.10168 (11)0.1285 (4)0.4566 (5)0.0488 (11)
C80.13349 (11)0.1401 (4)0.5523 (5)0.0463 (12)
C90.14420 (12)0.2710 (4)0.6146 (6)0.0560 (16)
C100.12269 (12)0.3889 (4)0.5813 (5)0.0560 (16)
C110.14781 (12)0.1086 (4)0.5260 (6)0.0547 (16)
C120.17886 (11)0.2104 (4)0.5695 (5)0.0449 (11)
C130.17544 (12)0.2993 (4)0.6998 (6)0.0543 (16)
C140.20330 (16)0.3988 (4)0.7345 (6)0.0677 (17)
C150.23502 (14)0.4070 (5)0.6404 (7)0.0700 (19)
C160.23920 (14)0.3165 (6)0.5124 (7)0.0697 (17)
C170.21118 (13)0.2190 (5)0.4765 (6)0.0617 (17)
H10.032760.971210.243010.0770*
H1O0.040380.312540.309330.1040*
H20.065240.765290.298510.0680*
H40.0777 (10)0.604 (4)0.509 (5)0.041 (9)*
H70.094420.040300.416350.0580*
H90.165710.278720.678240.0670*
H100.129680.475940.625290.0670*
H11A0.123850.142140.568620.0660*
H11B0.145570.102030.410610.0660*
H130.154200.292590.765160.0650*
H140.200470.459740.821410.0810*
H150.253710.473780.663110.0840*
H160.260950.320990.449790.0840*
H170.214070.158600.389150.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0640 (19)0.0400 (16)0.104 (3)0.0056 (14)0.0359 (19)0.0063 (17)
O20.0595 (17)0.0386 (14)0.0658 (17)0.0080 (12)0.0166 (15)0.0028 (14)
N10.0416 (17)0.0335 (16)0.071 (2)0.0021 (14)0.0019 (18)0.0024 (15)
C10.063 (3)0.0317 (19)0.097 (3)0.0042 (16)0.001 (3)0.003 (2)
C20.047 (2)0.041 (2)0.082 (3)0.0048 (17)0.002 (2)0.000 (2)
C30.049 (2)0.0322 (18)0.063 (2)0.0022 (16)0.002 (2)0.0028 (17)
C40.049 (2)0.0345 (19)0.065 (3)0.0002 (17)0.003 (2)0.0024 (18)
C50.042 (2)0.0373 (19)0.057 (2)0.0015 (16)0.002 (2)0.0033 (18)
C60.042 (2)0.0364 (19)0.064 (2)0.0017 (16)0.008 (2)0.0015 (17)
C70.051 (2)0.0365 (18)0.059 (2)0.0007 (16)0.010 (2)0.0041 (19)
C80.047 (2)0.039 (2)0.053 (2)0.0063 (16)0.0047 (19)0.0005 (17)
C90.058 (3)0.045 (2)0.065 (3)0.0010 (18)0.017 (2)0.003 (2)
C100.060 (3)0.039 (2)0.069 (3)0.0035 (18)0.011 (2)0.006 (2)
C110.059 (3)0.041 (2)0.064 (3)0.0043 (19)0.013 (2)0.0047 (19)
C120.043 (2)0.0378 (19)0.054 (2)0.0001 (16)0.0069 (18)0.0056 (18)
C130.054 (3)0.049 (2)0.060 (3)0.0042 (18)0.004 (2)0.001 (2)
C140.082 (3)0.051 (3)0.070 (3)0.013 (2)0.021 (3)0.005 (2)
C150.060 (3)0.055 (3)0.095 (4)0.020 (2)0.023 (3)0.028 (3)
C160.053 (3)0.075 (3)0.081 (3)0.006 (2)0.001 (3)0.021 (3)
C170.062 (3)0.057 (3)0.066 (3)0.005 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C61.341 (5)C12—C131.378 (6)
O2—C81.370 (5)C13—C141.387 (6)
O2—C111.438 (5)C14—C151.371 (8)
N1—C31.414 (5)C15—C161.374 (8)
N1—C41.278 (6)C16—C171.381 (7)
O1—H1O0.8200C1—H10.9300
C1—C1i1.380 (6)C2—H20.9300
C1—C21.373 (6)C4—H41.05 (4)
C2—C31.395 (5)C7—H70.9300
C3—C3i1.399 (5)C9—H90.9300
C4—C51.454 (5)C10—H100.9300
C5—C101.400 (6)C11—H11A0.9700
C5—C61.394 (5)C11—H11B0.9700
C6—C71.403 (5)C13—H130.9300
C7—C81.383 (6)C14—H140.9300
C8—C91.388 (6)C15—H150.9300
C9—C101.371 (6)C16—H160.9300
C11—C121.499 (6)C17—H170.9300
C12—C171.383 (6)
C8—O2—C11117.4 (3)C12—C17—C16120.5 (5)
C3—N1—C4118.9 (4)C2—C1—H1120.00
C6—O1—H1O109.00C1i—C1—H1120.00
C1i—C1—C2119.8 (4)C1—C2—H2119.00
C1—C2—C3121.3 (4)C3—C2—H2119.00
N1—C3—C3i118.3 (3)N1—C4—H4122 (2)
C2—C3—C3i118.9 (4)C5—C4—H4116 (2)
N1—C3—C2122.8 (4)C6—C7—H7120.00
N1—C4—C5122.2 (4)C8—C7—H7120.00
C4—C5—C10120.5 (4)C8—C9—H9120.00
C6—C5—C10117.7 (3)C10—C9—H9120.00
C4—C5—C6121.8 (4)C5—C10—H10119.00
O1—C6—C7117.5 (3)C9—C10—H10119.00
C5—C6—C7120.7 (4)O2—C11—H11A110.00
O1—C6—C5121.8 (3)O2—C11—H11B110.00
C6—C7—C8119.6 (4)C12—C11—H11A110.00
O2—C8—C9115.0 (4)C12—C11—H11B110.00
C7—C8—C9120.5 (4)H11A—C11—H11B108.00
O2—C8—C7124.5 (3)C12—C13—H13120.00
C8—C9—C10119.2 (4)C14—C13—H13120.00
C5—C10—C9122.3 (4)C13—C14—H14120.00
O2—C11—C12108.6 (3)C15—C14—H14120.00
C11—C12—C13120.9 (4)C14—C15—H15120.00
C13—C12—C17118.8 (4)C16—C15—H15120.00
C11—C12—C17120.3 (4)C15—C16—H16120.00
C12—C13—C14120.8 (4)C17—C16—H16120.00
C13—C14—C15119.8 (4)C12—C17—H17120.00
C14—C15—C16120.0 (5)C16—C17—H17120.00
C15—C16—C17120.2 (5)
C11—O2—C8—C71.5 (6)C4—C5—C10—C9179.6 (4)
C11—O2—C8—C9177.8 (4)C6—C5—C10—C90.9 (6)
C8—O2—C11—C12174.0 (3)O1—C6—C7—C8177.9 (4)
C4—N1—C3—C241.3 (6)C5—C6—C7—C81.4 (6)
C4—N1—C3—C3i139.8 (4)C6—C7—C8—O2178.4 (4)
C3—N1—C4—C5176.8 (4)C6—C7—C8—C90.9 (6)
C1i—C1—C2—C30.1 (8)O2—C8—C9—C10179.9 (4)
C2—C1—C1i—C2i0.0 (9)C7—C8—C9—C100.5 (7)
C1—C2—C3—N1178.9 (5)C8—C9—C10—C51.4 (7)
C1—C2—C3—C3i0.1 (7)O2—C11—C12—C1396.8 (4)
N1—C3—C3i—N1i0.0 (6)O2—C11—C12—C1784.8 (5)
N1—C3—C3i—C2i179.0 (4)C11—C12—C13—C14176.4 (4)
C2—C3—C3i—N1i179.0 (4)C17—C12—C13—C142.0 (6)
C2—C3—C3i—C2i0.0 (6)C11—C12—C17—C16177.4 (4)
N1—C4—C5—C60.9 (7)C13—C12—C17—C161.0 (7)
N1—C4—C5—C10179.5 (4)C12—C13—C14—C151.4 (7)
C4—C5—C6—O12.6 (6)C13—C14—C15—C160.2 (7)
C4—C5—C6—C7178.2 (4)C14—C15—C16—C171.2 (8)
C10—C5—C6—O1178.8 (4)C15—C16—C17—C120.6 (8)
C10—C5—C6—C70.5 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 phenol ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.902.622 (5)147
C2—H2···Cg2ii0.932.883.499 (5)125
C13—H13···Cg2iii0.932.603.493 (5)161
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
Cupric ion reducing antioxidant capacity of compound (I) top
Percentage (%) Inhibition
12.5 µg25 µg50 µg100 µg200 µg400 µg800 µgA0.50 (µg ml-1)
Compound (I)0.39±0.010.59±0.010.91±0.031.42±0.021.84±0.363.12±0.254.29±0.1115.03±1.50
BHT1.41±0.032.22±0.052.42±0.022.50±0.012.56±0.052.86±0.073.38±0.138.97±3.94
 

Funding information

We are grateful to the Department of Higher Scientific Research and CHEMS Research Unit, University of Constantine1, Algeria, for funding this research project.

References

First citationAlam, M. S., Choi, J.-H. & Lee, D.-U. (2012). Bioorg. Med. Chem. 20, 4103–4108.  Web of Science CrossRef CAS Google Scholar
First citationApak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). J. Agric. Food Chem. 52, 7970–7981.  Web of Science CrossRef CAS Google Scholar
First citationBirkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139–o141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsion, USA.  Google Scholar
First citationChu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m670–m671.  CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Mirkhani, V. & Zargoshi, H. (2008). Acta Cryst. E64, m1181–m1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Keyvani, B., Rayati, S., Zarei, S. & Notash, B. (2016). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 57, 1027–1030.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJubie, S., Sikdar, P., Antony, S., Kalirajan, R., Gowramma, B., Gomathy, S. & Elango, K. (2011). Pak. J. Pharm. Sci. 24, 109–112.  Web of Science CAS PubMed Google Scholar
First citationKannan, M. & Ramesh, R. (2006). Polyhedron, 25, 3095–3103.  Web of Science CrossRef CAS Google Scholar
First citationKargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKruger, P. E., Martin, N. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Dalton Trans. pp. 1966–1970.  Web of Science CSD CrossRef Google Scholar
First citationLippe, K., Gerlach, D., Kroke, E. & Wagler, J. (2009). Organometallics, 28, 621–629.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMuñoz-Flores, B. M., Santillán, R., Farfán, N., Álvarez-Venicio, V., Jiménez-Pérez, V. M., Rodríguez, M., Morales-Saavedra, O. G., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2014). J. Organomet. Chem. 769, 64–71.  Google Scholar
First citationNiu, M., Fan, S., Liu, K., Cao, Z. & Wang, D. (2010). Acta Cryst. E66, m77.  CSD CrossRef IUCr Journals Google Scholar
First citationRefat, M. S., El-Korashy, S. A., Kumar, D. N. & Ahmed, A. S. (2008). Spectrochim. Acta Part A, 70, 898–906.  Web of Science CrossRef Google Scholar
First citationShahverdizadeh, G. H. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoroceanu, A., Shova, S., Cazacu, M., Balan, I., Gorinchoy, N. & Turta, C. (2013). J. Chem. Crystallogr. 43, 310–318.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationYoshida, N. & Ichikawa, K. (1997). Chem. Commun. pp. 1091–1092.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds